
Mathematish-Naturwissenschaftliche Fakultät
Wilhelm-Schickard-Institut für Informatik

Database Systems Research Group

Masterthesis Computer Science

Extending WITH RECURSIVE With Multiple Working Tables And
Additional Data Structures

Adrian Müller

31.03.2023

Examiner

Prof. Dr. Torsten Grust

Co-Examiner

Jun. Prof. Dr. Jonathan Brachthäuser

Supervisor

Denis Hirn



Adrian Müller:
Extending WITH RECURSIVE With Multiple Working Tables And Additional Data
Structures
Masterthesis Computer Science
Eberhard Karls Universität
From 01.10.2022 to 31.03.2023



Selbständigkeitserklärung

Hiermit versichere ich, dass ich die vorliegende Masterthesis selbständig
und nur mit den angegebenen Hilfsmitteln angefertigt habe und dass alle
Stellen, die dem Wortlaut oder dem Sinne nach anderen Werken entnom-
men sind, durch Angaben von Quellen als Entlehnung kenntlich gemacht
worden sind. Diese Masterthesis wurde in gleicher oder ähnlicher Form in
keinem anderen Studiengang als Prüfungsleistung vorgelegt.

Ort, Datum Adrian Müller

iii





Abstract

The WITH RECURSIVE construct in SQL as we know it is limited by providing only
one working table to represent the state of the recursive CTE. In addition, whenever
certain tuples generated throughout the recursive CTE are needed in more than just
the next iteration, they must be actively copied. This thesis introduces modifications
to standard PostgreSQL to allowmultiple working tables, which may also store tuples
consistently. Furthermore, even other data structures such as a stack, heap and hash
table are implemented as tuple containers to be used instead of simple tables. The
aim is to implement selected applicationsmore efficiently by avoiding large numbers
of copy operations and by providing faster access to specific tuples stored in the state
of the recursive CTE.
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1
Introduction

Today we live in a world where misleading and even downright false information seems
to be thrown at us all the time, and the Internet provides a playground for its easy spread.
Even PostgreSQL [1], a database management system and dialect for the Structured Query
Language (SQL), is not safe from this. While this thesis will not try to start a scientific de-
bate about the naming of the WITH RECURSIVE construct, I do feel obliged to point out that
its naming is somewhat misleading. The WITH RECURSIVE construct extends a standard Com-
mon Table Expression (CTE), i.e. a temporary table that can be used within a query, with re-
cursion - as the name implies. Hence, the WITH RECURSIVE construct is often also referred
to as a recursive CTE. While the addition of the recursive CTE to SQL does indeed make SQL
a Turing-complete programming language [2], calling the construct recursive might give the
wrong impression. In fact, the construct is even implemented in an iterative rather than
a recursive way. To understand this, consider Figure 1.1a, which shows a simple recursive
CTE, and Figure 1.1b, which details the general workflow [3] for the WITH RECURSIVE construct.

1 WITH RECURSIVE t(x) AS (
2 SELECT 1 -- q0
3 UNION ALL
4 SELECT x+1 FROM t -- qrec
5 WHERE x < 5
6 ) TABLE t;

(a) Recursive CTE for the computation of
the numbers 1 to 5

1 WT , UT = q0
2 WHILE WT ≠ ∅
3 IT = qrec(WT)
4 WT = IT
5 UT = UT ⊎ IT
6 IT = ∅
7 RETURN UT

(b) Workflow of the WITH RECURSIVE con-
struct

Figure 1.1: Workflow for the WITH RE-
CURSIVE construct demon-
strated on a recursive CTE

Let us first look at the query using the WITH RECURSIVE
construct, which defines the recursive CTE 𝑡. The recur-
sion is as follows: The table 𝑡 is first initialized by a
query 𝑞0, which in this case only computes one tuple
with a column 𝑥 valued 1. The result of the query 𝑞0,
in the case of the example query only the single tuple,
is inserted into the Working Table (WT) [4] of the recur-
sive CTE. This can also be seen in line 1 of the workflow
in Figure 1.1b. The WT corresponds to a temporary table
containing the current state of the recursive CTE 𝑡. The
initialization of the WT is followed by multiple execu-
tions of the query 𝑞𝑟𝑒𝑐 over the course of several itera-
tions. This query 𝑞𝑟𝑒𝑐 itself refers to the recursive CTE 𝑡,
i.e. its current content is read and operated on. In the
first iteration, the single tuple with 𝑥 = 1 is read from
the WT and a new tuple with an incremented 𝑥 value
of 2 is calculated. In general, the WT could have been
initialized with more than one tuple, so the WT would
be read multiple times. If the newly generated tuple
were inserted directly into the WT, it would be read in
the same iteration. However, only the previous state of
the WT should matter for the computation of the new
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state. Therefore, an Intermediate Table (IT) is defined, which is supposed to store the tuples
generated during an iteration of the recursive CTE. In the workflow from Figure 1.1b, this corre-
sponds to line 3. Only once an iteration has been completed and the next iteration is being
prepared is the WT updated with the new tuples contained in the IT. This corresponds to line 4
of the workflow. Note that the previous contents of the WT are discarded, i.e. in the next iter-
ation 𝑛 only the tuples generated in iteration 𝑛 − 1 are available in the current state. However,
the parent query following the recursive CTE is able to read all tuples generated throughout the
recursive CTE, not just its final state. For this purpose, an additional union table UT is defined,
which accumulates all tuples computed across all iterations. This can be seen in lines 1, 5 and
finally in line 7, where the accumulated tuples are returned as the total content of the recur-
sive CTE 𝑡. Therefore, the query shown in Figure 1.1a computes one tuple with an incremented
𝑥 value in each iteration until the termination condition given by the WHERE clause is violated.
This results in no new tuples being generated and thus an empty WT, which causes the loop in
line 2 of the workflow to be exited.

Now that the workflow of the recursive CTE has been explained, it becomes clear that calling
it a recursive construct is not quite fitting. It is not possible to issue some sort of recursive func-
tion call which, after having completed its calculations, would return to an outer context where
the remaining calculations could be performed. While the naming of the recursive CTE as stated
is not the subject of debate in this thesis, the restrictions on the WITH RECURSIVE construct cer-
tainly are. It is possible to use a functional approach to recursive CTEs by translating a function
into the Continuation Passing Style (CPS), allowing it to pass the outer context as an additional
argument to a recursive function call [5]. When also using defunctionalization and a translation
into the Trampolined Style (TS), the function can then be realized by a recursive CTE. However,
as will be shown in this thesis, this means that a possibly large outer context would have to be
copied in each iteration of the recursive CTE, since the content of the WT is only available for
exactly one iteration. This is also the case for when a function benefits from memoization, i.e.
when the solution to a particular problem is computed by first solving smaller sub-problems
whose results are needed several times for the top-level function call. All the data containing
the solutions to the sub-problems would have to be copied in each iteration, which limits the
benefits of memoization. There already is related work [6] that addresses this issue by allowing
rows to be stored indefinitely throughout the recursive CTE, unless they are replaced by another
row with the same key, or they expire by specifying a time-to-live value. The related work has
already motivated the use of possibly many different WTs instead of just one, as is the case
in standard PostgreSQL. Even the possible use of a stack data structure as an alternative to a
common table as a tuple container has been hinted at. This thesis implements and tests exactly
these proposals. Individual WTs may behave as usual, or they may accumulate tuples and pre-
vent their contents from being discarded across iterations. This is already expected to eliminate
the copying overhead for queries that benefit from memoization. An additional stack data struc-
ture may prove useful for CPS examples that pass their outer context to recursive calls. Even
a currently researched translation from the more imperative Procedural Language/PostgreSQL
(PL/PGSQL) to plain SQL [7] could benefit from the stack and allow an efficient SQL realization
of cursor loops. If a stack data structure is already considered, then why stop there? A heap

2 Chapter 1 Introduction



data structure may lead to a better performance of certain graph algorithms such as Dijkstra
and A* [8, 9]. These additional data structures allow the state of the recursive CTE to be stored
over the course of several iterations, while allowing tuples to be read and removed according
to their insertion order or a sorting criterion. A hash table using an upsert semantics similar to
the previously mentioned related work [6] could also see its benefits, especially when allowing
fast lookups of selected values. This thesis will detail the important implementation aspects
of the new constructs, which extend the simple workflow of the recursive CTE presented above.
The mentioned functions and queries will be implemented using the modified version of Post-
greSQL and the difference in performance compared to standard PostgreSQL will be measured.
Finally, the results are evaluated and an outlook for future work is given. The first chapter starts
with the introduction to the implemented constructs.
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2
Implementation

Now that the goal of this thesis has been addressed, the implementation of the new features
for the recursive CTE will be presented. These will include the use of possibly many separate
WTs, the introduction of an alternative update rule for extend WTs whose tuples are stored over
multiple iterations, as well as a stack, heap, and hash table as additional data structures that
may be used to store tuples instead of a standard WT. There are a number of customizations
that need to be considered when implementing the specific features so that they can actually
be used at the SQL-level. These design aspects and the constraints imposed on the features
will be discussed in this chapter.

2.1 Multiple reset and extend WTs

First, the use of multiple WTs will be introduced, each of which can be declared separately as a
reset WT or an extend WT. Regarding the use of multiple WTs, the goal is that an adapted FROM
clause should determine the selected WT to be read. This selection should be done via a WT
alias, i.e. the user can select a read operation on the WT with index 2 via a SELECT FROM WHERE
(SFW) block containing the clause FROM t as wt2. Also, for each tuple generated by the recursive
CTE, an additional wt column should now be mandatory, so that the tuple is inserted into the
WT indexed by exactly that column. This column will contain the same wt index as the one used
for the wt aliases. A query implementing these features is shown in Figure 2.1.

1 WITH RECURSIVE t(wt , x) AS (
2 SELECT 0, 1
3 UNION ALL
4 SELECT 0, x+1
5 FROM t AS wt0r
6 WHERE x < 5
7 ) TABLE t;

(a) Example query

wt x
0 1
0 2
0 3
0 4
0 5

(b) Query
output

Figure 2.1: Example query demonstrating accesses
to the WT with index 0

The scheme of the recursive CTE 𝑡 it-
self already shows the additional wt col-
umn. Both the tuples generated in the
non-recursive part as well as in the re-
cursive part have the value 0 as a wt in-
dex, i.e. in both cases only the WT with
index 0 is written to. Also, only this WT
is read in each iteration, which can be
deduced from the FROM clause contain-
ing the alias wt0r. In addition, each WT
should have its own associated update
rule. This determines how theWT should
be modified at the end of the iteration.

In standard PostgreSQL, the WT is usually overwritten by the tuples in the IT containing the in-
termediate results computed in the previous iteration. This now corresponds to the update rule
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reset. An additional update rule, extend, now allows the contents of the IT to be simply added to
the WT, while preserving the previous contents of the WT. This thesis will restrict itself to consid-
ering only UNION ALL linked SFW blocks, UNION clauses implementing a duplicate elimination
will be ignored. The reason for this is that it only increases the implementation effort and does
not add much insight for the research.

Let us now look at some of the relevant details of the announced features. We will begin
by introducing the update rule extend. Using this, each tuple of the IT computed in the last
iteration is added to the set of tuples contained in the WT. Unlike the standard update rule
reset, tuples contained in the previous instance of the WT are preserved. In the following, we
will concentrate on the distinction whether a given WT should be considered a reset or an extend
WT. An obvious implementation would require each tuple to introduce yet another attribute to
distinguish between a reset and an extendWT. In this case however, each tuple would already be
extended by two additional attributes, namely the index for the target WT and the indication for
the differentiation of the update rule. This means that the scheme of the recursive CTE is further
inflated. To prevent this, it could be possible to allow only even WT indices for reset WTs and
odd indices for extend WTs. However, it is far more useful to also implement the distinction via
the WT alias. In order to do this, each WT is first assumed to use the extend update rule. This has
the advantage that a WT that is not read at first may accumulate intermediate results. In a later
iteration, when this WT is read for the first time, these intermediate results will still be present
without the need to copy them in each iteration. Access to the tuples of a WT implementing the
update rule extend is now possible by using the alias wti inside a FROM clause, where i refers
to the index of the WT. Furthermore, by a read operation in the next iteration, it is possible to
declare a WT as a reset WT. This can be done by using the alias wtir within a FROM clause, the
additional r suffix will set the update rule to reset. Note that declaring the update rule reset
one iteration after the corresponding WT has been filled with tuples is sufficient to mimic an
immediate declaration of the update rule. For example, in iteration 𝑛 a particular WT could be
written to first, this WT will then use the default update rule extend. Since this WT would be read
in the following iteration via an alias containing the r suffix, the tuples in the WT are discarded at
the end of iteration 𝑛+1. Consequently, it seems as if the WT was a resetWT from the beginning.

Now the implementation of multiple WTs will be discussed in more detail. As explained in the
motivation, the default implementation of the recursive CTE in PostgreSQL provides only one
WT-IT pair. As a result, there is usually only one WorkTableScanState [10] instance during the
execution of a recursive CTE. Across all iterations, this node is responsible for reading the tuples
contained in the WT. We first need to make sure that multiple WorkTableScanState instances
are allowed, so that we may read from different WTs later. In standard PostgreSQL, the amount
of occurrences of the recursive CTE 𝑡 are counted and this counter is incremented for each row
variable in a FROM clause bound to 𝑡. Normally, this counter must be exactly 1, as a counter
of 0 would infer a non-recursive CTE. Multiple reads of the recursive CTE are also prevented by
throwing an error. However, this can be avoided by simply uncommenting the counter check in
the code. This makes it possible to access the recursive CTE 𝑡 through multiple row variables
within one or more FROM clauses, as shown in Figure 2.2.
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1 WITH RECURSIVE t(x) AS (
2 SELECT 1
3 UNION ALL
4 SELECT 2
5 UNION ALL
6 SELECT t1.x + t2.x
7 FROM t AS t1 , t AS t2
8 WHERE t1.x < 3 AND t2.x < 3
9 ) TABLE t;

(a) Example query

x
1
2
2
3
3
4
4

(b) Query
output

Figure 2.2: Example query computing the join of a
WT with itself

Here, two row variables 𝑡1 and 𝑡2 are
bound to the contents of the recur-
sive CTE 𝑡, so two separate WorkTableS-
canState instances are created for read-
ing 𝑡. After 𝑡 is initialized with the tu-
ples containing the 𝑥 values 1 and 2, the
first iteration computes the join of 𝑡 with
itself. For the result of the join, which
would be the Cartesian product of the
contents of 𝑡, we would expect four gen-
erated tuples with 𝑥 values 2, 3, 3 and 4.
These tuples computed in the first itera-
tion of the recursive CTE are highlighted
in yellow in the query output from Figure

2.2b. However, since usually only one WorkTableScanState instance is used, the two row vari-
ables 𝑡1 and 𝑡2 and thus the WorkTableScanState instances still share their read pointers, rather
than having individual ones. When the row variable 𝑡1 accesses the first tuple 1 of the WT, the
read pointer is incremented. As a result, the following access to the same WT by the row vari-
able 𝑡2 would read the next tuple 2 instead of also reading the first one. This means that only
a tuple with the 𝑥 value 3 would be computed in the first iteration. A second iteration would
not compute any new tuples at all, since there is only one tuple in the WT to be read for only
one of the row variables. To fix this, and to allow an actual join of the set of tuples with itself,
the WorkTableScanState definition needs to introduce a unique read pointer. Now that each
instance has its own read pointer, it is possible for each row variable to iterate over the tuples
of a WT completely independently of other row variables. Finally, each WorkTableScanState in-
stance should also store the index of the assigned WT, as each instance or row variable should
only be able to read exactly one WT. The assignment of the WT index is handled by a function
for interpreting the alias wti[r], which is present in a FROM clause FROM t AS wti[r] of a SFW
block. This function also detects a potential r suffix in the alias and sets the update rule for the
WT accordingly. It is noteworthy that the join of a WT with itself is still possible. For example,
we could choose two aliases wt1a and wt1b, meaning the same WT 1 would be read by different
WorkTableScanState instances. Now it is possible to introduce multiple WTs. Instead of just one
WT-IT pair, we now define one array each for the WTs and the ITs. Additionally, a third array must
be provided for the update rules, which determines for each WT-IT pair whether it should be
updated via the extend or the reset rule. Initially, only one WT-IT pair is defined, so the arrays
contain only one element and only the WT index 0 exists. If a tuple is computed during the com-
putation of the recursive CTE, or alternatively a row variable with a particular alias is defined
in a FROM clause, one of which may hold a new WT index, another WT-IT pair and an update
rule will be dynamically allocated. If the number of required WT-IT pairs exceeds the number of
fields available for both the WT and IT arrays, new arrays with twice as many fields are allocated
and the WTs and ITs are copied into the new arrays. Since the individual WTs and ITs are only
referenced by their pointers, we only need to copy these pointers rather than the contents of
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the tables, making this dynamic behaviour feasible.

With these modifications to standard PostgreSQL, it is now possible to use any number of
individual WTs. Each WT may accumulate tuples over the course of many iterations by using the
new update rule extend. With this it is possible, for example, to store the memoization contents
throughout the whole computation performed by the recursive CTE without having to copy the
memoization tuples in each iteration. In the later chapter 4, several queries will be executed
and measured, which will benefit from the usage of memoization, especially by using a separate
memoization WT. Before we look at optimizing existing queries, the remaining data structures
are going be introduced. The next chapter introduces the first of these data structures, the tuple
stack.

2.2 Tuple Stack

Using the examples in the CPS and the TS as the main motivation for this thesis, yet another
optimization can be identified: The examples in the CPS all use a stack to store the closures,
which will be demonstrated in the later chapter 3.3.2. In the given queries, however, the closure
stack is implemented by an array. One problem with using an array is that by only performing a
maximum of one stack pop per iteration, the closure stack has to be copied over many iterations.
A more desirable approach would be to use another update rule similar to the extend rule, where
the closure stack can be kept alive during the course of the recursive CTE. First of all, the closures
should now be atomic, meaning each closure is now represented by a single tuple. We also need
to consider the order of the tuples on the stack as well as pop operations, so the update rule
extend is not sufficient. Instead, an actual tuple stack is implemented for the storage of the
tuples. In this chapter, I will clarify certain relevant aspects for all data structures, as well as
the detailed ones for the stack. The difficulty in implementing the different data structures
lies in the following points: It needs to be determined how push and pop operations may be
possible at the SQL-level. We might also want to allow simple read operations rather than just
pop operations. Certain state changes in a data structure itself through push or pop operations
would also have to result in another iteration being performed. It is also important to consider
a certain order for the operations performed on the data structure within an iteration: At the
start of the iteration, the data structure should be read and possibly pop operations should
be performed. Only then should push operations have an effect on the actual data structure,
otherwise we may experience an unwanted behaviour. For example, in the case of the stack, a
tuple which was just pushed onto the stack might be discarded immediately if a pop operation
were performed within the same iteration after the stack push. All of these difficulties will be
addressed below.

Let us start with the syntax in which the stack is used within aWITH RECURSIVE SQL query. For
the most part, I will follow an approach similar to the one of multiple WTs. There, the additional
wt column of a tuple generated by the recursive CTE determines the WT in which the tuple is
to be inserted. Since currently only WT indices corresponding to an array index are allowed -
i.e. only positive integers starting from 0 - negative integers are still available. Thus a value of
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1 WITH RECURSIVE t(wt , x) AS (
2 SELECT -1, 1
3 UNION ALL
4 (WITH stack AS (SELECT *
5 FROM t AS stp LIMIT 1)
6 SELECT -1, x+1
7 FROM stack
8 WHERE x < 5)
9 ) TABLE t;

(a) Query using passive stack pop via stp
alias

1 WITH RECURSIVE t(wt , x) AS (
2 SELECT -1, 1
3 UNION ALL
4 (WITH stack AS (SELECT *
5 FROM t AS st LIMIT 1)
6 SELECT -1, x+1
7 FROM stack
8 WHERE x < 5
9 UNION ALL

10 SELECT -2, NULL
11 FROM stack)
12 ) TABLE t;

(b) Query using active stack pop via gen-
erated tuple

wt x
-1 1
-1 2
-2
-1 3
-2
-1 4
-2
-1 5
-2
-2

(c) Query
output

Figure 2.3: Example queries showing the use of the tuple stack

−1 in the wt column will now refer to a stack push. Also, reading tuples from the stack is now
implemented using a special alias. So, for simple tuple reads, the alias in a FROM clause should
be st. Reads are useful for the stack because some CPS queries, which will be presented later,
often access a tuple of the closure stack without simultaneously removing the read tuple by a
pop operation. Besides a read from the stack using the alias st, another read including a pop
operation is implemented by selecting the alias stp. By using this alias, the topmost tuple will
be read again, but it will also immediately undergo a pop operation, meaning that any tuple
read will also be removed from the stack. The use of the alias stp is especially useful for the
cursor loop example shown in the later chapter 3.2, as the tuples read from the stack are no
longer needed. The alternative to a stack pop via an alias is a bit more cumbersome: It is also
possible to declare a stack pop by generating a tuple with a wt column valued at −2. This makes
it possible to define certain conditions within the corresponding WITH clause, so that a pop
should only occur if the condition is fulfilled. This alternative way of implementing a stack pop
is useful for the examples using the st alias, as there still needs to be a way to perform pop
operations. Note that the simple stack read via the alias st and, as a consequence, the stack pop
via a generated tuple are optional and only implemented for convenience. Two simple queries
using the tuple stack are shown in Figure 2.3.

The initial focus should be on the read, pop and push operations through generated tuples
and the use of a particular stack alias. The purpose of the stack CTE will be explained shortly.
Both the queries are equivalent in terms of the stack, only the implementation is different. In
the non-recursive part of the query, the stack is initialized with one tuple. This is followed by the
recursive part, which reads the contents of the stack and, under a certain condition, performs
another stack push. In the query 2.3a, the read tuple will immediately be removed from the
stack by using the alias stp. In the query 2.3b, this is done by actively computing a tuple with
the value −2 in the wt column. This means that in almost every iteration both one push and one
pop operation are performed, as it can be seen in the query output in Figure 2.3c. Note that the
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tuples with a wt column valued with −2 are only generated for the query 2.3b.

Now that the implementation of the relevant operations has been presented, the order in
which these operations will be carried out needs to be be established. First, since pop opera-
tions always occur as soon as the alias stp binds a row variable to the topmost tuple, or a tuple
with the value −2 in the wt column is generated, the stack instantly experiences a state change.
So, read operations must occur before pop operations, otherwise tuples could be removed from
the stack before being read. This can be ensured by using a centralized stack CTE within the
recursive CTE, so that all stack reads occur right at the very start of an iteration. In addition, all
SFW blocks that read from the stack may now do so by accessing the previously computed stack
CTE. To ensure that the CTEs are actually computed before the following parent query, the CTEs
may need to be defined with the additional specification of AS MATERIALIZED [11]. This prevents
a potential SQL optimization by the planner [12] where the CTE could be inlined into the parent
query if there is only one occurrence of the CTE. However, it is more difficult to manage the order
for push operations. This can already be seen in query 2.3b, where both the stack push and the
pop are instructed by generated tuples. We cannot be sure that pop operations will always be
performed before push operations because of potential SQL optimizations that could change
the order in which query parts are executed. In the example query 2.3b, an unwanted behaviour
could occur where the tuple that was just pushed to the stack is immediately removed by the
following pop operation. So, we need ensure sure that stack pushes are always performed last
in some other way: When a tuple with a wt column of −1 is computed, which would have to be
written to the stack, the tuple is first cached. Only when the current iteration has terminated
and the next iteration is being prepared should the tuple actually be stored on the stack. By
then, all pop operations will have been performed, regardless how they happened. Within an
iteration, it is generally allowed to push multiple tuples to the stack which requires the need to
cache possibly many tuples. For this reason, the stack was implemented as a singly linked list.
First, the stack itself is represented as a list, but so it the data structure used to cache the tuples
to be pushed at the end of the iteration. At the end of the iteration, the actual stack pushes
may then be performed by simply concatenating these lists. For an array implementation of
the stack, this would be less elegant and much more expensive. It has just been established
that multiple stack pushes per iteration are allowed. Even the insertion order of simultaneously
inserted tuples can be specified by the user with an ORDER BY clause. In addition to multiple
stack pushes per iteration, many read and pop operations could also be performed. This is
indicated by an additional LIMIT n clause within the stack CTE, which instructs a total of 𝑛 stack
reads. Note that this only makes sense when using the stp alias, as simple reads using the st
alias would only read the topmost tuples multiple times. So, not providing a LIMIT clause at all
would result in an infinite loop in the case of a st alias. However, using a stp alias without a
LIMIT clause would simply cause all the tuples on the stack to be read and removed. A LIMIT
clause should therefore always be provided.

There is still a design aspect to be addressed, concerning both the stack and the heap data
structures: In standard PostgreSQL a new iteration is invoked whenever at least one tuple has
been inserted into the IT during the iteration, i.e. whenever the recursive CTE has computed a
tuple and a state change has occurred. The modified implementation with multiple WTs instead
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1 WITH RECURSIVE t(wt , x) AS (
2 SELECT -1, x
3 FROM generate_series (1, 6)

AS x
4 UNION ALL
5 (WITH stack AS (SELECT *
6 FROM t AS stp LIMIT 1)
7 SELECT 0, x
8 FROM stack
9 WHERE x % 2 = 0)

10 ) TABLE t;

(a) Example query

wt x
-1 1
-1 2
-1 3
-1 4
-1 5
-1 6
0 6
0 4
0 2

(b) Query
output

1 WITH RECURSIVE t(wt , x) AS (
2 SELECT -1, x
3 FROM generate_series (1, 6)

AS x
4 UNION ALL
5 (WITH stack AS (SELECT *
6 FROM t AS stp
7 WHERE x % 2 = 0 LIMIT 1)
8 SELECT 0, x
9 FROM stack)

10 ) TABLE t;

(c) Workaround for passive stack pop oper-
ations

Figure 2.4: Example query showing different results when passive stack pop operations
are or are not counted as state changes

performs another iteration if at least one IT has been written to. Now that additional data struc-
tures are implemented, any kind of state change in these data structures should generally also
trigger another iteration. This includes any stack push or pop. In the case of stack pushes or
pops through a generated tuple with a wt column valued −1 or −2 respectively, this is obvious,
as a tuple has been actively computed. Only with stack pops via a stp alias is it questionable
whether these should also start another iteration if no tuple was computed during the itera-
tion. Strictly speaking, it should actually trigger another iteration because a state change has
occurred, which could result in more computations being done in the next iteration. An example
for this is given in Figure 2.4a.

Here, a tuple is only computed in the recursive part of the query if the tuple read from the
stack has an even 𝑥 value. If a passive stack pop via alias stp were able to start a new iteration
on its own, every tuple from the stack that satisfies the condition would be used to compute an
output tuple. In contrast, if only actively computed tuples were considered for state changes,
the query would terminate after reading a stack tuple with an odd 𝑥 value. This means that the
tuples highlighted in yellow in the query output of Figure 2.4b are only computed by the query
of Figure 2.4a if a passive stack pop via the alias stp would count as a state change. In general,
it may happen that the result of the recursive CTE has already been computed, but the data
structure still contains tuples. In this case, many more useless iterations would be performed
without any generated tuples until the data structure is actually empty. An example of this can
be seen later in the tuple heap data structure, especially for an A* function call where the result
may be computed within just a few iterations, but the heap would still contain manymore tuples.
The negative impact of counting stack pops through the stp alias as state changes that trigger
another iteration led me to not count them as state changes. So, only actively computed tuples
can lead to another iteration, while passive stack pops via a stp alias do not. This problem can
also be avoided by adding a WHERE clause to restrict the tuples read from the data structure.
An example of this is shown in Figure 2.4c.
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The stack CTE will now ensure that a contained tuple fulfills the given condition. If the topmost
tuple itself does not meet the condition, it is still removed from the stack via a passive pop
operation and the new topmost tuple is considered. If none of the tuples on the stack satisfy
the condition, they are all removed from the stack within one iteration. This way of handling
pop operations from a data structure is also retained for the tuple heap. The next chapter takes
a closer look at the heap.

2.3 Tuple Heap

The tuple heap offers another use case, namely easy access to a tuple with an extreme value via
a priority queue. It was implemented using an array, so that both heap inserts as well as deletes
could benefit from a complexity of 𝑂(log 𝑛) [13]. The two graph algorithms Dijkstra and A* were
chosen as two areas of application for the heap, they are described in detail in the chapter
3.1. Both algorithms are based on the same principle, i.e. within an iteration, the node of a set
of nodes with the lowest cost value is estimated and expanded. In practice, both algorithms
are usually implemented using a priority queue, as this has the advantage of storing the set of
nodes in an ordered fashion according to their cost value. The next node to expand from can
therefore be read directly from the root of the heap with a complexity of 𝑂(1). However, the
node must also be removed from the set of nodes and thus the heap property must be restored,
for a total effort of 𝑂(log 𝑛). By comparison, implementing the set of nodes via a normal WT
would require an effort of 𝑂(𝑛) to read the next node to expand from, as the entire WT would
have to be searched. Insertions into the heap would then also only have a lower complexity of
𝑂(1), but it would be necessary to copy almost the whole WT in each iteration, which is why the
running time of a query implementing a WT for the set of nodes is expected to be much higher.
The update rule extend cannot be used because expanded nodes should be removed from the
WT and this is not possible in the current implementation of the WT.

The implementation of the heap is very similar to the one of the stack. Heap insertions, also
called enqueue operations, are now triggered by generated tuples containing a wt column with
value −3. The heap may again be read via an alias in a FROM clause, this alias should be he.
Each read operation corresponds to an actual dequeue operation, i.e. the root element of the
heap is first read, then removed from the heap, and finally the heap property of the heap is
restored. Simple read operations without a dequeue operation are not implemented for the
heap, as they seem unnecessary. Again, it is possible to write multiple tuples to the heap per
iteration, and multiple reads are also allowed by using a LIMIT clause. Analogous to the stack,
the heap should be accessed via a centralized heap CTE, so that heap reads, and thus dequeues,
are consistently performed before enqueues. Since the tuples are stored in an ordered fashion
with respect to a cost value, it is necessary to specify which column of a tuple should contain
the cost value. Since the first column of the tuple is still reserved for the wt column, the second
column was chosen for this. To use the heap, this column should now always contain an integer
value. Since both Dijkstra and A* require a min heap, the root of the heap will always store the
tuple with the lowest value in the second column. A max heap could still be implemented by
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1 WITH RECURSIVE t(wt , x, iter) AS (
2 SELECT -3, (random () * 100) :: int , NULL :: int
3 FROM generate_series (1, 100) AS x
4 UNION ALL
5 SELECT 0, NULL :: int , 0
6 UNION ALL
7 (WITH heap AS (SELECT * FROM t AS he LIMIT 1)
8 SELECT 0, heap.x, wt0r.iter + 1
9 FROM heap , t AS wt0r)

10 ) SELECT * FROM t WHERE wt = 0;

(a) Example query

wt x iter
0 0
0 2 1
0 2 2
0 2 3
0 2 4
0 5 5
0 6 6
0 6 7
0 7 8
0 7 9
0 7 10
... ... ...

(b) Query output

Figure 2.5: Heap sort implemented using the tuple heap

either multiplying all cost values by −1, or a clean implementation could be easily added at the
C-level. As this is not of interest for the implemented examples, it has been omitted. Overall,
the implementation of the heap is simpler than the one of the stack, because the order of the
operations is already given by the use of a heap CTE and by not allowing simple read operations.
As a consequence, we don’t need an additional data structure to cache tuples to be added to the
heap later, enqueue operations can be performed right after the computation of a generated
tuple with a wt column with value −3. Finally, Figure 2.5 shows an example query to demonstrate
the syntax introduced. In the non-recursive part of the query, 100 tuples with random numbers
in the interval [0, 100] are stored on the heap. The random number is placed in the second
column of the tuple, and thus serves as the ordering criterion for the priority queue. In each
iteration, the root element of the heap is read and an incremented iter column is computed, so
that the result shows which 𝑥 value was calculated in which iteration. The query reflects heap
sort, as with each incremented iter column, the tuple with the next highest x value is given.
With the implementation of the stack and the heap on top of multiple WTs, we now have two

additional data structures in our arsenal. Another will be added in the next chapter, the hash
table.

2.4 Tuple Hash Table

While the priority queue just explained is only useful for a specific selection of problems, the
hash table is more accessible and useful more often. The implementation of the hash table
means that, for the first time, indexing support [14, 15] is available within a recursive CTE. For
normal WTs, the order of the tuples with respect to a particular attribute is not maintained, so
that the search for a tuple with a particular attribute value would have to consider the whole
WT. A hash table, on the other hand, allows an indexed lookup for a given key attribute, where
only one of possibly many buckets - that is, a small subset of the full set of tuples - needs to
be considered. To make the hash table compatible with SQL, it has to be adapted in many ways.

2.4 Tuple Hash Table 13



First, the upsert operation [6] for associating a key attribute with a tuple will be introduced. The
upsert contains both an update as well as an insert operation, hence the name upsert. An upsert
into the hash table can be requested by computing a tuple with the value −4 in the wt column.
The key of the tuple to be associated should always be given as an integer value in the third
column of the tuple. Depending on the key value and the total number of buckets available for
the hash table, a hash value is calculated and the tuple is then inserted into the bucket indexed
by that hash value. This is the simple insert part of the upsert operation. The hash table itself is
implemented as an array of singly linked lists, where each array field corresponds to one bucket
and thus to one of the lists. This means that if you need to look up a particular key attribute
later, you only need to search one of the lists with a subset of the tuples, rather than the whole
data structure, if index support is missing. Also relevant is the second column of the associated
tuple which should contain an integer or numeric value. This second column is important for
the update part of the upsert operation, which occurs when there is already an association
present in the hash table for the key to be associated with another tuple. These conflicting
associations for a key value need to be resolved appropriately. In programming languages such
as C, the sequential behaviour of the program makes it easy to control updates to hash table
or dictionary entries. Again, this is not possible in SQL because we cannot control the order
of computations within an iteration. This means that if we compute multiple conflicting upsert
tuples for a key value within an iteration, the tuple kept would be chosen arbitrarily by SQL,
depending only on the order of execution, which we have no direct control over. We solve this
by using the second column of an upsert tuple as the comparison value. For each key value,
only one association is allowed in the hash table, and for conflicting tuples with the same key
value, the tuple with the lower comparison value is retained. With this change, the hash table
is now compatible with the heap, as both require an ordering criterion in the second column of
a tuple, which is optimized for the lower values. This will make it possible to use both the heap
and the hash table to further improve A* and Dijkstra queries. For now, a simpler example of
the features explained is given in Figure 2.6.

In the non recursive part of the given query, multiple upsert operations are performed for
conflicting tuples with a common shared key value 1. According to the result of the query read
into WT 1, only the tuple (−4, 3, 1) is kept as the association for the key 1, since its comparison
value 3 is the lowest of the conflicting tuples. In addition, a delete operation for the removal
of the association of the key with its tuple is demonstrated. Such a delete operation may be
performed by generating a tuple with a wt column with value −5. Analogous to the upsert
operation, the delete tuple should contain the key value in the third column. If the hash table
actually contains an association with the given key value, that entry is discarded from the hash
table. The delete operation will not be used in the queries measured in the later chapter 4.
However, having the option to use it only makes the implemented hash table richer, and it is
safe to say that implementing a delete for the hash table is easily done.

The upsert and delete operations introduced two variants that allow the hash table to be
modified. Now the methods for reading the contents of the hash table will be presented. The
simpler method allows all the tuples of the hash table to be read. As with all the constructs
shown previously, this is again done via an alias within a FROM clause of the recursive CTE. The

14 Chapter 2 Implementation



1 WITH RECURSIVE t(wt , x, key) AS (
2 SELECT -4, 5, 1
3 UNION ALL
4 SELECT -4, 3, 1
5 UNION ALL
6 SELECT -4, 8, 1
7 UNION ALL
8 (WITH hashtable AS (SELECT * FROM t AS ht)
9 SELECT 1, ht.x, ht.key

10 FROM hashtable AS ht
11 UNION ALL
12 SELECT -5, NULL , ht.key
13 FROM hashtable AS ht)
14 ) TABLE t;

(a) Example query

wt x key
-4 5 1
-4 3 1
-4 8 1
1 3 1
-5 1

(b) Query output

Figure 2.6: Demonstration of upserts, deletes and reads using the tuple hash table

alias ht has been chosen for this and, as before, it is recommended to read the hash table in a
custom CTE at the start of an iteration. This is also shown in the query from Figure 2.6. A more
interesting method of reading from the hash table is to take advantage of the index support
via a lookup. The goal, as mentioned earlier, is to provide a key value to read the associated
tuple, which may be found faster because we only have to consider one of the many buckets.
However, with the constructs available in SQL, this is difficult to implement. In principle, it would
be possible to extend the alias for the hash table with the key that would be read at the C-level,
and depending on that, the indexed tuple could be bound to the row variable given by the alias.
Unfortunately, aliases cannot be computed, so the key for the lookup would have to be hard-
coded. This is why this option is not considered, as it makes the lookup really inflexible. An
alternative approach would be to first generate a tuple containing a key value, which provokes
a state change in the hash table storing that key value. A subsequent read of the hash table
using a lookup alias could then use the stored key value as the lookup key. The disadvantage of
this approach is that it would require two SFW blocks to be used for each lookup, which would
also have to be executed in strict order. Again, SQL optimizations that might alter the order
of the execution of SFW blocks would be problematic, so the two SFW blocks would have to be
evaluated in one iteration each. This further reduces the usefulness of the hash table, especially
since it would only be possible to look up a single key value every other iteration. Therefore, the
only feasible option considered was to use a system information function [16]. Again, this has its
own limitations: A system information function can only return a multi-valued record type if its
exact type is predefined. However, we want to allow the return of an arbitrarily typed tuple, so
this is no longer an option and we need to only implement the lookup of a single tuple attribute.
Since the main purpose of this thesis is to investigate the usefulness of the implemented data
structures for recursive CTEs, many of the limitations of the hash table are tolerated. All of the
modifications of standard PostgreSQL made in this thesis are based on hacks that extend the
existing syntax constructs with additional semantics. If these additional features were to be
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1 WITH RECURSIVE t(wt , x, key) AS (
2 SELECT 0, 0, NULL
3 UNION ALL
4 SELECT -4, x, ROUND(random () * 6) :: int
5 FROM generate_series (1, 3) AS x
6 UNION ALL
7 SELECT 0, x+1, hashtablelookup (2, x+1) :: int
8 FROM t AS wt0r
9 WHERE x < 5

10 ) TABLE t;

(a) Example query

wt x key
0 0
-4 1 3
-4 2 1
-4 3 5
0 1 2
0 2 -1
0 3 1
0 4 -1
0 5 3

(b) Query output

Figure 2.7: Demonstration of the system information function hashtablelookup

added to a PostgreSQL installation for a production environment, additional syntax elements
should be included to make the features easier and more intuitive to use. Propositions for
these additional syntax elements will be given in the conclusion of this thesis. If these specific
syntax elements were actually present, a better lookup could easily be implemented without
the detour using a restrictive system information function.

Now let us continue, the lookup is only allowed to read one attribute of the associated tuple.
To do this, we use two parameters for the system information function hashtablelookup: The
second parameter specifies the key value for the lookup of the tuple associated with that exact
key. The first parameter is the index of the column to be read. In this case the indexing will start
with 1. It is quite unnecessary to estimate the wt column per lookup, which will always be −4 for
any associated tuple anyway, as well as the key value that has to be given as an argument to
the lookup to begin with. So, the column indices 1 and 3 should be avoided. For the actual im-
plementation the lookup for these column indices is not even possible, only the lookup for the
column indices 2 and 4 are allowed. The reason for this is that while it was possible to access
certain indexed attributes from a tuple computed by the recursive CTE, it was not possible to ac-
cess indexed attributes from the copy of the tuple in the hash table. The example queries shown
later, which actually use hash table lookups, only require a maximum of two lookup columns.
Therefore, only the tuple attributes with column indices 2 and 4 are extracted from an upsert
tuple and these will be stored in additional attributes of the association. This could certainly
be improved by ensuring that the copy operations are fully functional, but for the purposes of
the research this limited implementation should suffice. In the example queries shown later in
the 3 chapter, hash table lookups are often performed throughout the iteration rather than via
CTEs, which strictly occur before the following SFW blocks. This makes it necessary to cache all
the upsert and delete tuples generated throughout the iteration, so that the lookups can only
read the state of the hash table from the previous iteration. As with the stack pushes, the actual
upsert and delete operations are only performed at the end of the iteration. This does not lead
to any meaningful overhead, because for each hash table entry, a struct instance is defined
that contains the copied tuple. This struct instance is referenced by a pointer, so performing
the actual upsert or delete operation does not come at a high cost. Finally, an example query
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for using a lookup is now shown in Figure 2.7. In the non-recursive part of the query, 3 tuples
with random key values in the interval [0, 5] are upserted into the hash table. In the recursive
part, lookups are performed over multiple iterations for all key values in the same interval. For
each association present in the hash table, the comparison value from the second column is
returned, while the error value −1 is returned for non-existent associations.

Now all the implemented constructs were presented. These include the use of multiple WTs,
each using either the new default extend update rule, or alternatively the reset update rule. In
addition, a stack, heap and hash table instance have been introduced, which should benefit
queries using ordered access to tuples. All new features allow tuples to be stored across mul-
tiple iterations, avoiding potentially many copy operations for tuples needed in more than one
iteration. The following chapter will present examples and their SQL implementations, which
will be optimized for runtime by using the new constructs. As a summary and as an aid to
checking the features, Listing 2.1 shows the form used by the different constructs.

1 WITH RECURSIVE t(wt , <scheme >) AS (
2 // non -recursive part
3 <SFW block > [ UNION ALL <SFW block > ]*
4 UNION ALL
5 // recursive part
6 ( [ WITH <name > AS (<SFW block >) [ , <name > AS (<SFW block >) ]* ]
7 <SFW block > [ UNION ALL <SFW block > ]*
8 )
9 ) TABLE t;

10 <SFW block > :=
11 SELECT <selection >
12 FROM t AS <alias >
13 WHERE <condition >
14 LIMIT <n>

15 <selection > :=
16 (i, ...) // i in [0, inf): wt insertion
17 (-1, ...) // stack push
18 (-2, ...) // stack pop
19 (-3, <ordering -criterion >, ...) // heap insert
20 (-4, <ordering -criterion >, <key >, ...) // hash table upsert
21 (-5, NULL , <key >, ...) // hash table delete

22 <alias > :=
23 wti // i in [0, inf): wt read , set update rule to extend
24 wtir // i in [0, inf): wt read , set update rule to reset
25 st // stack read
26 stp // stack read & pop
27 he // heap read & pop
28 ht // hash table read

29 <hash table lookup > :=
30 hashtablelookup(<column >, <key >) // <column > in {2, 4}

Listing 2.1: Summary of the introduced constructs
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3
Application on chosen Examples

In this chapter, many sample queries will be presented andmodified using the new constructs.
The actual measurements of the modified and hopefully optimized queries will be evaluated in
the later chapter 4. The examples chosen include many queries that are already implemented
in the CPS and TS and for which the optimizing potential is quite high. The optimizations will
include the use of multiple WTs to implement the trampolization more intuitively, an extend WT
to hold memoization contents over many iterations, and a closure stack to replace the inefficient
closure array. I will also try to draw profit from a hash table for memoization purposes. To further
demonstrate the usefulness of the stack, a cursor loop application from the more imperative
PL/PGSQL will be realized with pure SQL. In addition, the graph algorithms A* and Dijkstra were
chosen as applications for the heap. For both of these, as well as a third graph algorithm in
Bellman-Ford, the hash table will also play a role. The next chapter will begin with the graph
algorithms just announced.

3.1 Graph Algorithms

All three chosen graph algorithms have one property in common: They all aim to compute the
cheapest path from a single starting node 𝑠 to one or more other nodes of a weighted and di-
rected graph. The cheapest graph to an end node 𝑒 corresponds to a set of nodes {𝑠, ..., 𝑒}, for
which every neighbouring pair of nodes (𝑢, 𝑣)must exist as an edge in the edges table represent-
ing the graph. This table stores all the edges containing the start and destination nodes, as well
as the cost or weight required to take that edge. The cheapest path is therefore the set of nodes
whose summed up weights of all edges connecting the nodes is minimal. The algorithms differ
in terms of different constraints on the graph or the presence of additional information. It is im-
portant to understand the algorithms, at least superficially, so that the possible optimizations
may be estimated accordingly. The first part focuses on the implementation and optimization
of the Bellman-Ford algorithm.

3.1.1 Bellman-Ford

The Bellman-Ford algorithm [17] computes the cheapest paths from a starting node 𝑠 to every
other node in the graph. To achieve this, for each node 𝑣 the cheapest possible total distance
𝑑𝑖𝑠𝑡 from the starting node is estimated, as well as the last-hop node 𝑝𝑟𝑒𝑣 from which 𝑣 is finally
reachable by edge (𝑢, 𝑣). The pseudocode [18] is shown in Figure 3.1.
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Figure 3.1: Bellman-Ford pseudocode

Algorithm 1 Bellman-Ford
1: for 𝑖 ← 1 to 𝑛 do
2: 𝑑𝑖𝑠𝑡[𝑖] ← ∞
3: end for
4: 𝑑𝑖𝑠𝑡[𝑠] ← 0
5:

6: for 𝑖 ← 1 to 𝑛 − 1 do
7: for each (𝑢, 𝑣) ∈ 𝐸 do
8: if 𝑑𝑖𝑠𝑡[𝑣] > 𝑑𝑖𝑠𝑡[𝑢] + 𝑤𝑒𝑖𝑔ℎ𝑡(𝑢, 𝑣) then
9: 𝑑𝑖𝑠𝑡[𝑣] ← 𝑑𝑖𝑠𝑡[𝑢] + 𝑤𝑒𝑖𝑔ℎ𝑡(𝑢, 𝑣)
10: 𝑝𝑟𝑒𝑣[𝑣] ← 𝑢
11: end if
12: end for
13: end for

At the start in lines 1-3, the distance val-
ues 𝑑𝑖𝑠𝑡 for all nodes are initialized with an
infinite value, only the starting node is imme-
diately reachable at a cost of 0. After initial-
ization, the updates for the distance values
and the last-hop nodes take place in lines 6-
13. This is done over several iterations where
each edge (𝑢, 𝑣) is checked. If the node 𝑣 is
cheaper to reach using this edge, both the dis-
tance value and the last-hop node of 𝑣 are
updated. A special feature of the Bellman-
Ford algorithm is that negative weights are
allowed for edges. Only negative cycles must
not appear in the paths computed by the al-
gorithm. A negative cycle corresponds to a
path from a node to itself that can be tra-
versed by following a set of edges with an ac-
cumulated negative weight. If negative cycles

were allowed, the negative cycle could be repeated an infinite number of times. So, any node
reachable from any of the nodes in the cycle would theoretically be reachable from the starting
node at a costs of −∞. To prevent this, an additional iteration of cost updates can be performed
to implement negative cycle detection. Now that the Bellman-Ford algorithm has been roughly
explained, the SQL implementation will be presented. Consider the query in Figure 3.2, which
shows an implementation in standard PostgreSQL.

The non-recursive part of the query implements exactly the initialization from lines 1-4 of the
pseudocode in Figure 3.1. The recursive CTE therefore stores the distance value from the starting
node as well as the last-hop node for each node in the graph. The distance value and the
last-hop, hereafter collectively referred to as the node information of a node, are maintained
or potentially updated per node over multiple iterations. It is important to note, that even if a
node has not received an update within an iteration, exactly one entry with the current node
information is kept for each node in the recursive CTE. Where 𝑛 is the total number of nodes
present in the graph, the recursive CTE eventually terminates after 𝑛 iterations. It is then checked
whether there are any negative cycles in the calculated paths. For this purpose, the cost values
computed in the 𝑛-th iteration must not contain lower cost values for any nodes than the cost
values estimated in iteration 𝑛−1, since a path from any node to any other node should contain
at most 𝑛 − 1 edges. If a longer path with a lower cost is found anyway, that path must contain
an advantageous negative cycle, so all result tuples are discarded and the function returns no
output instead. Otherwise, the final distance values and last-hop nodes are read for each node.
The actual path reconstruction per node is skipped to focus more on the target search.

The implementation in SQL has an extreme overhead compared to an implementation in a
common programming language. The heavy load of the algorithm occurs in lines 6-13 of the
pseudocode of Figure 3.1. Here, 𝑛 − 1 iterations are performed, each of which checks each edge
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1 WITH RECURSIVE bellman_ford (cost , node , prev , iter) AS (
2 SELECT :infinity , n.node , NULL :: int , (SELECT COUNT (*) FROM nodes)
3 FROM nodes AS n
4 WHERE NOT node = :start
5 UNION ALL
6 SELECT 0, :start , NULL , (SELECT COUNT (*) FROM nodes)
7 UNION ALL
8 (SELECT DISTINCT ON (new.node) new.cost , new.node ,
9 new.prev , new.iter - 1

10 FROM bellman_ford AS dest , LATERAL (
11 SELECT src.cost + e.cost , e.dest , e.src , dest.iter
12 FROM bellman_ford AS src , edges AS e
13 WHERE (e.src , e.dest) = (src.node , dest.node)
14 AND src.cost + e.cost < dest.cost
15 UNION ALL
16 SELECT dest.*
17 ) AS new(wt , cost , node , prev , iter)
18 WHERE dest.iter > 0
19 ORDER BY new.node , new.cost)
20 )
21 SELECT node , cost , prev FROM bellman_ford
22 WHERE iter = 0 AND NOT EXISTS (
23 SELECT 1
24 FROM bellman_ford AS last_iter , bellman_ford AS second_last_iter
25 WHERE last_iter.iter = 0 AND second_last_iter.iter = 1
26 AND last_iter.node = second_last_iter.node
27 AND last_iter.cost < second_last_iter.cost
28 );

Figure 3.2: Bellman-Ford realized in standard PostgreSQL

with an effort of 𝑂(1). This is because a common programming language benefits from a context
that can store arrays of distance values and last-hop nodes. These values for a given node can
then be looked up by accessing the corresponding array fields. In the SQL implementation, we
cannot expect to achieve similar efficiency, as we now have to consider the more inefficient join
between tuples containing the information previously realized by arrays. Instead, we need to
compute equi joins between three tables, those being the edges table and two instances of the
recursive CTE containing the current node information. One instance of the latter is required to
bind the node information for the source node 𝑢, another for the destination node 𝑣. There’s
even additional overhead required to copy the node information of nodes that weren’t updated
in the last iteration, and to ensure that for each node, only the node information with the
lowest cost is kept for the next iteration. An optimized approach could therefore benefit greatly
from the use of a hash table. First, this would avoid the need to copy tuples containing node
information across iterations if certain nodes do not receive updates throughout the iteration,
as the hash table tuples remain available between iterations if they are not updated or actively
discarded. In addition, it is now possible to access the distance value of any node via an efficient
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hash table lookup that benefits from index support. This means that we can completely avoid
expensive joins between different tables, and instead estimate the required node information
by just searching one bucket of tuples. An implementation of Bellman-Ford using the hash table
is shown in Listing 3.1.

1 WITH RECURSIVE bellman_ford (wt , cost , node , prev) AS (
2 SELECT -4, :infinity , n.node , NULL :: int
3 FROM nodes AS n
4 WHERE NOT node = :start
5 UNION ALL
6 SELECT -4, 0, :start , NULL
7 UNION ALL
8 SELECT 0, (SELECT COUNT (*) FROM nodes), NULL , NULL
9 UNION ALL

10 (WITH node_info AS (SELECT * FROM bellman_ford AS ht),
11 iter AS (SELECT cost FROM bellman_ford AS wt0r),
12 edges AS (SELECT e.* FROM edges AS e, iter)
13 SELECT res.*
14 FROM iter , LATERAL (
15 SELECT 0, iter.cost - 1, NULL , NULL
16 UNION ALL
17 SELECT -4, cheapest_updates .*
18 FROM (
19 SELECT DISTINCT ON (new_dest) (hashtablelookup (2, e.src) :: int) +
20 e.cost AS new_cost , e.dest AS new_dest , e.src
21 FROM edges AS e
22 WHERE hashtablelookup (2, e.src) + e.cost <
23 hashtablelookup (2, e.dest)
24 ORDER BY new_dest , new_cost
25 ) AS cheapest_updates
26 ) AS res
27 WHERE iter.cost > 1
28 UNION ALL
29 -- read out the hash table content into WT 1
30 SELECT res.*
31 FROM iter , LATERAL (
32 SELECT 1, cost , node , prev
33 FROM node_info
34 WHERE NOT EXISTS (
35 SELECT 1
36 FROM edges AS e
37 WHERE hashtablelookup (2, e.src) + e.cost <
38 hashtablelookup (2, e.dest)
39 )
40 ) AS res
41 WHERE iter.cost = 1
42 )
43 )
44 SELECT node , cost , prev FROM bellman_ford WHERE wt = 1;

Listing 3.1: Bellman-Ford using several WTs and a hash table
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In this query, a reset WT is just used to store and update an iteration counter so that exactly
𝑛 iterations are be performed. This allows a separation of the actual node information and
the iteration counter, which were previously combined in a tuple of the main WT. Both the ini-
tialization and the updates of the node information are now done in the hash table, which is
indicated by the upsert operations of the tuples with the wt column with value −4. Now that
only relevant upsert statements are performed, node information that does not receive updates
no longer needs to be copied. This requires the output of the function to be read from the hash
table at the end, which is done by writing to a result WT 1. This allows the detection of negative
cycles to be incorporated into the recursive CTE, i.e. writing to WT 1 only occurs in the absence
of negative cycles. It is worth noting that the calculation of the edges CTE is mandatory. The
reason for this is that SQL seems to assume that the output of a system information function
is constant over the course of multiple calls. If the hash table lookup were instead to refer to
node indexes read from the predefined edges table, the lookup values would be evaluated only
once and then cached for future iterations. This corresponds to an SQL optimization, as the
effort to compute the upsert tuples could apparently be endured only once rather than in every
iteration. In reality, of course, this should not happen, because with updated cost values for the
hash table entries, we also get updated lookup values. If this unwanted optimization were to oc-
cur, only the first iteration would compute upsert tuples that actually perform a state change. In
future iterations, the same upsert tuples would be computed again, without any actual updates
occurring and therefore no convergence to the optimal paths. The same problem occurs when
calculating an edges CTE without any dependency on the iter CTE that contains the iteration
counter. Since the iter CTE must be read in every iteration and cannot be computed just once
over the course of the recursive CTE, the edges CTE must also be estimated in each iteration.
This guarantees that with a new instance of the edges CTE, a new set of upsert tuples must
be computed. This in turn ensures that the system information function calls are re-computed
using the updated hash table instance, rather than just using cached information. Basically, we
had to actively avoid an SQL optimization in order for the hash table lookup to work properly.

Now the first example and its optimization have been explained in detail. Another example
is the Dijkstra algorithm, which has an almost identical goal and a somewhat similar implemen-
tation to the Bellman-Ford algorithm. However, there are other ways to optimize it. We will look
at these in the next part.

3.1.2 Dijkstra

As with the Bellman-Ford algorithm, the Dijkstra algorithm [8] computes all paths from a starting
node to all other nodes in the graph. However, while the Bellman-Ford algorithm generally
tolerates edges with negative weights as long as there is no negative cycle in the computed
paths, this is not the case for the Dijkstra algorithm. Because of this stronger constraint on the
graph to only allow positive edge values, a more efficient algorithm can be developed where only
a small subset of edges needs to be considered for updates within an iteration. The approach is
that within an iteration, only one node and its outgoing edges are selected, i.e. only the directly
reachable nodes are checked for cheaper paths. The next node to expand from should not
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Figure 3.3: Example graph processed by the Dijkstra algorithm

have been expanded from before, and it should have the lowest cost value of all non-expanded
nodes. This is the case because by not allowing negative edge weights at all, the cheapest
path to the selected node must have already been computed. Thus it can be removed from the
set of non-expanded nodes and expanded from to compute further updates for the reachable
nodes. At the start, only the starting node is considered for an expansion, as its cost value
obviously is 0. After expansion, the node information of the starting node is inserted into a
set 𝑆 containing node information for all previously expanded nodes. Again, for each node, the
node information includes the node identifier, the cost to reach that node and the last-hop node
identifier for a potential path reconstruction, which is not implemented again. After that, the
iteration is completed and the next node to expand from is selected from the set of reachable
but not yet expanded nodes. Let us call this set 𝑆′. Both in literature and in practice, it is advised
to use a priority queue to store this set 𝑆′, as this allows the node information to be ordered by
cost value. This means that the node to be expanded from next with the lowest cost value of the
set 𝑆′ can easily be fetched without having to search through the entire contents of 𝑆′. Listing
3.3 shows an example graph for which some iterations of the Dijkstra algorithm have already
been performed and the sets 𝑆 and 𝑆′ are already established.

The expansion started at the node with index 1. In the first iteration, the two nodes 2 and
3 received updated cost values and entries in the set 𝑆′ were created. Since the node 2 is
reachable at a lower cost than the node 3, it was expanded from next and therefore an entry is
made in the set 𝑆 for this node. Again, all nodes reachable from node 2 receive updated cost
values if they are cheaper. By checking the set 𝑆′ we can see that the node 3 with the lowest
cost of 2 would be expanded in the next iteration. An optimized query could therefore benefit
from the usefulness of the implemented heap data structure. Note, however, that unlike with
the hash table, tuples within the heap data structure may not be updated. They may only be
inserted via an enqueue and read as well as removed via a dequeue operation. This means
that if a path was previously found to a particular node, and a cheaper path is found in a later
iteration, a second entry for that node will be added to the heap. The consequence of this
is that after performing a dequeue operation to find the next node to expand from, we must
first ensure that this node has not already been expanded from due to a previous entry in the
priority queue. Since the set 𝑆′ is realized by the heap, the set 𝑆 with the expanded nodes could
be realized by a WT. This once again implements the assignment of different responsibilities to
the different WTs and data structures. Hence, even without using the heap, it would at least
be possible to implement the separation into different WTs. This can be further improved by
choosing the update rule extend for the set 𝑆, so that the node information for already expanded
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1 WITH RECURSIVE dij (wt , cost , node , prev) AS (
2 SELECT -4, 0, :start , NULL :: int
3 UNION ALL
4 SELECT -3, e.cost , e.dest , :start
5 FROM edges AS e
6 WHERE e.src = :start
7 AND NOT e.src = e.dest
8 UNION ALL
9 (WITH new AS MATERIALIZED (SELECT * FROM dij AS he

10 WHERE hashtablelookup (2, node) = -1 LIMIT 1)
11 SELECT res.*
12 FROM new , LATERAL (
13 SELECT -4, new.cost , new.node , new.prev
14 UNION ALL
15 SELECT -3, new.cost + e.cost , e.dest , new.node
16 FROM edges AS e
17 WHERE e.src = new.node
18 AND hashtablelookup (2, e.dest) = -1
19 AND NOT e.src = e.dest
20 ) AS res)
21 ) SELECT d.node , d.cost , d.prev FROM dij AS d WHERE wt = -4;

Figure 3.4: Dijkstra algorithm using both a heap and a hash table

nodes does not need to be copied over multiple iterations anymore. However, to make full use
of the implemented data structures, the hash table could also replace the extend WT for the
set 𝑆. In addition to preserving stored tuples over many iterations, the hash table has the
advantage that we can now use efficient lookups to determine whether a particular node has
already been expanded from. This is especially useful because, as explained above, any node
fetched from the priority queue may actually have been expanded from earlier, in which case
it should not be expanded from again. In addition, updates to a particular node information
should only occur if the specified node has not yet been expanded from, as the most efficient
node information is already present. Normally, these lookups to determine whether a node has
already been expanded from earlier would require a full scan of the set 𝑆. Enabling a faster
lookup is therefore useful, and an efficiency gain is to be expected. There’s already more than
one optimization possible for the Dijkstra algorithm, these are realized in Figure 3.4.

The set 𝑆 is realized by using the hash table, while the heap implements the set 𝑆′. The
benefit of the hash table comes especially from the two lookup calls. One of them is present in
the estimate of the next new tuple that would be expanded from next. Even though only exactly
one tuple is selected from the heap because of the LIMIT 1 clause, it must necessarily fulfill the
given condition. This means that several heap dequeue operations could still take place within
an iteration until a tuple is found that satisfies the condition - that condition being the one
that the node must not have been expanded yet. Similarly, nodes receiving updates to their
node information must not have been expanded from either, marking the second occurrence of
a hash table lookup. Once the query terminates, the final node information is fully stored in the
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hash table. Since there is no need to implement a negative cycle detection, as it was the case
with the Bellman-Ford algorithm, and since multiple upsert statements for a single node cannot
occur, the upsert statements themselves can be interpreted as the output of the function.

Multiple optimizations were now shown in a single query. In order to better understand the
individual optimizations, the later chapter on measurements 4 will consider each optimization
both individually as well as in combination. This will also be the case for the A* algorithm, whose
workflow is very similar to that of the Dijkstra algorithm. The A* algorithm is briefly explained
in the next chapter.

3.1.3 A*

As demonstrated with the Dijkstra algorithm, the A* algorithm [9] also uses a separation into
the sets 𝑆 and 𝑆′, where 𝑆 once again contains the already expanded nodes and 𝑆′ lists the
reachable but non-expanded nodes. However, the A* algorithm aims to compute only the path
from the starting node 𝑠 to a single selected end node 𝑒, rather than the paths to all nodes as
it was done in the two previous algorithms. For this purpose, an additional heuristic is given
which provides an underestimated cost value for each node. This heuristic value of a node 𝑣
determines the approximate cost of reaching the end node from 𝑣. In an example where the
nodes represent cities and the edges represent roads, the actual cost to a destination city would
depend on the streets taken. However, the heuristic as an underestimation could correspond
to the distance to the destination city by air. Using the heuristic value for each node, the A*
algorithm allows a more targeted search from the starting node to the end node, requiring
fewer iterations than Dijkstra or Bellman-Ford. For the Dijkstra algorithm, the ordering criterion
for the heap 𝑆′ was the costs from the starting node 𝑠 to the current node. Now the heuristic
value for the remaining path to the end node 𝑒 is also considered. The new ordering criterion
for a node 𝑣 is therefore the sum of the actual costs from 𝑠 to 𝑣 and the estimated costs from
𝑣 to 𝑒. With this change, the new ordering criterion describes the estimated cheapest cost
from 𝑠 to 𝑒 if a path through the node 𝑣 is chosen. By always selecting the next node to be
expanded according to this new ordering criterion, the path search can be implemented in a
more directed way towards the end node. Once the end node itself would be expanded from,
the cheapest path has been found, as the expansion of any other node would result in higher
costs. This is due to the fact that the heuristic should always underestimate, which also implies
that the heuristic value for the end node should be 0. Unlike the other two graph algorithms,
the implemented query for the A* algorithm also includes a path reconstruction. In practice,
the Distance-Vector-Routing algorithm that implements Dijkstra’s functionality relies only on
calculating the the optimal next-hop for routing packages across the internet. It is not always
necessary to compute the complete paths and thus the path reconstruction can be ignored.
For the A* algorithm, however, this reasoning cannot be followed. Also, a single path can be
reconstructed without much more effort, which would have changed the running time of the
Dijkstra and Bellman-Ford algorithms immensely. Let us look at the path reconstruction in
more detail. Once the path search terminated and the optimal cost has been estimated, the set
𝑆 contains all the nodes visited by the path. For each node, the last-hop node is stored in this
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set, meaning that it is possible to build the path iteratively. This reconstruction part of the A*
query can again benefit from the efficient lookups possible by using a hash table for the set 𝑆.
This is shown in Listing 3.2, where the query omits the parts previously shown because of the
strong resemblance of A* to Dijkstra.

1 WITH RECURSIVE astar (wt , total_cost_estimate , node , prev , cost_to_node ,
2 path) AS (
3 -- non -recursive part
4 ...
5 -- recursive part
6 (WITH reconstr AS (SELECT * FROM astar AS wt2r),
7 finished AS (SELECT * FROM astar AS wt3r),
8 new AS MATERIALIZED (
9 SELECT * FROM astar AS he

10 WHERE NOT EXISTS (TABLE reconstr)
11 AND NOT EXISTS (TABLE finished)
12 AND hashtablelookup (2, node :: int) = -1 LIMIT 1)

13 SELECT res.*
14 FROM new , LATERAL (
15 -- we didn 't expand from the goal node , prepare the next A* step
16 ...
17 WHERE NOT new.node = goal
18 UNION ALL
19 -- we expanded from the goal node , start path reconstruction
20 SELECT 2, new.total_cost_estimate , new.node , new.prev ,
21 new.cost_to_node , ARRAY[new.node]
22 WHERE new.node = goal
23 ) AS res
24 UNION ALL

25 -- path -reconstruction
26 SELECT 2, NULL , NULL , hashtablelookup (4, prev) :: int , cost_to_node ,
27 prev || path
28 FROM reconstr
29 WHERE NOT hashtablelookup (4, prev) = -1
30 UNION ALL
31 SELECT 3, NULL , NULL , NULL , cost_to_node , path
32 FROM reconstr
33 WHERE hashtablelookup (4, prev) = -1
34 )
35 ) SELECT cost_to_node , path FROM astar WHERE wt = 3 LIMIT 1;

Listing 3.2: A* algorithm implementing path reconstruction using both a heap and a hash
table

This query uses the TS to split the recursive CTE into different functions. The first part is
the usual path search, as previously demonstrated for the Dijkstra problem. However, once the
end node has been chosen for expansion, the cheapest path has already been found and the
reconstruction part begins. This is instructed by computing a tuple for WT 2 for the first time. The
new CTE, which is responsible for selecting the next node to expand from, will always be empty
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from now on, since the additional condition on WT 2 being empty is no longer fulfilled. Instead,
the reconstr CTE reading from WT 2 will be extended by the last-hop node in each iteration until
the path was fully reconstructed. The result is then written to WT 3 so that it can be easily in
the following parent query. Again, the reconstruction part can benefit from the hash table and
its lookup.
Many of the new constructs can be implemented for the three graph algorithms, and in all

cases runtime improvements are expected. Now that two of the three implemented data struc-
tures have been demonstrated, the next chapter will provide a use case for the remaining data
structure - the stack.

3.2 Cursor Loop Application

Cursors [19] may be used in the more imperative PL/PGSQL. This programming language allows
you to perform standard SQL queries, as well as imperative constructs such as the use of vari-
ables and loops. For SQL queries to be used within a PL/PGSQL procedure, code written in
PL/PGSQL must constantly switch between the PL/PGSQL domain, which implements the imper-
ative constructs, and the SQL domain, which executes the queries [7]. These context switches
result in an overhead for using PL/PGSQL. However, the ability to write common imperative code
seems far more attractive, as it is much easier for most users to understand than the relational
approach of standard PostgreSQL. In particular, the WITH RECURSIVE construct is considered a
more cumbersome means to an end, as complex queries are difficult to realize with recursive
CTEs and the readability is worse than that of an iterative procedure expressed in PL/PGSQL.
As mentioned in the motivation of this thesis, there is a research underway to automatically
translate PL/PGSQL code into standard PostgreSQL code, meaning that a user may still express
the easy to understand PL/PGSQL code while still benefiting from the better performance of
standard PostgreSQL. However, PL/PGSQL’s cursors are an obstacle to this, as it is possible to
express procedures that perform terribly worse when realized in standard PostgreSQL. Let us
look at this in more detail. A cursor may be defined for a particular target query, as shown in
Listing 3.3.

1 CREATE FUNCTION read_word_orderings () RETURNS SETOF int AS $$
2 DECLARE
3 word_id INT4 := 0;
4 c CURSOR FOR (SELECT id FROM word_orderings ORDER BY ordr ASC);
5 BEGIN
6 OPEN c;
7 FETCH c INTO word_id;
8 WHILE found LOOP
9 RETURN NEXT word_id;

10 FETCH c INTO word_id;
11 END LOOP;
12 RETURN;
13 END
14 $$ LANGUAGE PLPGSQL;

Listing 3.3: Example procedure implementing a cursor loop written in PL/PGSQL
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The cursor variable 𝑐 is bound to the target query in the DECLARE section, while the target
query is not evaluated yet. Only in the BEGIN section is the cursor opened, allowing it to fetch
one row at a time from the target query. This is done in aWHILE LOOP statement until the target
query is fully read. In general, it is also possible to perform other operations on a table row
bound by the cursor variable, such as updating or deleting the row. Another use case of cursors
is to return the cursor variable bound to a target query. This allows the caller of the procedure
to handle the cursor on its own behalf, i.e. to fetch rows manually. However, returning a cursor
is not subject of this chapter, as this cannot be implemented efficiently in standard PostgreSQL,
not even with the additional features. So, let us focus on the sequential fetching of the target
query content within a cursor loop, as shown earlier in Listing 3.3. To do this, let us consider the
more elaborate example from Listing 3.4.

1 CREATE TABLE word_orderings (id int PRIMARY KEY , ordr int);
2 CREATE TABLE word_contents (id int PRIMARY KEY , word text);
3 CREATE TYPE result AS (content text , row_counter int);
4 CREATE FUNCTION pretty_print(threshold int) RETURNS SETOF result AS $$
5 DECLARE
6 row_counter INT4 := 0;
7 row_letter_count INT4 := 0;
8 row_content text := '';
9 word_id INT4 := 0;

10 word_letter_count INT4;
11 word_content text;
12 c CURSOR FOR (SELECT id FROM word_orderings ORDER BY ordr ASC);
13 BEGIN
14 OPEN c;
15 FETCH c INTO word_id;

16 WHILE found LOOP
17 SELECT wc.word , LENGTH(wc.word)
18 INTO word_content , word_letter_count
19 FROM word_contents AS wc
20 WHERE wc.id = word_id;
21 IF row_letter_count + word_letter_count + 1 > threshold THEN
22 RETURN NEXT (row_content , row_counter) :: result;
23 row_counter := row_counter + 1;
24 row_letter_count := word_letter_count + 1;
25 row_content := word_content || ' ';
26 ELSE
27 row_content := row_content || word_content || ' ';
28 row_letter_count := row_letter_count + word_letter_count + 1;
29 END IF;
30 FETCH c INTO word_id;
31 END LOOP;

32 RETURN NEXT (row_content , row_counter) :: result;
33 RETURN;
34 END $$ LANGUAGE PLPGSQL;

Listing 3.4: pretty_print procedure using context switches between the PL/PGSQL and SQL
domains, as marked in yellow
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1 CREATE FUNCTION pretty_print(threshold int) RETURNS SETOF result AS
2 $$
3 WITH RECURSIVE t(wt , row_content , row_counter , row_letter_count ,
4 table_offset , done) AS (
5 -- non -recursive part
6 ...
7 -- recursive part
8 (SELECT res.*
9 FROM t AS wt0r , LATERAL (

10 SELECT wo.id
11 FROM word_orderings AS wo
12 ORDER BY wo.ordr
13 OFFSET table_offset
14 LIMIT 1
15 ) AS new_word_id(id), LATERAL (
16 ...
17 ) AS res
18 ...
19 )
20 ) ...;
21 $$ LANGUAGE SQL;

Figure 3.5: Inefficient implementation of the pretty_print function in pure SQL

The task of the procedure expressed by the pretty_print User Defined Function (UDF) is to
concatenate given words into sentences according to a given order of the words. Any sentence
or result row created must not exceed a given threshold for the number of letters in each row.
Although it would be a terrible database design in practice, two separate tables word_contents
and word_orderings are used to store the word information. So, to estimate the next word to be
processed within an iteration, both tables must be operated on. This is done artificially so that
a cursor variable 𝑐may be bound to a query that iterates over the word identifiers in an ordered
fashion, while within an iteration a context switch to the SQL domain is required to read the
actual word. If this query were to be automatically translated into a standard PostgreSQL variant,
it would inherently require the WITH RECURSIVE construct to replace the loop. Each iteration of
the loop expressed in PL/PGSQL would then correspond to an iteration in the recursive CTE
realizing the procedure. However, as the binding to a row from the target query referred to by
the cursor should only occur once per iteration, this becomes difficult to realize in a recursive
CTE. We no longer have the option of simply fetching the next row returned by the target query,
but have to loop over the query to find the next row. This is demonstrated in the recursive CTE
in Figure 3.5, which realizes the PL/PGSQL procedure from above.

The less relevant parts of the query have been discarded as the focus is on the fetch of the
next word identifier according to the ordering criterion. Access to the next row returned by the
target query now occurs through additional OFFSET n and LIMIT 1 clauses, i.e. exactly one row is
fetched from the target query, the one that would have been returned next by the target query.
It is quite obvious that computing a possibly large target query in each iteration just to fetch
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1 CREATE FUNCTION pretty_print(threshold int) RETURNS SETOF result AS
2 $$
3 WITH RECURSIVE t(wt , row_content , row_counter , row_letter_count ,
4 word_id) AS (
5 -- non -recursive part
6 ...
7 SELECT -1, NULL , NULL , NULL , id
8 FROM (
9 SELECT id

10 FROM word_orderings
11 ORDER BY ordr DESC
12 ) AS _(id)
13 UNION ALL
14 -- recursive part
15 (WITH new_word_id AS (SELECT word_id AS id FROM t AS stp LIMIT 1),
16 new_word AS (
17 SELECT word , LENGTH(word) AS letter_count
18 FROM word_contents AS wc , new_word_id AS nwi
19 WHERE wc.id = nwi.id
20 )
21 ...
22 )
23 ) ...;
24 $$ LANGUAGE SQL;

Figure 3.6: Efficient implementation of the pretty_print function in pure SQL usingmultiple
WTs and a stack

a single row results in an immense overhead. However, with the new features in the modified
version of PostgreSQL, this could be solved more efficiently. I will demonstrate this by using
the stack data structure, as it allows rows to be deleted and has no restrictions on to its tuple
scheme like the heap and the hash table. The problem from above, implemented with the stack,
is shown in Figure 3.6.

Again, the less relevant parts of the query were omitted. In the first iteration of the recur-
sive CTE, the target query is fully evaluated and the content is pushed to the stack. Since the
procedural variant expressed a particular ordering criteria for the target query, it must now be
reversed. This is because the stack is a Last-In-First-Out data structure, where the first row
fetched from the stack corresponds to the last row pushed. A queue data structure would allow
the same ordering criterion, as it would correspond to a First-In-First-Out data structure, i.e. the
first tuple added to the data structure would also be removed first. However, the stack now
allows one fetch from the stack in each iteration, meaning that it is finally possible to access
the rows of the target query in an efficient way. While this is expected to improve the runtime
of the procedure translated to standard PostgreSQL, and thus provides a viable alternative to
using OFFSET and LIMIT clauses, it may not compete with the original procedure in PL/PGSQL
in every regard. Usually, the advantage of using cursors for to loop over the results of a target
query is that the target query, which may return a large result, does not need to be computed
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prior to the loop. Instead, it can fetch one row at a time, eliminating the need to hold the po-
tentially large result of the target query in memory. The advantage of cursor loops is therefore
largely one of space efficiency. However, the variant realized with a recursive CTE and the stack
requires the target query to be fully evaluated and pushed to the stack within the first iteration,
meaning that we cannot benefit from the lower space requirement. Note also that not all of
the rows computed by the target query may be relevant to the cursor loop, the loop may have
an alternative termination condition and the computation of the remaining rows of the target
query may be discarded. In this case, the realization using the stack in the recursive CTE would
even have a runtime overhead, as it insists on fully evaluating the target query. It is evident
that using the stack for cursor loop applications does not manage to improve on the procedural
implementation in PL/PGSQL, but it still offers a better alternative to the current option of using
OFFSET and LIMIT clauses to iterate over the target query.

The full potential of the stack was not used to realize cursor loops with pure SQL. In the next
chapter, however, the stack will be used for its intended purpose.

3.3 CPS Examples

3.3.1 Introduction

Now the CPS examples, which were a major part of the motivation for this thesis, will be pre-
sented. These examples correspond to problems which conventionally are solved by recursive
functions. As a representative for the CPS examples, the Floyd-Warshall algorithm [20] will be
presented and modified in the following. This algorithm is another way of calculating the cheap-
est path cost in a directed and weighted graph, as explained in chapter 3.1. The pseudocode for
the Floyd-Warshall algorithm is shown in Figure 3.7 [21].

Figure 3.7: Floyd-Warshall pseudocode

Algorithm 2 Floyd-Warshall
1: for 𝑘 ← 𝑖 to 𝑛 do
2: for 𝑖 ← 1 to 𝑛 do
3: for 𝑗 ← 1 to n do
4: 𝑑[𝑖, 𝑗] ← 𝑚𝑖𝑛(𝑑[𝑖, 𝑗], 𝑑[𝑖, 𝑘] + 𝑑[𝑘, 𝑗])
5: end for
6: end for
7: end for

The special feature of the Floyd-Warshall
algorithm is that it benefits from dynamic pro-
gramming, where the main problem is split
into smaller sub-problems that are solved
first and the results of which are stored for
the computation of the main problem. In
the pseudocode shown in Figure 3.7, this is
achieved by using an iterative approach and
an array 𝑑 which is being filled with the in-
termediate results. An entry 𝑑[𝑖, 𝑗] stores the
minimum cost of a path from node 𝑖 to node 𝑗.
Initially, only direct edges (𝑢, 𝑣) from a node 𝑖
to 𝑗 are stored in the 𝑑 array, while the 𝑑 val-

ues for all node pairs that do not share an edge are initialized with∞. Then the algorithm begins.
In each iteration a node index variable 𝑘 is incremented and for each pair of nodes 𝑖 and 𝑗 the
𝑑 value is potentially updated. This is the case if a new path from 𝑖 to 𝑗 can be established
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1 CREATE FUNCTION shortestpath(nodes int , s int , e int) RETURNS int AS
2 $$
3 SELECT CASE
4 WHEN nodes = 0 THEN (SELECT edge.weight
5 FROM edges AS edge
6 WHERE (edge.here ,edge.there) = (s,e))
7 ELSE (SELECT LEAST(shortestpath(nodes - 1, s, e),
8 shortestpath(nodes - 1, s, nodes) +
9 shortestpath(nodes - 1, nodes , e)))

10 END;
11 $$ LANGUAGE SQL;

(a) Floyd-Warshall SQL UDF
SP(4, 1, 4)

SP(3, 1, 4)

SP(2, 1, 4)

...

SP(2, 1, 3)

...

SP(2, 3, 4)

...

SP(3, 1, 4)

...

SP(3, 4, 4)

...

(b) Example function call tree of the SQL UDF

Figure 3.8: Floyd-Warshall SQL UDF and function call tree

through node 𝑘 that costs less than the previously stored path cost 𝑑[𝑖, 𝑗]. This means that in
each iteration, only the nodes 1, 2, ..., 𝑘 may appear in the paths considered by the optimization
algorithm. The functionality of the algorithm is based on the the following insight: Assume that
the cheapest path costs have already been computed for all node pairs, but only paths through
the nodes 1, 2, ..., 𝑘 − 1 have been considered. Then the cheapest path cost for a pair of nodes
(𝑖, 𝑗) considering only nodes 1, 2, ..., 𝑘 must either already be known, i.e. it does not go through
the node 𝑘, or on the contrary it does, which means the cheapest path should be computed
by 𝑑[𝑖, 𝑗] = 𝑑[𝑖, 𝑘] + 𝑑[𝑘, 𝑗]. This is represented in line 4 of the pseudocode from Figure 3.7. The
pseudocode represents a bottom-up approach to dynamic programming [22]. This bottom-up
approach means that we start by calculating the smallest possible intermediate results and use
these to construct the solutions to larger problems. In the following, we will instead consider a
top-down approach known as memoization, where a larger problem is given and we then iden-
tify the sub-problems, which are then solved recursively. A top-down approach using a UDF is
realized in Figure 3.8a.

For this top-down approach, a function call that computes the shortest path cost from
a starting node 𝑠 to an end node 𝑒 in a graph with 𝑛 nodes 1, 2, ..., 𝑛𝑜𝑑𝑒𝑠 is issued via
𝑠ℎ𝑜𝑟𝑡𝑒𝑠𝑡𝑝𝑎𝑡ℎ(𝑛𝑜𝑑𝑒𝑠, 𝑠, 𝑒). The 𝑛𝑜𝑑𝑒𝑠 parameter corresponds to the 𝑘 value used in the pseudocode
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from Figure 3.7. A 𝑠ℎ𝑜𝑟𝑡𝑒𝑠𝑡𝑝𝑎𝑡ℎ call will therefore issue three 𝑠ℎ𝑜𝑟𝑡𝑒𝑠𝑡𝑝𝑎𝑡ℎ calls, each one using
a decremented 𝑛𝑜𝑑𝑒𝑠 value. This top-down handling of a function call is demonstrated in the
function call tree from Figure 3.8b above, but no actual memoization may yet be used by its im-
plementing pseudocode. This is because each result of a function call only occurs in the parent
call, rather than them being stored in an array that can be accessed at any time. In addition to
not being able to use memoization, the recursive UDF even suffers from a terrible complexity of
𝑂(3𝑛) [5], which is a dramatic change from the usual complexity of𝑂(3𝑛). Fortunately, this can be
fixed by using an adapted implementation with a recursive CTE. By translating the query into the
CPS, [5] the previous recursive 𝑠ℎ𝑜𝑟𝑡𝑒𝑠𝑡𝑝𝑎𝑡ℎ calls are now replaced by tail calls. This means that
after the intermediate result of a call has been computed, there is no outer context to return
to in which the intermediate result would expect further computations. Instead, the function
call is now extended with an additional argument, which is an anonymous function, the con-
tinuation. This continuation stores the outer context and it will be responsible for performing
the remaining computations. The translation into the CPS using tail calls is necessary to turn
the recursive problem into one that can be implemented using the WITH RECURSIVE construct.
After that, the defunctionalization step is necessary, as SQL does not allow first-order-functions
which are used by plain CPS. After this additional translation, the sequential workflow is now
controlled by two separate functions, Apply and Fun. The workflow between the Fun and Apply
functions is illustrated in Table 3.1.

Instruction call Closure stack (cont, nodes, s, e, s1, s2)
Fun(4, 1, 4) ∅
Fun(3, 1, 4) (1,4,1,4,0,0)
Fun(2, 1, 4) (1,3,1,4,0,0), (1,4,1,4,0,0)
Fun(1, 1, 4) (1,2,1,4,0,0), (1,3,1,4,0,0), (1,4,1,4,0,0)
Fun(0, 1, 4) (1,1,1,4,0,0), (1,2,1,4,0,0), (1,3,1,4,0,0), (1,4,1,4,0,0)
Apply(∅) (1,1,1,4,0,0), (1,2,1,4,0,0), (1,3,1,4,0,0), (1,4,1,4,0,0)
... ...
Fun(0, 1, 4) (3,1,2,4,2,∅), (3,2,3,4,3,∅), (3,3,1,4,5,1), (1,4,1,4,0,0)
Apply(∅) (3,1,2,4,2,∅), (3,2,3,4,3,∅), (3,3,1,4,5,1), (1,4,1,4,0,0)
Apply(2) (3,2,3,4,3,∅), (3,3,1,4,5,1), (1,4,1,4,0,0)
Apply(3) (3,3,1,4,5,1), (1,4,1,4,0,0)
Apply(4) (1,4,1,4,0,0)
Fun(3, 1, 4) (2,4,1,4,4,0)
Fun(2, 1, 4) (1,3,1,4,0,0), (2,4,1,4,4,0)
Fun(1, 1, 4) (1,2,1,4,0,0), (1,3,1,4,0,0), (2,4,1,4,4,0)
Fun(0, 1, 4) (1,1,1,4,0,0), (1,2,1,4,0,0), (1,3,1,4,0,0), (2,4,1,4,4,0)
Apply(∅) (1,1,1,4,0,0), (1,2,1,4,0,0), (1,3,1,4,0,0), (2,4,1,4,4,0)
... ...
Apply(∅) (3,1,2,4,2,∅), (3,2,3,4,3,∅), (3,3,4,4,∅,∅), (3,4,1,4,4,4)
Apply(2) (3,2,3,4,3,∅), (3,3,4,4,∅,∅), (3,4,1,4,4,4)
Apply(3) (3,3,4,4,∅,∅), (3,4,1,4,4,4)
Apply(∅) (3,4,1,4,4,4)
Apply(4) ∅
Finished(4) ∅

Table 3.1: Workflow of the Floyd-Warshall algorithm in CPS and TS
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The Fun call now replaces the 𝑠ℎ𝑜𝑟𝑡𝑒𝑠𝑡𝑝𝑎𝑡ℎ calls and appends a closure record (𝑘, 𝑒𝑛𝑣) to the
next call. The closure record realizes the encoding of the continuation as data rather than as a
function. For this purpose, it stores the environment of free variables given in the outer context
and a value clos that selects the specific continuation. The outer context includes the arguments
nodes, s and e as well as the intermediate results s1 and s2 to the sub-calls in lines 7 and 8 of the
UDF from Figure 3.8a. The Apply call, unlike the Fun call, checks the most recent closure record
and performs the functionality indicated by the continuation cont. This happens when a Fun call
has produced an intermediate result, and now the remaining calculations on the previous outer
context are to be initiated. Therefore, an Apply call receives the intermediate result computed
by the Fun call as an argument and possibly checks the other intermediate results s1 and s2
given in the topmost closure. Note how the set of closures can easily be represented by a stack,
since Apply calls usually read the last closure added. Furthermore, by adapting to the TS, the
two functions Fun and Apply can be integrated into a single function responsible for controlling
the workflow. The resulting function now just needs to call itself instead of calling either Fun or
Apply. An introduced label must therefore differentiate between the two different function calls,
so that the resulting function is able to decide whose functionality should be executed. With all
of the above adjustments, an SQL function may be implemented that realizes a recursive CTE to
solve the problem. Figure 3.9 shows such a query for the Floyd-Warshall algorithm.

In each iteration only one tuple is generated, this tuple corresponds to an instruction tuple.
Its label column marks the functionality to be performed by the recursive CTE in the current
iteration, indicated by either a Fun or an Apply label. A third label Finish denotes a result tuple
that the function will eventually return as the solution to the top-down function call issued by
the caller. Each instruction tuple is extended with a closure array, so that the outer contexts may
be stored whenever a Fun call is issued. An additional res column has been added to the scheme
of the recursive CTE to store an intermediate or final result. The form of the query differs from
the form proposed in [6] in that it offers only two main blocks, one for Fun instructions to be
read and one for Apply instructions. Since there is only one instruction per iteration, only one
of the two SFW blocks is actually processed. This makes the query slightly more readable, but
more importantly it allows for further improvements when using multiple WTs and memoization.
The latter is not currently included in the query. Before the memoization will be realized, the
stack shall first find a proper use, as promised in the last chapter. This will be demonstrated in
the next chapter.

3.3.2 Closure Stack and multiple WTs

The basics of CPS queries were introduced in the previous chapter. A notable aspect of the
implementation design was that the closures were now given by an array. This is inefficient
because, first, we need to use the array functionality and, secondly and more importantly, the
arrays need to be copied in each iteration. Since at most one closure may be removed from the
array per iteration, and its size may grow very large over the course of a function call, this can
lead to an expensive copy operation in each iteration. In the last chapter, it was already stated
that the set of closures is best represented by a stack, since Apply instructions usually only
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1 WITH RECURSIVE recurse(label , nodes , s, e, res , k) AS (
2 SELECT 'Fun', :nodes , :s, :e, NULL :: int , ARRAY [] :: kontFloyd []
3 UNION ALL
4 (WITH instr AS (SELECT * FROM recurse)
5 -- Apply -call
6 SELECT _.*
7 FROM instr AS t, LATERAL (
8 SELECT 'Finished ', NULL , NULL , NULL , t.res , NULL
9 WHERE CARDINALITY(t.k) = 0

10 UNION ALL
11 SELECT 'Fun', t.k[1]. nodes - 1, t.k[1].s, t.k[1]. nodes , NULL ,
12 (2, t.k[1]. nodes , t.k[1].s, t.k[1].e, t.res , 0)
13 :: kontFloyd || t.k[2:]
14 WHERE t.k[1]. cont = 1
15 UNION ALL
16 SELECT 'Fun', t.k[1]. nodes - 1, t.k[1]. nodes , t.k[1].e, NULL ,
17 (3, t.k[1]. nodes , t.k[1].s, t.k[1].e, t.k[1].s1 , t.res)
18 :: kontFloyd || t.k[2:]
19 WHERE t.k[1]. cont = 2
20 UNION ALL
21 SELECT 'Apply ', NULL , NULL , NULL ,
22 LEAST(t.k[1].s1 , t.k[1].s2 + t.res), t.k[2:]
23 WHERE t.k[1]. cont = 3
24 ) AS _
25 WHERE t.label = 'Apply '
26 UNION ALL
27 -- Fun -call
28 SELECT _.*
29 FROM instr AS t, LATERAL (
30 SELECT 'Apply ', NULL , NULL , NULL , (SELECT e.weight FROM edges AS e
31 WHERE (e.here , e.there) = (t.s, t.e)), t.k
32 WHERE t.nodes = 0
33 UNION ALL
34 SELECT 'Fun', t.nodes -1, t.s, t.e, NULL ,
35 (1, t.nodes , t.s, t.e, 0, 0) :: kontFloyd || t.k
36 WHERE t.nodes <> 0
37 ) AS _
38 WHERE t.label = 'Fun')
39 ) SELECT t.res FROM recurse AS t WHERE t.label = 'Finished ';

Figure 3.9: Floyd-Warshall algorithm in CPS and TS implemented via a recursive CTE
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access the last closure added. In the following part the inefficient closure array will therefore
be replaced by an actual closure stack. This avoids the need to copy the entire closure array
in every iteration, as the stack content remains available until the termination of the recursive
CTE unless actively removed. In addition, separate WTs will now be used for Apply and Fun
instructions. The implementation of the Floyd-Warshall algorithm using a closure stack and
multiple WTs is shown in Listing 3.5.
In this implementation, we can detect a clear separation of tuples according to their purpose.

The WT 0 will now only contain Apply instructions, whereas the WT 1 will store Fun tuples. This
means that the trampolization was included in the structure of the query instead of by using
a label column. Each SFW block therefore only selects either WT 0 or 1 to read from. The label
column has thus been integrated into the wt column, which means that the label column may
be discarded. This saves us one column of memory per tuple. In addition, the stack instance
is solely responsible for storing the closures. To do this, the closures must first be atomically
encoded, i.e. each closure is now represented by its own tuple. Unfortunately, tuples performing
a stack push are required to follow the scheme of the recursive CTE, meaning that the stack
tuples will have the same attributes as the instruction tuples. This means that any attributes
used by a tuple representing an instruction are irrelevant to a stack tuple, resulting in many
columns filled with NULL values. Stack pushes that demonstrate this are marked yellow in the
query from Listing 3.5. For a stack tuple, only the wt column and the k column for the actual
closure content are relevant. Similarly, the instruction tuples given in WT 0 now obtain the value
NULL instead of any closure content. A different scheme for stack tuples would be worthwhile
to avoid the many NULL columns. In addition to the stack pushes performed, the top element
of the closure stack is read from the stack in each iteration. This is indicated by the alias st,
which means that the top element is simply read without being removed by an instant pop
operation. This is necessary because the top element of the stack should only be be removed
when reading an Apply instruction, not however when reading a Fun instruction. Due to this
dynamic, pop operations must be actively instructed by computing a stack pop tuple indicated
by a wt column −2. This is marked green in the query from Listing 3.5.
By using a closure stack, instruction tuples and closure contents may be clearly separated.

Also, expensive copy operations to maintain the closure array over many iterations are now
avoided. In the next chapter we want to avoid costly copy operations again, but this time by
using an extend WT for memoization content instead of using a closure stack.

3.3.3 Memoization

As explained in the motivation for this thesis, the Floyd-Warshall algorithm and certain similar
problems can benefit immensely from the use of memoization. Any intermediate result of a Fun
call can therefore create a memoization entry containing both the arguments and the result of
the call. This allows that if multiple Fun calls with the same arguments are issued throughout
the recursive CTE, the result can simply be looked up. By looking up the stored result value, it is
not necessary to perform the same calculation again. Whether a particular functionmay actually
benefit from memoization depends on the function itself. This is only the case if multiple Fun
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1 WITH RECURSIVE recurse(wt , nodes , s, e, res , k) AS (
2 SELECT 1, :nodes , :s, :e, NULL :: int , NULL :: kontFloyd
3 UNION ALL
4 (WITH top AS (SELECT * FROM recurse AS st LIMIT 1),
5 clos AS (SELECT clos.*
6 FROM (SELECT NULL) AS _ LEFT OUTER JOIN
7 (SELECT (t.k).* FROM top AS t)
8 ON true)
9 -- Apply -call

10 SELECT _.*
11 FROM (SELECT * FROM recurse AS wt0r) AS t, clos , LATERAL (
12 SELECT 2, NULL , NULL , NULL , t.res , NULL :: kontFloyd
13 WHERE clos IS NULL
14 UNION ALL
15 SELECT 1, clos.nodes - 1, clos.s, clos.nodes , NULL , NULL
16 WHERE clos.cont = 1
17 UNION ALL
18 SELECT -1, NULL , NULL , NULL , NULL ,
19 (2, clos.nodes , clos.s, clos.e, t.res , 0) :: kontFloyd
20 WHERE clos.cont = 1
21 UNION ALL
22 SELECT 1, clos.nodes - 1, clos.nodes , clos.e, NULL , NULL
23 WHERE clos.cont = 2
24 UNION ALL
25 SELECT -1, NULL , NULL , NULL , NULL ,
26 (3, clos.nodes , clos.s, clos.e, clos.s1 , t.res) :: kontFloyd
27 WHERE clos.cont = 2
28 UNION ALL
29 SELECT 0, NULL , NULL , NULL , LEAST(clos.s1 , clos.s2 + t.res), NULL
30 WHERE clos.cont = 3
31 UNION ALL
32 SELECT -2, NULL , NULL , NULL , NULL , NULL
33 ) AS _
34 UNION ALL
35 -- Fun -call
36 SELECT _.*
37 FROM (SELECT * FROM recurse AS wt1r) AS t, LATERAL (
38 SELECT 0, NULL , NULL , NULL , (SELECT e.weight FROM edges AS e
39 WHERE (e.here , e.there) = (t.s, t.e)), NULL :: kontFloyd
40 WHERE t.nodes = 0
41 UNION ALL
42 SELECT 1, t.nodes -1, t.s, t.e, NULL , NULL
43 WHERE t.nodes <> 0
44 UNION ALL
45 SELECT -1, NULL , NULL , NULL , NULL ,
46 (1, t.nodes , t.s, t.e, 0, 0) :: kontFloyd
47 WHERE t.nodes <> 0
48 ) AS _)
49 ) SELECT t.res FROM recurse AS t WHERE t.wt = 2;

Listing 3.5: Floyd-Warshall algorithm in CPS and TS using multiple WTs and a closure stack

38 Chapter 3 Application on chosen Examples



calls with the same arguments occur during the function call, i.e. during the recursive CTE. For the
Floyd Warshall example, this can be easily comprehended by looking at the previously explained
function call tree in Figure 3.8b, where during a function call Fun(4, 1, 4), multiple occurrences
of the Fun call Fun(3, 1, 4) are generated. The duplicate Fun calls would normally have to be
executed in their entirety and independently of each other. Considering that this applies to the
entire Fun call and all of its possibly many sub-calls, i.e. the entire sub-tree of the call Fun(3,
1, 4) shown in Figure 3.8b, it becomes clear that the runtime is needlessly increased. So, using
memoization to store the arguments and the result of a completed Fun call will be advantageous.
A variant of the Floyd-Warshall query that now implements memoization is shown in Listing 3.6.

The color yellow in Listing 3.6 marks the computation of a memoization tuple. These tuples
use the parameter attributes nodes, s and e and the result attribute res to store an argument-to-
result mapping. In order for the tuples to be preserved across all of the iterations of the recursive
CTE, they must be copied in each iteration, marked green in Listing 3.6. To help with this, the
CTEmemo_all is created, which is used to separate the instruction tuples from the memoization
tuples. The actual lookup for an existing memoization entry for the given parameters is only
done in the block reading Fun instructions. If a memoization tuple was actually present for the
given parameters of the Fun call, this memoization content is used in an additional SFW block,
indicated by the color red in Listing 3.6.

While this approach alone yields a much better performance on its own, it can be further
improved by using multiple WTs. As previously demonstrated for the closure stack in Listing 3.5,
the WT 0 may again only contain Apply instruction tuples, while the WT 1 contains Fun instruc-
tions. Therefore the workflow is controlled by the tuples in WTs 0 and 1. Since the WT 2 is used
for the final output tuple of the top-down function call, the next available WT 3 could be made
responsible for storing the memoization contents. This avoids the need to separate the instruc-
tion and memoization tuples via CTEs. By assigning the update rule extend to the memoization
WT 3, we can even avoid the copy statement of the entirememo_all CTE given in the SFW blocks
marked green in Listing 3.6. This small and simple adjustment should further improve the per-
formance in a meaningful way. In addition to not having to copy the memoization contents, also
thememo_all CTE no longer has to be computed in every iteration. This is due to the automatic
SQL optimization previously stated, where a CTE with only one reference in the following parent
query is inlined to where it is used. While this optimization was actively disabled by using the
AS MATERIALIZED specification whenever defining a CTE that implements a pop operation on a
data structure, this now becomes useful. Since memoization lookups are only performed when
reading a Fun instruction, any iteration reading an Apply tuple may completely ignore the com-
putation of the memo_all CTE, further reducing the runtime of the query. Obviously, an extend
WT for memoization purposes as well as a closure stack may both be implemented in a query,
so that we may profit from both optimizations at once. This is also taken into account in the
later measurements chapter. In principle, memoization could even be improved by using the
index support provided by the hash table. The advantage of the hash table over an extend WT
is quite obvious. Both the extend WT and the hash table are able to store tuples throughout
the recursive CTE, leading to the optimization just explained. However, by using a hash table it
is possible to perform the memoization lookup faster. Normally, the whole set of memoization
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1 WITH RECURSIVE recurse(label , nodes , s, e, res , k) AS (
2 -- non -recursive part
3 ...
4 -- recursive part
5 (WITH recurse AS (SELECT * FROM recurse),
6 instr AS (SELECT * FROM recurse WHERE label IS NOT NULL),
7 memo_all AS (SELECT * FROM recurse WHERE label IS NULL)
8 -- Apply -call
9 SELECT _.*

10 FROM instr AS t, LATERAL (SELECT (t.k[1]) .*) AS clos , LATERAL (
11 ...
12 SELECT NULL , ((t.k[2]).args).nodes , ((t.k[2]).args).s,
13 ((t.k[2]).args).e, LEAST(clos.s1 , clos.s2 + t.res), NULL
14 WHERE clos.cont = 3
15 UNION ALL
16 SELECT * FROM memo_all
17 WHERE clos.cont <> 4
18 ) AS _
19 WHERE t.label = 'Apply '
20 UNION ALL
21 -- Fun -call
22 SELECT _.*
23 FROM instr AS t, LATERAL (SELECT (t.k[1]) .*) AS clos , LATERAL (
24 SELECT COALESCE(m.avail , false) AS avail , m.val
25 FROM (SELECT NULL) AS _ LEFT OUTER JOIN
26 (SELECT true AS avail , m.res AS val
27 FROM memo_all AS m
28 WHERE (t.nodes , t.s, t.e) = (m.nodes , m.s, m.e)) AS m
29 ON true
30 ) AS memo , LATERAL (
31 SELECT 'Apply ', NULL :: int , NULL :: int , NULL :: int , memo.val , t.k
32 WHERE memo.avail
33 UNION ALL
34 ...
35 SELECT NULL , (clos.args).nodes , (clos.args).s, (clos.args).e,
36 (SELECT e.weight FROM edges AS e
37 WHERE (e.here , e.there) = (t.s, t.e)), NULL
38 WHERE NOT memo.avail AND t.nodes = 0
39 UNION ALL
40 SELECT * FROM memo_all
41 ) AS _
42 WHERE t.label = 'SP')
43 ) SELECT t.res FROM recurse AS t WHERE t.label = 'Finish ';

Listing 3.6: Floyd-Warshall algorithm in CPS and TS using memoization
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tuples would have to be searched for an existing memoization entry that matches the given pa-
rameters. With index support, the lookup again only needs to consider a small subset of tuples.
Also, the memo_all CTE no longer needs to be calculated. While the hash table can generally
be considered a more powerful tool than the extend WT, its implementation also comes with an
obstacle: The hash table lookup can only be performed by using a single integer key. This is an
issue for the CPS examples, as most of them use multiple parameters for a Fun call, and thus
the memoization lookup. This means that in the current implementation, the hash table may
not be used for most of the CPS examples. Only the Fibonacci [23] and Faculty problems can
benefit from the implemented hash table, as both problems require only one integer parameter.
However, the Faculty itself cannot benefit from memoization because no Fun call with certain
arguments occurs more than once during a function call. The Fibonacci problem, on the other
hand, does have multiple occurrences of the same Fun calls, which is why this example will be
considered. Figure 3.10 shows a query for the computation of the 𝑛-th Fibonacci number using
a memoization hash table.

Memoization contents are now inserted into the hash table instead of an extend WT. This
allows a faster hash table lookup of the result 𝑓𝑖𝑏(𝑛) stored in the second column of a memoiza-
tion tuple by providing the parameter 𝑛 as the key. As the results of a Fibonacci call become very
large very quickly and the integer range is easily exceeded, numeric values with a much wider
range of values were allowed as result values in addition to pure integers. Again, it is important
to note that the lookup value of −1 correspond to an unsuccessful lookup where the key was
not found in the hash table. For this reason, the WHERE clauses always compare the estimated
lookup value with −1 to determine whether the value is actually legitimate.

In this chapter, memoization was enhanced by both an extendWT and a hash table, so that the
memoization contents do not have to be copied in every iteration. Note that only a limited kind
of memoization was considered, where the memoization tuples of the WT only remain available
until the termination of the recursive CTE, i.e. until the end of a specific function call. Only Fun
calls within the same function call may thus benefit from the memoization contents, as other
function calls use different and independent instances of the recursive CTE. The memoization
contents computed throughout a single function call could in principle be inserted into a defined
memo table, then even multiple function calls could benefit from the memoization contents.
However, this will be disregarded for the measurements. These are carried out and evaluated
in the next chapter.
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1 WITH RECURSIVE recurse(wt , res , x, k) AS (
2 SELECT 1, NULL :: numeric , :n, array[ROW(3, NULL , :n) :: kontFib]
3 UNION ALL
4 (-- Apply -call
5 SELECT _.*
6 FROM (SELECT * FROM recurse AS wt0r) AS t, LATERAL
7 (SELECT (t.k[1]) .*) AS clos , LATERAL (
8 SELECT 2, t.res , NULL :: int , NULL :: kontFib []
9 WHERE clos.cont = 3

10 UNION ALL
11 SELECT 1, NULL , (clos.num - 2 ) :: int ,
12 ROW(2, t.res , clos.num - 2) :: kontFib || t.k[2:]
13 WHERE clos.cont = 1
14 UNION ALL
15 SELECT 0, t.res + clos.num , NULL , t.k[2:]
16 WHERE clos.cont = 2
17 UNION ALL
18 SELECT -4, t.res + clos.num , (t.k[2]).args :: int , NULL
19 WHERE clos.cont = 2
20 ) AS _
21 UNION ALL
22 -- Fun -call
23 SELECT _.*
24 FROM (SELECT * FROM recurse AS wt1r) AS t, LATERAL
25 (SELECT hashtablelookup (2, t.x) AS val) AS memo , LATERAL (
26 SELECT 0, memo.val , NULL :: int , t.k
27 WHERE memo.val > -1
28 UNION ALL
29 SELECT 0, 1, NULL , t.k
30 WHERE memo.val = -1 AND (t.x = 1 OR t.x = 2)
31 UNION ALL
32 SELECT -4, 1, t.x, NULL
33 WHERE memo.val = -1 AND (t.x = 1 OR t.x = 2)
34 UNION ALL
35 SELECT 1, NULL , t.x - 1, ROW(1, t.x, t.x-1) :: kontFib || t.k
36 WHERE memo.val = -1 AND t.x > 2
37 ) AS _)
38 ) SELECT t.res FROM recurse AS t WHERE t.wt = 2;

Figure 3.10: Fibonacci algorithm in CPS and TS using multiple WTs and a hash table for
memoization purposes
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4
Measurements

Finally, the runtime improvements are measured. The measurements were taken on a 64-bit
Linux machine containing two AMD EPYC™7402 CPUs at 2.8 GHz and 2 TB of RAM. The PostgreSQL
version is 14.1 and only the modified version of PostgreSQL presented in the implementation
chapter will be considered for the measurements. To represent standard PostgreSQL, each ex-
ample provides one query labelled Standard using only one reset WT 0. This query does not
use any new constructs and could therefore be evaluated in standard PostgreSQL, so it will be
used as the baseline query for comparison with all modified queries. Each individual query is
evaluated five times and the average runtime inms will is displayed either in a tabular way or as
a graph. For each query using the hash table, 100 buckets are used. This ensures that hash table
accesses do not correspond to simple array accesses, as usually far more than 100 elements are
added to the hash table. The results of the measurements are presented in the same order as
they were previously introduced in chapter 3. So, the next chapter shows the results for the
graph algorithms.

4.1 Graph Algorithms

The graph algorithms measured include Bellman-Ford, Dijkstra and A*. For all of the graph
algorithms, the runtime is calculated with respect to the graph size, i.e. the number of nodes
present in the graph. Cycles are generally possible for the generated graphs, but negative edge
weights have been avoided completely by randomly choosing the weight values from the interval
[1, 50]. The probability of an edge between two nodes depends on the graph size. It has been
adjusted so that on average, each node has five outgoing edges. We start with the algorithm
that has the least number of different queries to measure, which is Bellman-Ford. The node
with index 1 is always chosen as the starting node, from which the expansion starts. Two of
the relevant queries were previously shown in detail in the chapter 3.1.1. The Standard query as
usual only implements one reset WT and thus has to copy or update the path information of
each node within each iteration, as previously shown in chapter 3.1.1 in Figure 3.2. This results
in a lot of copy operations, but more importantly, an expensive join between three tables. In
contrast, the measured HT query avoids copy operations by storing the node information in the
hash table. However, it does not use the index support provided by the hash table to perform
efficient lookups. This is only done by the query HT Lookup, which was previously shown in
Figure 3.1 from chapter 3.1.1. The results of the measurements are shown in the graph in Figure
4.1. The results are quite interesting, especially since the HT query does not benefit the runtime.
Let us check how many copy operations are actually prevented for a graph with 300 nodes. The
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Standard query computes a total of 90 300 tuples. This adds up, because 300 tuples are required
for initialization, and over the course of 300 iterations, 300 tuples are generated or copied in each
iteration. In contrast, only 1590 tuples are computed by the recursive CTE of the HT query, which
corresponds to only about 1.76% of the tuples required by the Standard query. It is astonishing
that by avoiding almost 90 000 copy operations, no benefit in runtime can be achieved. So, the
bottleneck in the computation cannot be in the copy operations. Let us have a closer look at the
HT query. When returning every single tuple generated by the recursive CTE, instead of just the
result tuples, it becomes evident that after 13 iterations no more upsert tuples are generated.
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Figure 4.1: Bellman-Ford measurements

The optimal paths are therefore found after
only 13 iterations, because then no more up-
sert tuples are computed, i.e. the computed
optimal paths are fairly short. However, the
computation to convergence after 13 itera-
tions does not correspond to a large part of
the runtime of the recursive CTE. This can be
proven by again returning every single tuple
instead of the actual output of the function,
and using a LIMIT clause to restrict the num-
ber of result tuples. It is the remaining 287
iterations that need to be performed regard-
less, which hurt the performance a lot. It be-
comes clear that the huge overhead is the ex-
pensive join between the edges table and the
two instances of the node_info CTEs, which
are computed in each iteration. This huge overhead is prevented by the HT Lookup query, which
uses hash table lookups to avoid the expensive joins. Its runtime improvement over the other
two queries is immense, as it now only needs to iterate over the edges table during an iteration,
instead of computing a join over three tables. So, for the Bellman-Ford algorithm, the only real
benefit of the hash table comes with the faster lookup using the index support. An argument
can certainly be made that once the graphs reach a huge size, even the omitted copy operations
will matter eventually. 90 000 tuples do not seem to matter yet, but we will have a closer look at
this later. As a final note, the HT query has a strange behaviour where its runtime seems to vary
a lot. As mentioned above, a value shown in the graph represents the average of five runs of a
query. While any query can have some outliers in terms of the runtime, this is especially crucial
for the HT query. For example when using 300 nodes, the HT query would sometimes have a
runtime of about 17 000 ms, and other times only about 10 000 ms. This is a drastic change in
runtime, which seems to occur due to different plans being used. Whenever the more efficient
plan is used multiple times, the average runtime is also greatly reduced, which can be seen for
240 nodes and the resulting kink in the graph. Obviously, the planner in SQL cannot yet take
advantage of the hash table and use its underlying structure to construct or decide for better
plans. However, this could and probably should be taken into account, when adding the hash
table to a productive environment. Next, the Dijkstra measurements are shown in Figure 4.2.
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Figure 4.2: Dijkstra measurements

Again, the node with index 1 was chosen as the starting node for the measurements. Note
that the graph sizes are chosen much larger than for the Bellman-Ford algorithm. However, the
queries can still process them quite fast because only one node is expanded in each iteration
instead of all of them. As expected, the Standard query is the least performing one. Using a
graph with 4000 nodes, the Standard query computes a total of 7 890 378 tuples for the set 𝑆
containing the already expanded nodes. Since some of the nodes are unreachable from the
starting node, only 3972 tuples are computed for the set 𝑆 in the case of the WT-WTR query,
which uses an extend WT for the set 𝑆 and a reset WT for the set 𝑆′. So, unlike the Bellman-
Ford queries, where there was no real benefit to be gained from preventing copy operations
by using a hash table, the sheer number of copy operations avoided for the Dijkstra algorithm
has a noticeable impact on runtime. All other queries measured for the Dijkstra algorithm use
either an extend WT or a hash table to store the tuples of the set 𝑆, i.e. they all avoid the copy
operations. Therefore, the WT-WTR query could be considered the baseline for the remaining
optimizations. Now, there seem to be two bottlenecks for the runtime. One of these is the
inefficiency of having to copy or update the set 𝑆′, which is currently handled by a reset WT.
The other is to check whether a particular node has already been expanded from in a previous
iteration, this check occurs several times per iteration. TheHT-WTR query, which now uses a hash
table instead of an extend WT to store the set 𝑆, solves the latter bottleneck. Using the indexing
support to check if a particular node has been expanded before is useful and actually provides a
runtime benefit. TheWT-Heap query, on the other hand, sticks to a simple extendWT for the set
𝑆, but implements a heap for the set 𝑆′. While the WT-WTR query computes a total of 4 862 104
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Figure 4.3: A* measurements

tuples for the set 𝑆′, the WT-Heap query only requires 9989 tuples. As with the implementation
of an extend WT for the set 𝑆, the bottleneck is again prevented by avoiding copying tuples that
are still needed in future iterations. The optimizations reach a truly respectable point when
both a hash table for the set 𝑆 and a heap for the set 𝑆′ are used. This is implemented by
the query HT-Heap. Because it solves both of the bottlenecks mentioned above, the runtime
drops to a low level that allows much larger graphs to be handled with ease. To put this into
perspective, for a graph with 4000 nodes, this query generates only a total of 13 961 tuples,
while other queries require many millions of tuples or implement some other form of efficiency
throughout the recursive CTE. The same improvements have also been implemented for the A*
algorithm. Its measurements are shown in the graph from Figure 4.3.

For all queries, 100 paths are computed from random starting nodes to the end node with
index 10. An adapted Dijkstra query was used to compute the heuristic values required by the
A* algorithm. To do this, each edge weight is underestimated by up to 30%. The spikes in the
runtime across all of the different query variants are explained due to longer paths being com-
puted. This results in more iterations and therefore a higher chance of selecting an irrelevant
node for expansion when trying to expand towards the end node. Unlike the Dijkstra queries,
the A* queries benefit greatly from the targeted search towards the end node. Therefore, both
the WT-WTR and HT-WTR queries, each of which uses either an extend WT or a hash table to
store the set 𝑆, have less of an impact on the runtime than they did for the Dijkstra queries. A
much smaller number of nodes are required to be expanded to find the optimal path, so the
set 𝑆 does not grow as large anymore, and saving copy operations is therefore not as much
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of a bottleneck. However, the heap data structure for the representation of the set 𝑆′ is still
important, especially now that the handling of the set 𝑆′ is the main bottleneck. Using 1200
nodes for the graph, the WT-WTR query computes on average 45 317 tuples for the set 𝑆′ per
function call, while the WT-Heap query requires only 713 tuples. Over the course of 100 function
calls, this adds up to a lot of copy operations that are prevented by the using the heap. Not
surprisingly, the HT-Heap query is again the best performer, as it implements all the optimiza-
tions at once. Therefore, all three graph algorithms could benefit greatly from the implemented
constructs, making an implementation of each of these algorithms feasible for an SQL environ-
ment. Following these measurements, the cursor loops application is be measured in the next
chapter.

4.2 Cursor Loop Application

For the measurement of the pretty_print functions introduced in the chapter 3.2, the threshold
100 is always chosen. The queries are evaluated once as demonstrated, i.e. two separate ta-
bles word_contents and word_orderings are used to enforce context switches for the PL/PGSQL
procedure between the SQL and PL/PGSQL domains. The variants using a plain SQL implemen-
tation must therefore compute joins between the tables. In order for this to remain feasible,
primary keys have been added to the id columns of the tables. In addition, the queries have
also been implemented in such a way that they only require a single table words, and therefore
the PL/PGSQL procedure does not require any context switches, and the recursive CTEs do not
need to perform any joins between the tables. Although the runtimes for the queries with and
without context switching are not fully comparable, a lot of information can still be gathered
from this. The measurements are shown in Figure 4.4.

Query 10 000 Words 1 000 000 Words
Naive 26 236 -

PL/PGSQL 18 1485
Stack 71 6031

Naive CS 11 359 -
PL/PGSQL CS 65 6111
Stack CS 83 7383

Figure 4.4: Cursor loop runtime measurements in ms

The queries marked with CS use
context switches or joins, i.e. mul-
tiple tables are used. The others,
on the other hand, use only one ta-
ble. Since the naive query using a
recursive CTE with OFFSET and LIMIT
clauses has a terrible runtime, each
query had to be evaluated with a
rather small number of words, 10
000. The measured values speak for
themselves, the naive implementa-

tion is just ridiculously bad. This demonstrates that it’s just not feasible to translate certain
cursor loops into standard SQL at the moment. To compare the PL/PGSQL procedure with the
new variant using a recursive CTE and a stack, measurements were made using 1 000 000 words.
Again, the PL/PGSQL procedures end up giving the better performance. Note, however, that the
PL/PGSQL procedure and the query using a recursive CTE and a stack are much closer in their
runtime when multiple tables and thus context switches are enforced. The PL/PGSQL procedure
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does suffer a lot from context switches, but not so much that it performs worse than the stack
implementation. It is save to say that a translation from PL/PGSQL code to plain SQL code would
now be possible and somewhat feasible, if the stack data structure were added to recursive CTEs.
However, we cannot ignore that the that the translation of PL/PGSQL code using cursor loops
would not improve the runtime, even if context switches are given for the procedure. Perhaps in
the future the stack data structure could be optimized to further reduce the stack query runtime,
for example by allowing a stack scheme independent of the scheme of the recursive CTE, or even
by allowing atomic stack values instead of tuples, so that stack accesses are faster. But even
then, one cannot ignore that a recursive CTE, which computes an instruction tuple per iteration
to update the state usually given in the PL/PGSQL variables, comes with its own overhead. Each
individual variable accessed by the cursor loopmust be specified as an attribute of the recursive
CTE scheme, which inflates the scheme. Also, not every variable is updated in every iteration, so
the attribute would just have to be copied unnecessarily. So, even if the stack implementation
were given in an SQL environment, it would be questionable whether cursor loops should be
translated into SQL code for efficiency reasons.

4.3 CPS examples

Finally, the eight selected examples [5] already available in the CPS and the TS are evaluated.
Half of themmay benefit from usingmemoization, as during a function call multiple Fun calls are
generated with the same arguments. For these examples, a query that implements memoization
but still uses only a reset WT is chosen as the baseline Standard Memo query to compare with
the optimized queries. Also, a Standard query is always provided so that it is possible to see
how much of an effect memoization itself has. As only a reset WT is used, the memoization
contents must still be copied in each iteration. This is not the case for the query Memo-WT,
which uses separate WTs for the Apply and Fun instructions, thus replacing the the former label
column, and an additional extend WT for storing the memoization tuples. Copy operations of
memoization contents are therefore avoided by this query. Both the baseline query Standard as
well as the optimized query Memo-WT are extended by the use of a closure stack, the resulting
queries are Stack andMemo-WT & Stack. For the queries that do not benefit frommemorisation,
only the Standard and Stack queries are implemented, i.e. only the efficiency gain for replacing
the closure array by a closure stack is measured. Let us first start with the measurements for
the Floyd-Warshall algorithm described in chapter 3.3 and the Dynamic-Time-Warping algorithm,
which also benefits immensely frommemoization. For the Floyd-Warshall algorithm, 10 function
calls are issued for the paths from the starting node with index 1 to the end nodes with indexes
1 − 10. The number of nodes in the graph is chosen in the interval [9, 20] and will be visible
as the 𝑥-axis in the graph. The Dynamic-Time-Warping algorithm uses sequences with sizes of
100, and the iterations parameter, which represents the 𝑥-axis of the graph, determines how
many consecutive function calls with incremented arguments are issued. The graphs with the
measurements for these two examples are shown in Figure 4.5.

Both of the examples show a similar behaviour, so the following evaluation applies to both.
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Figure 4.5: Measurements for Floyd-Warshall and Dynamic-Time-Warping
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First, note how the use of memoization in the Standard Memo query visibly reduces the runtime
of the Standard query, and how this allows much larger arguments to be used. In addition,
the Memo-WT query shows a significant performance gain over the Standard Memo query just
by not having to copy the memoization tuples in each iteration. For a graph with 13 nodes,
the Standard Memo query for the Floyd-Warshall algorithm computes an average of 1 857 047
memoization tuples over the course of the recursive CTE. The Memo-WT query, on the other
hand, only requires 857memoization tuples to be computed. Again, a huge runtime optimization
has been achieved by avoiding the copying of useful tuples. Also, as explained in the chapter
3.3.3, the CTE memo_all only needs to be computed in an iteration where a Fun instruction is
read, because the computation of the CTE will be inlined into the Fun SFW block due to only
occurrence of the memo_all CTE in this SFW block. This further reduces the evaluation effort of
the Memo-WT query. Now let us take a look at the use of the closure stack. For the Dynamic
Time-Warping algorithm, using the stack always results in a slight improvement in runtime. For
the Floyd-Warshall algorithm, this is only the case if memoization is not used. When using 11
nodes for the Floyd-Warshall algorithm, the Standard query has an average closure array size
of 10.5, while the Standard Memo query averages at 9.6. Note that the top-level function call
of the Standard Memo query already requires one stack push to enable memoization, i.e. the
closure size of the Standard query would be even larger if it implemented the missing stack
push as well. Different closure array sizes make sense because if there is a memoization tuple
that matches the parameters of a Fun call, there is no need to descend into more Fun calls and
therefore no additional stack pushes are performed. By using memoization, there are also far
fewer iterations overall. The Standard query requires on average 531 440 iterations for a graph
with 11 nodes. So, it is obvious that copying an array with even a small average size of 10.5
elements adds up when it has to be copied half a million times. Using the stack data structure
is therefore a great help in avoiding these copy operations. In contrast to that, the Standard
Memo query takes on average 2304 iterations to complete, i.e. the savings from using the stack
simply don’t justify its use. Note that the stack does have an overhead, as each closure entry
must now correspond to an own tuple, which must be modified by special stack operations. The
low performance of the closure stack shown is contrasted with the Fibonacci example, for which
the corresponding measurements are given in the graph from Figure 4.6.

The 𝑥-axis shows the argument 𝑥 for a Fibonacci function call. The Standard and Stack queries
have been discarded for the graph because their runtimes are already around 10 000𝑚𝑠 for
𝑥 = 30. Memoization is the way to go here. As shown for Floyd-Warshall and Dynamic-Time-
Warping, the Fibonacci queries also benefit immensely from not having to copy memoization
tuples. But let us focus on the use of the stack and the hash table, starting with the former. For
the input 𝑥 = 4000, the average closure stack size is 2000 over the course of 15 996 instructions.
This is a much larger stack size than for the examples previously demonstrated. It becomes
clear that as the stack size increases, so does the positive impact on runtime, as the number of
prevented copy operations skyrockets. Especially when a large stack has to be copied over many
iterations, as is the case with the Fibonacci problem, the copying effort becomes considerable.
One more optimization using the hash table instead of an extendWT for memoization purposes
is measured. This allows fast and easy lookups for a possibly existing memoization tuple for the
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Figure 4.6: Fibonacci measurements

given arguments of a Fun call. In addition, thememo_all CTE previously shown in 3.3.3 no longer
needs to be computed for the implementation of lookups. As the number of memoization
tuples computed increases, so does the need for the hash table, as iterating over the entire
memoization content for a single lookup otherwise becomes cumbersome. Overall, it is safe
to say that using a hash table instead of a extend WT is always more profitable, as it serves
the same purpose, but also offers additional benefits. Finally, the query Memo-HT & Stack is
obviously the best performer. It prevents unnecessary copy operations by using both a closure
stack to preserve closure contents and a hash table to store memoization tuples consistently.
Fast lookups are also possible, so there is no bottleneck for this query. For completeness, the
results for the remaining CPS examples [5] are shown in the tables from Figure 4.7.

Of the five remaining CPS examples, only the lcs example, which refers to the calculation
of the longest-common-subsequence, can benefit from memoization. 100 different sequences
with lengths between 7 and 8 are generated. 400 random pairs of sequences are evaluated in
one function call each to measure the Standard and Stack queries, while 1500 pairs are used to
test the different memoization queries. Again, a behaviour comparable to the Floyd-Warshall
algorithm can be detected, i.e. the memoization itself is much improved when using an extend
WT, and the stack loses its relevance because of reduced closure stack sizes and fewer iterations
due to memoization. All the other examples cannot benefit from memoization and therefore
only implement the Standard and Stack queries. The comps example computes the connected
components in a directed acyclic graph. To generate the graph, the parameter 𝑛 was set to 10,
i.e. up to 2𝑛 nodes were inserted. A total of 3000 function calls were issued, where each function
call computes whether two random nodes are connected. The eval example corresponds to an
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Query comps eval fac march
Standard 4032 2275 4001 7850
Stack 4593 2067 501 3032

(a) Measurements of the examples comps, eval, fac, march
Query (lcs) 400 calls 1500 calls
Standard 4976 -
Stack 4624 -
Standard Memo 1644 6152
Memo-WT 432 1612
Memo-WT & Stack 602 2261

(b) Measurements of the lcs example

Figure 4.7: Measurements of the remaining CPS examples

interpreter for arithmetic expressions. The parameter 𝑛, which determines both the number
of generated expressions, again up to 2𝑛, and their potential depth, was set to 15. A total of 15
000 function calls and therefore expression evaluations were issued. For the Faculty fac, a single
function call was issued with the argument 𝑥 = 15 000. Finally, themarch example implementing
the Marching Squares algorithm used 10 invocations and 200 iterations. With these selected
parameters, only the Faculty and the Marching Squares algorithms, in addition to the Fibonacci
example shown earlier, were able to benefit significantly from the use of a closure stack. While
all the other optimizations ended up having a positive impact on the performance, the closure
stack fell short of what was expected with only three out of eight examples taking advantage of
it. There are some features that can be improved, however, and these will be discussed in the
final chapter that follows.
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5
Conclusion and Future Work

The goal of this thesis was to demonstrate modifications to standard PostgreSQL that would
improve upon the WITH RECURSIVE construct. Now several tuple containers are available for
use instead of just one. These range from simple WTs to more specific data structures such
as the tuple heap. The separation of the tuples computed by the recursive CTE into different
tuple containers allows the assignment of individual responsibilities to these tuple containers.
As a consequence, the TS can naturally be integrated into the structure of the recursive CTE
by assigning different instruction tuples to their own WTs. By declaring a WT with the extend
update rule instead of the reset rule, the latter being common for the single instance of a WT in
standard PostgreSQL, tuples may even be retained throughout the course of the recursive CTE,
preventing expensive copy operations if the tuples remain relevant for more than one iteration.
The same is true for all implemented data structures, they only differ in how the tuples are
stored and how certain tuples can be read from the data structure. The tuple stack implements
a Last-In-First-Out data structure, where the last element pushed is removed first. While a nor-
mal queue implements a First-In-First-Out data structure, the tuple heap, as a priority queue,
inserts the tuples in an ordered fashion and thus allows easy fetching of tuples with minimal
ordering criterion. The hash table has the advantage of index support, which means that tu-
ples indexed by a particular key can be read, deleted and overwritten in an efficient way. All of
these additional data structures provide more flexibility and efficiency in handling certain tuple
data than standard WTs do. The measurements of a selected number of examples sometimes
showed an immense decrease in their runtime, which supports the assumption that the addi-
tional features should lead to huge improvements of the WITH RECURSIVE construct. Many of
the runtime optimizations came from not having to copy tuples that would be needed in future
iterations, but would be discarded after one iteration of the recursive CTE. This was expected,
as mentioned in the introduction to this thesis, because it is still required to copy all state vari-
ables over each iteration for a recursive CTE to solve a particular problem, since only immutable
tables and WT tuples may be accessed in the body of the recursive CTE. The graph algorithms
introduced were able to benefit from using the heap and the hash table to represent nodes and
their node information. Cursor loops may now use a stack for them to be implemented in pure
SQL instead of PL/PGSQL. While this doesn’t give a better runtime than its PL/PGSQL counter-
part, and it doesn’t help with saving memory like cursors usually do, it at least makes an SQL
implementation feasible. A select number of recursive UDFs that were already translated into
CPS and TS could be improved in some cases by a closure stack. More importantly, examples
that profit from memoization could benefit greatly from not having to copy many memoization
tuples in each iteration. An index support on the tuple container that stores the memoization
contents is also advantageous. Still, some features could see some improvements, these are

53



1 WITH RECURSIVE <instance -definition > [, <instance -definition >]* AS (
2 // non -recursive part
3 <insertion -statement >, [<insertion -statement > ,]*

4 // recursive part
5 WITH <with -declaration > [, <with -declaration >]*
6 <insertion -statement > [, <insertion -statement >]*
7 ) <SFW -block >;

8 <instance -definition > :=
9 <alias > (<scheme >) // for WTs

10 <alias > {STACK | HEAP} (<scheme >) // for Stacks or Heaps
11 <alias > HT(buckets: x, keys: y) (<scheme >) // for Hash -Tables

12 <with -declaration > :=
13 <cte -alias > AS (SELECT ... FROM <alias > WHERE <cond > LIMIT <n>)

14 <insertion -statement > :=
15 INSERT INTO <instance -name >
16 <SFW -block > [UNION [ALL] <SFW -block >]*

17 <ht -deletion -statement > :=
18 DELETE FROM <ht -name > WHERE <cond >
19 DELETE FROM <ht -name > ON (<key >)

Figure 5.1: Syntax suggestions for the new constructs

going to be presented in the following outlook for possible future work. First, a proposal for the
syntax to be used for an actual implementation of the features will be presented.

As explained in chapter 2.4, the implementation of the features for this modified version of
PostgreSQL relies on hacks that extend the available syntax constructs with additional semantics.
This results in the need to adapt to the given syntax constructs and thus in certain limitations
for the implementation. Many of these could be removed if a proper syntax for the new features
were implemented. A suggested syntax for the new recursive CTE is shown in Figure 5.1.

The first thing to note is that the new instance definitions following theWITH RECURSIVE clause
now allow multiple tuple containers to be defined. Each instance definition should specify a
name for the tuple container and optionally which type of container it represents, the options
being STACK, HEAP and HT for a hash table. If no type is specified, a common WT is assumed.
The extend WT was discarded, as the hash table seems to be more useful in any case. To define
a hash table instance, the user could provide additional bucket, keys and upsert attributes.
The bucket parameter would specify how many buckets are allocated for the hash table, and
the keys parameter would determine the number 𝑛 of key values required for a hash table
lookup. The first 𝑛 attributes of the scheme would then be selected as the concatenated key
while the remaining attributes would become the obtainable value. This means that for the
first time it may be possible to return a record instead of an atomic value. The next attribute
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of the hash table scheme with index 𝑛 + 1 could then be interpreted as the upsert value, i.e.
existing hash table entries would be updated if they hadmore optimal values in that column. An
unsuccessful hash table lookup could also return a NULL tuple. Active delete statements for the
hash table should still be possible. An association to be deleted could either be selected directly
via an ON clause, which provides the key of the association, or the deletion could be performed
depending on the outcome of a usual WHERE clause. For the heap, the first attribute could
always be chosen as the ordering criterion, or an identical approach to the hash table could
be followed. In addition, it would now be possible to use multiple instances per data structure,
which was previously only the case for WTs. Multiple instances of a particular data structure
could theoretically be useful for certain queries. For example, the Dijkstra and A* examples
could in principle also use two hash tables if the heap data structure were not available, one
each for the sets 𝑆 and 𝑆′. As done with multiple WTs, an instance of a particular data structure
should only be created when instructed to do so by an instance definition.

Now let us look at the scheme of the tuple containers. First, since the tuple containers are
now defined in the instance definitions behind the WITH RECURSIVE clause, the extra wt column
used throughout the thesis would no longer be needed. It would therefore be necessary for the
parent query following the recursive CTE to have access to all the individual tuple containers.
Typically, the result of the recursive CTE could be viewed as a tuple set filtered for results by the
parent query. However, with a missing wt column, tuples from different tuple containers could
no longer be separated in the parent query, meaning that individual accesses to the different
tuple containers would be mandatory. This is further enforced by allowing different schemes for
the individual instances. This would allow even two different WT definitions to use a separate
scheme for their respective tuples. This again is reinforced by the questionable implementa-
tion of the closure stack, where each atomic closure was required to match the scheme of the
instruction tuples, and vice versa, even though this would result in many column values with
NULL. However, by using different schemes for the individual tuple containers, the tuples to
be inserted into different tuple containers may no longer be computed by multiple SFW blocks
connected by UNION ALL clauses, as the schemes of the generated tuples would not match.
Therefore, the insertion of tuples into a particular tuple container should now be separated
from the insertions into other tuple containers by a delimiter such as a comma, as shown in
Figure 5.1 above. However, an insertion statement for a particular tuple container can still use
multiple UNION ALL or even UNION connected SFW blocks. Each insertion statement would now
name the target tuple container by an additional INSERT INTO clause, which is followed by the
SFW blocks computing the tuples to be inserted. No major syntax changes are proposed for
reading the data structures. Using CTEs to access the data structures within the recursive part
seems to be a decent approach to reading exactly what is required, especially when also using
WHERE and LIMIT clauses. It also guarantees that the order of operations performed on the
data structure is correct, as read and delete operations are always performed first. To ensure
that this is really the case, both reads from the stack and the heap should always count as pop
operations. Also, inlining of their CTEs should be prohibited by always automatically selecting
the AS MATERIALIZED variant for these CTEs. The hash table lookups could also work simply by
specifying the key in a WHERE clause. In summary, the proposed changes would take the imple-
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mented features one step further and allow them to be used in a slightly more convenient and
efficient manner. However, they do not in any way simplify the recursive CTE, which is already
a somewhat difficult to use. Adding special syntactic features to allow additional constructs
will inevitably make things more complex. The appendix gives a query for the Floyd-Warshall
algorithm, which uses this proposed syntax to implement both a closure stack and memoization.

This idea could be expanded by allowing an even more diverse set of data structures. As
shown for the cursor loop application, a simple queue could be useful instead of having to
use the stack. Admittedly, adding these features to a proper PostgreSQL installation would be
cumbersome. In this thesis only an implementation of the constructs was realized and example
queries were modified. Although syntax suggestions are also given, their implementation would
not be trivial. In addition, other aspects such as the optimization of the planner need to be
considered. It needs to be aware of the implemented constructs, how they behave and how
they may be exploited to build more consistent and more efficient query plans. As we have
seen, there are still plenty of opportunities to build on what has been researched. Even though
the new features probably will not see themselves in an official PostgreSQL release anytime
soon - or ever - the much better performance should certainly motivate the optimization of the
recursive CTE.

56 Chapter 5 Conclusion and Future Work



6
Appendix

1 WITH RECURSIVE apply_call (res),
2 fun_call (nodes , s, e),
3 closure_st STACK (cont , nodes , s, e, s1 , s2 , args),
4 memo_ht HT(buckets: 100, keys: 3) (nodes , s, e, res),
5 result (val) AS (
6 -- non -recursive part
7 INSERT INTO fun_call
8 SELECT :nodes , :s, :e
9 ,

10 INSERT INTO closure_st
11 SELECT 4, NULL , NULL , NULL , NULL , NULL , (:nodes , :s, :e) :: args
12 ,
13 -- recursive part
14 (WITH fst AS (SELECT * FROM closure_st LIMIT 1),
15 snd AS (SELECT * FROM closure_st LIMIT 1),
16 memo AS (SELECT h.res AS val FROM fun_call AS f, memo_ht AS h

WHERE (h.nodes , h.s, h.e) = (f.nodes , f.s, f.e))
17 INSERT INTO result
18 SELECT a.res -- case 3
19 FROM apply_call AS a, fst
20 WHERE fst.cont = 4
21 ,
22 INSERT INTO fun_call
23 SELECT fst.nodes - 1, fst.s, fst.nodes -- case 4
24 FROM apply_call , fst
25 WHERE fst.cont = 1
26 UNION ALL
27 SELECT fst.nodes - 1, fst.nodes , fst.e -- case 5
28 FROM apply_call , fst
29 WHERE fst.cont = 2
30 UNION ALL
31 SELECT f.nodes - 1, f.s, f.e -- case 2
32 FROM fun_call AS f, memo
33 WHERE memo IS NULL AND f.nodes <> 0
34 ,
35 INSERT INTO apply_call
36 SELECT LEAST(fst.s1 , fst.s2 + a.res) -- case 6
37 FROM apply_call AS a, fst
38 WHERE fst.cont = 3
39 UNION ALL
40 SELECT memo.val -- case 0
41 FROM fun_call AS f, memo
42 WHERE memo IS NOT NULL
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43 UNION ALL
44 SELECT (SELECT e.weight FROM edges AS e WHERE (e.here , e.there) = (f.s,

f.e)) -- case 1
45 FROM fun_call AS f, fst , memo
46 WHERE memo IS NULL AND f.nodes = 0
47 ,
48 INSERT INTO closure_st
49 SELECT 2, fst.nodes , fst.s, fst.e, a.res , 0, (fst.nodes - 1, fst.s, fst

.nodes) :: args -- case 4
50 FROM apply_call AS a, fst
51 WHERE fst.cont = 1
52 UNION ALL
53 SELECT 3, fst.nodes , fst.s, fst.e, fst.s1 , a.res , (fst.nodes - 1, fst.

nodes , fst.e) :: args -- case 5
54 FROM apply_call AS a, fst
55 WHERE fst.cont = 2
56 UNION ALL
57 SELECT new.prio , new.cont , new.nodes , new.s, new.e, new.s1 , new.s2 , new

.args
58 FROM fun_call AS f, LATERAL (
59 SELECT 2 AS prio , (1, f.nodes , f.s, f.e, 0, 0, (f.nodes - 1, f.s, f.e

) :: args) -- case 2
60 WHERE memo IS NULL AND f.nodes <> 0
61 UNION ALL
62 SELECT 1, fst.* FROM fst -- cases 0-2
63 ORDER BY prio
64 ) AS new(prio , cont , nodes , s, e, s1 , s2 , args)
65 ,
66 INSERT INTO memo_ht
67 SELECT (snd.args).nodes , (snd.args).s, (snd.args).e, LEAST(fst.s1 , fst.

s2 + a.res) -- case 6
68 FROM apply_call AS a, fst , snd
69 WHERE fst.cont = 3
70 UNION ALL
71 SELECT (fst.args).nodes , (fst.args).s, (fst.args).e, (SELECT e.weight

FROM edges AS e WHERE (e.here , e.there) = (f.s, f.e)) -- case 1
72 FROM fun_call AS f, fst , memo
73 WHERE memo IS NULL AND t.nodes = 0
74 )
75 ) SELECT val FROM result;

Listing 6.1: Floyd-Warshall algorithm implementing memoization and a closure stack
using the proposed syntax
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