
Mathematish-Naturwissenschaftliche Fakultät
Wilhelm-Schickard-Institut für Informatik

Database Systems Research Group

Masterthesis Computer Science

Building a Website with a Static Site Generator

Phil Elgert

30.09.2022

Examiner

Prof. Dr. Torsten Grust

Co-Examiner

Prof. Dr. Thomas Walter

Supervisor

Denis Hirn, Tim Fischer

Phil Elgert:
Building a Website with a Static Site Generator
Masterthesis Computer Science
Eberhard Karls Universität
From 01.04.2022 to 30.09.2022

Selbständigkeitserklärung

Hiermit versichere ich, dass ich die vorliegende Masterthesis selb-
ständig und nur mit den angegebenen Hilfsmitteln angefertigt
habe und dass alle Stellen, die demWortlaut oder dem Sinne nach
anderen Werken entnommen sind, durch Angaben von Quellen
als Entlehnung kenntlich gemacht worden sind. Diese Masterthe-
sis wurde in gleicher oder ähnlicher Form in keinem anderen Stu-
diengang als Prüfungsleistung vorgelegt.

Ort, Datum Phil Elgert

iii

Abstract

Static websites are really fast but oftentimes time-consuming in maintenance
because of their lack of code abstraction. In this work, Static Site Generators
(SSGs) are examined. These are frameworks that make the implementation
and maintenance of a static website really easy while still preserving the speed
benefit of static websites. A real world website is implemented using the open-
source SSG Hugo. Core concepts are explained, using examples from the web-
site. Furthermore a documentation of the implemented parts and components
is given. In addition, a fast deployment pipeline that is based on Git is provided.

Abstract v

Contents

Abstract v

Acronyms ix

1 Introduction 1

2 Objective 3
2.1 Content . 3
2.2 University Corporate Design . 3
2.3 Maintainability . 3
2.4 Responsiveness . 3
2.5 Git Support and Deployment . 4
2.6 Static Website . 4

3 Deployment Pipeline 5

4 Harald? - No, my name is Hugo 7
4.1 Content Files - Pages . 7
4.2 Templates . 8
4.3 Go Templates . 10
4.4 Partials and Shortcodes . 11
4.5 Page Bundles . 11
4.6 Themes . 11
4.7 Archetypes . 12
4.8 Site Configuration . 12

5 Implementation 15
5.1 Base Layout . 15

5.1.1 Menu . 17
5.1.2 Section Menu . 18

5.2 Content Structure . 19
5.3 Section Components . 20

5.3.1 Team . 21
5.3.2 Teaching . 24
5.3.3 Publications . 27
5.3.4 Research . 29
5.3.5 Theses . 30
5.3.6 News . 31

5.4 Additional Components . 32
5.5 Build Environments . 34
5.6 JS/CSS compilation . 34
5.7 Archetypes . 35

6 Conclusion 37

Bibliography 39

Contents vii

Acronyms

CMS Content Management System

CSS Cascading Style Sheets

HTML Hyper Text Markup Language

IDE Integrated Development Environment

JS JavaScript

RSS Really Simple Syndication

SASS Syntactically Awesome Style Sheets

SSG Static Site Generator

UI User Interface

URL Uniform Resource Locator

YAML YAML Ain’t Markup Language

ix

1
Introduction

Nowadays, each group or organization that is large enough has a website. There are around
200 million active website as of 2022 [1]. This is because it is a fast, easy and cheap way to
supply information. Websites can be categorized in a lot of ways, the most prominent be-
ing static and dynamic. A static website basically has no user interaction. It just presents
information in the form of text, images, etc. There is no login and there is no live search.
A static website is like a museum: have a look but do not touch! On the other hand there
is dynamic websites. On these websites there is usually a user login and there is a lot of
interaction with the user. A user can perhaps change the state of the website, by editing
content that is for example saved in a database. Since dynamic websites have all these
functions, they are oftentimes slower and are high-maintenance. Therefore, if this kind of
functionality is not needed, running a static website is the way to go.
In this thesis, the domain of SSGs is explored. These are frameworks that make content
management and implementation of a static website more convenient by adding for ex-
ample code abstraction, front matter and control flow structures. Many more concepts will
be explained in this thesis. The topic is explored using a practical example. The website
of the Database Systems chair [2] of the University of Tübingen was reimplemented. The
old website had an outdated design and needed to be updated using the new cooperate
design of the University. Using examples from the website, the most important concepts
of SSGs are explained. Additionally, a really fast deployment pipeline for the website is
presented. The pipeline works with Git [3], which is the most important versioning control
system on the market.
This thesis also serves as the documentation of the website. The most important compo-
nents and their usage will be explained.

1

2
Objective

The goal of this thesis is to lay out how to implement a website using a SSG. The concrete
implementation was done for the Database Systems Research Group at the University of
Tübingen.
To make the objective clearer, a handful of conditions are set for a successful implemen-
tation.

2.1 Content

Since there already existed a website of the chair, the content had to be integrated into
the new website. The old website used Trello. Trello is a Content Management System
(CMS) where content is defined in Markdown [4] files. This is convenient because in Hugo,
content is defined using Markdown as well. Therefore most of the content is reused for
the new website. Static files, like images and PDFs are declared in Hugo syntax.

2.2 University Corporate Design

The former website of the chair was using an outdated design that leaned on the former
corporate design of the University. To have the website up-to-date with the design of the
University [5], the components and styles of the website are taken from it.

2.3 Maintainability

To successfully run a website over many years, it has to be easy to maintain. For this reason,
it is important for the website to have the code split up into reusable components.

2.4 Responsiveness

As most website visitors use mobile devices, a website is required to be responsive. This
means that on every device, be it small or large, the website has to be rendered in a way

3

the user can easily use, read and interact with all its content properly. Hence, on smaller
devices an open menu typically uses up all the space on the screen to make sure the user
is able to target the menu items with his finger. On big screens it might be rendered as a
box next to the navigation bar which is opened on hover or on click. It does not use up
the entire screen but only a part of it.
The responsiveness was already implemented in the Cascading Style Sheets (CSS) of the
design, which are reused.

2.5 Git Support and Deployment

The code of the website needs to be accessed and changed by multiple people, which
should not result in chaos and an inconsistent website being served. This means that
code maintenance and deployment has to be easy. Therefore the goal is to use Git [3]
to have versioning of the source code. Additionally, a deployment pipeline is needed to
rebuild and serve the website upon code changes.

2.6 Static Website

To use an SSG for a site, the site has to be static. This means that between releases, the
website stays the same. In contrast, dynamic sites often have a database backend. The
content of the database, which is eventually displayed on the page, can change at any time.
Thus the content of the website changes in spite of it not being rebuilt.

4 Chapter 2 Objective

3
Deployment Pipeline

In this chapter the deployment process of the website is explained.
The code is versioned with Git. In this way anyone that has access to the Git repository of
the website can make changes to it. The changes get deployed immediately. In addition,
Git provides a commit history of the changes made to the website so that one can always
check which person made which changes at what time. Another advantage of using Git
and a deployment pipeline is that the website can be edited via command line. A content
manager does not need to use a User Interface (UI) to make changes to the site.
In Figure 3.1 there is the structure of the pipeline which is responsible for deploying this
website.

Figure 3.1: Deployment Pipeline

The pipeline works as follows:

1. Whenever a contentmanagermakes changes to the website that need to be deployed,
he pushes them on the master branch of the website repository.

2. The Git server receives all changes for each of its repositories. When it receives a
change on the master branch of the website repository, a Git hook script is run.

3. The hook script pulls new commits from the master branch of the Git repository.

5

Then, the website is built with Hugo. Hugo outputs a static website. The website is
synced with the website of the web server in the root directory. This is done with
the command line tool rsync which synchronizes all files with the files on the web
server file-by-file. In so doing the website does not experience any downtime. In
contrast, just deleting and copying the new website on the web server would keep
the website in an inconsistent state for just a short time. That is because during the
process there are always some missing files, or in the worst case all of them (when
deleting is done and copying about to start).

4. The web server runs during the whole process. It gets served upon receiving the new
version of the website.

6 Chapter 3 Deployment Pipeline

4
Harald? - No, my name is Hugo

In order to create a website and host it on a server, the most basic way is to create a Hyper
Text Markup Language (HTML) file for each page. This works, but it also has a huge downside
since most of the pages contain a lot of the same content, for example, the header, the
footer and the menu. Content that is repetitive should be refactored. This is where for
example SSGs can come into play as they provide the ability to refactor code and reuse it
in multiple pages.
For this thesis the SSG Hugo [6] is used. It provides these features and many more that are
discussed in this chapter.

Figure 4.1: The Hugo logo

4.1 Content Files - Pages

Each Hugo content file represents one page of the website. In Hugo, content is typically
written in Markdown (HTML is also possible, but not really used). Markdown brings the
advantage of its simple and intuitive syntax. Simple content parts like paragraphs, images,
captions, links (and many more) are supported by Markdown, so one does not have to
bother with HTML tags.
A content file in Hugo contains two parts: the front matter and the content. In Figure 4.2,
there is an example of a content file from the website. In the top part there is the front
matter, enclosed between 3 dashes ---. Front matter is written in YAML (YAML Ain’t Markup
Language) . After that, the content is defined which consists of some markdown and a call
to a shortcode at the bottom (line 10).
Front matter is how one defines meta data for a content file. This meta data can be at-
tributes which Hugo provides out of the box like the date of creation of the file, the title
or Uniform Resource Locator (URL) aliases. But Hugo also allows the definition of custom
front matter in content files.
Front matter cannot be directly accessed from a content file. But it can be accessed from

7

1 ---
2 title: Data Provenance for SQL
3 aliases:
4 - /research/data -provenance -for -sql
5 researchProject: data -provenance -for -sql
6 ---

7 We explore new ways to derive the ** provenance ** (or lineage) of data
items that flow through programs or queries. Once this provenance
information has been derived , we know

8 1. exactly which input items led the program (or query) to emit which
output items (_Why and Where Provenance_), as well as

9 2. which program parts were involved in the computation of each
single item (_How Provenance_).

10 {{< partial "publications/by -project" >}}

Figure 4.2: A content file in Hugo. Line 1-6 is front matter written in YAML. Line 7-9 is content
written in Markdown. In line 10, there is a call to a shortcode.

templates, partials and shortcodes. One can think of partials and shortcodes as func-
tions that produce an HTML output (see Section 4.4). In line ?? of Figure 4.2, there is the
researchProject custom parameter set. This parameter is accessed and used by the short-
code that is called in line 10.
When the website is built with the hugo command, all Markdown is compiled into HTML.
Each partial and shortcode is interpreted and the resulting HTML inserted into the content.
In Hugo, most pages are single pages. They display information about a single piece of

data. Pages of the same type of data reside in the same folder, for example, all news ar-
ticles are in the news folder and therefore under the /news URL. For each folder there is
normally one list page. This page displays a summary of the information from all single
pages in that folder. In case of the news list page, it displays a summary for each news
article.
In Figure 4.3, there is the structure of the news section. List pages always have the file
name _index.md. Single pages have either the name index.md if they have a page bundle
(see Section 4.5). Or without page bundle, it can have any name that fits.

4.2 Templates

Every Hugo project has one base template which is the baseof.html template. It contains
the HTML that is the same on each page. This is where the footer and the header are

8 Chapter 4 Harald? - No, my name is Hugo

news

2021-10-13-3g-fp

haskell-logo.svg

index.md

2021-03-29-info2-registrierung-online.md

2021-10-11-3g-db1.md

2021-10-13-3g-acm.md

_index.md

Figure 4.3: The folder structure of the news section. The _index.md file is the list page for the
news. It renders a summary of all pages in the news folder. Every other Markdown
file represents a single page.

1 {{ define "left -sidebar" }}
2 {{ if (not .Page.Params.contentFullWidth) }}
3 {{ partial "left -sidebar/left -sidebar.html" . }}
4 {{ end }}
5 {{ end }}
6 {{ define "main" }}
7 {{ .Content }}
8 {{ end }}

Figure 4.4: list.html/single.html - The list/single page template. At the top, the left-sidebar
is rendered. The sidebar is only rendered if the page does not have the front matter
parameter contentFullWidth: true. Underneath, the content of the page is rendered.

defined, because they appear on every page.
In addition to the base template, each content file is rendered using another more specific
template which is the list or single page template. If there are parts of the page which are
the same for every single page but not for list pages, one would put them into the single
page template. There is also the option of making templates section-specific. One could
for example add a single page template for the news section which would be used to render
all news single pages. So for each page the most specific template and the baseof.html is
used.
In this project there is a list and a single page template which are identical. In Figure 4.4,
the template definition can be seen.

4.2 Templates 9

1 {{ $main := resources.Get "/css/page.css" }}
2 {{ $custom := resources.Get "/sass/custom.sass" | toCSS }}

3 {{ $css := slice $custom $main | resources.Concat "css/main.css" |
minify | fingerprint }}

4 {{ return $css }}

Figure 4.5: compileCss.html - a returning partial, that does not produce any HTML, but returns
a computation result. CSS is bundled with compiled SASS. Then it is minified and
fingerprinted

4.3 Go Templates

In order to write templates in Hugo, one is in need of control structures, variables and
functions. One needs for example the ability to loop through the pages of a section, or to
recursively build the menu. To express this functionality, Hugo makes use of Go templates.
These are control structures that are expressed in the Go language [7]. Go templates can
be used in any template file, partial or shortcode. This template syntax is depicted by the
double curly braces {{ }} that contain the commands. In Figure 4.4 there is an example.
A context is passed to each layout template, partial or shortcode. This context contains the
page that is being rendered with all its front matter and content as well as all site variables
and functions. One can access this context in Go Templates. The context is depicted by .
(”the dot”). Line 2 of Figure 4.4 illustrates the way the contentFullWidth custom parameter
is accessed from the context of a page. Line 3 shows how the context is passed to the
left-sidebar.html template. Line 8 depicts how the content of the page is taken from the
context and rendered.
Hugo provides a lot out-of-the-box functions that can be used in templates. Figure 4.5
displays template that compiles, merges, minifies and fingerprints all CSS and Syntactically
Awesome Style Sheets (SASS). Figure 4.6 shows the definition of the styles.html partial. It
is called in the header of the page. It compiles the CSS with the compileCss.html partial
and includes it into the website with an HTML link tag.

1 {{ $pageCss := partial "func/compileCss" . }}
2 <link rel="stylesheet" type="text/css" href="{{ $pageCss.Permalink }}"

>

Figure 4.6: styles.html - Styles are compiled and included into the site with a link tag

10 Chapter 4 Harald? - No, my name is Hugo

4.4 Partials and Shortcodes

In programming there is a paradigm called the DRY (do not repeat yourself) paradigm. It
means that redundancy in code is to be avoided. It is bad practice for example to put the
footer of the website into each content file. One would rather refactor it into a partial and
reference the partial instead. Hugo supports this partial functionality in templates. One
can pass parameters and the context to a partial. The context (aka ”The dot” .) contains
all site variables, config parameters and the current page from which the partial is called.
From this context, front matter can be accessed.
For content files, the same functionality is provided in shortcodes. To use partials in both
templates and content files, the project defines a shortcode named partial.html. This
shortcode takes a name of a partial to be called and passes the context down to the partial.
There is an example in Figure 4.2 in line 10.

4.5 Page Bundles

Sometimes a page consists of multiple files. For example the person’s profile can contain
a picture of the person or a publication usually has a PDF version for download. To add
these to the context of the page, they need to be in the same directory as the page and
declared in the front matter of the page. In Figure 4.7 there is an example page bundle
for a team member. Since the resources also exist in the context of each page, they can
be accessed from any template. In Section 5.3.1 there are example usages of the portrait
page resource.

denis-hirn

index.md

profile.jpg

1 resources:
2 - name: portrait
3 src: profile.jpg
4 ---
5 {{< person/single >}}

Figure 4.7: On the left there is the directory structure of the page bundle for
/team/members/denis-hirn. On the right there is the resource definition in the
content file (denis-hirn/index.md). The person/single shortcode uses this page
resource to render the profile image.

4.6 Themes

Hugo provides the concept of themes to separate content and layout. There are a lot
of community supported themes at https://themes.gohugo.io/. These themes can be im-

4.4 Partials and Shortcodes 11

https://themes.gohugo.io/

ported as a Git submodule into a project. This is a good choice if there is no time to produce
one’s own custom layout or someone just wants to create a simple homepage.
For this project, the out-of-the-box themes were only used as inspiration on how to struc-
ture the layout. The University of Tübingen has its own cooperate design which had to be
implemented as a Hugo theme. With regard to implementation, this means that all layout
components, such as partials, shortcodes, the base template, and the CSS lie in the themes
directory. In order to register a theme in the project, it has to be declared in the config file
of the site.

4.7 Archetypes

New content files can be created just by adding new files manually to the content folder.
The boilerplate code can be copied from other pages and used as guidance. When working
with a graphical editor or an Integrated Development Environment (IDE) this is often the
easiest way.
But Hugo provides a command-line alternative, called archetypes. An archetype reflects
the structure that each page of a given type has in common. In Figure 4.8 for instance, on
the left, one can see all the code structure that is found in each of the member pages.
Creating pages with the help of archetypes is done via the hugo command line tool. The syn-
tax is the following: hugo new --kind <kind> <path/to/destination>. Currently supported
<kind>s are: member, alumni, lecture, publication, thesis, news. The file name that is
passed as the destination path (last bit of the destination URL) is passed to the archetype
template as the parameter Name.
When creating new content through an archetype, the whole page bundle of the archetype
is copied to the destination. In addition, the Go Templates (not the shortcodes!) in the
archetype definition are evaluated.
Archetypes reside in the archetypes folder of the root directory.

4.8 Site Configuration

Hugo provides a wide range of different site configurations. These are defined in the config
files that are found in the config folder. Each config file lives in a separate folder. The fold-
ers define different environments, like production or development. Depending on what
command is run to build the site, a different config file is used. There is also the _default
folder whose config file serves as a default config that gets merged with the other configs.
Running the Hugo development server with file watch is done via the hugo server com-
mand. In this case the development config is used and merged with the default config.
When the website is built using the hugo command, the production configuration is used

12 Chapter 4 Harald? - No, my name is Hugo

merged with the default config.
There is a default config and a development config in this project. The default config de-
fines the baseURL (the domain) of the site, the theme that is used and some other things.
The development config contains just one entry: the baseURL as ’/’. The reason is that in
production, the website will be hosted on a public domain, which has to be declared in
the config file. But for development, the site should just be deployed to localhost. See
Section 5.5 for more concrete information.

member

index.md

profile.png

1 ---
2 title: {{ replace .Name "-" " " | title }}
3 person: {{ .Name }}
4 details:
5 function: TODO Secretary | Professor | ...
6 phone:
7 - TODO
8 - +49 7071 29 -5958
9 email: {{ .Name }}@uni -tuebingen.de

10 address:
11 institute: Universitäat Tübingen , WSI
12 chair: Lehrstuhl für Datenbanksysteme
13 street: Sand 13
14 city: 72076 Tübingen
15 room: TODO
16 resources:
17 - name: portrait
18 src: profile.png
19 ---
20 {{< person/single >}}
21 {{< partial "publications/recent -list" >}}

Figure 4.8: On the left there is the structure of the member archetype which is copied. Team
members come with a dummy profile picture (profile.png). On the right there is
the definition of the archetype. The Go templates in line 2, 3 and 9 are evaluated at
creation time: The name that is passed to the archetype forms the title, person key
and email. This name is the file name.

4.8 Site Configuration 13

5
Implementation

Now that the foundation for basic Hugo concepts has been laid, the specifics about the
actual implementation of the website will be given.
The structure of the website and its components will be presented in this chapter.

5.1 Base Layout

In Hugo, there is a template called the baseof.html template. It is the base template that
defines the outer most structure of the web page.

Figure 5.1: The home page on a mobile device. The menu is moved to the top of the screen and
opens on click. The right-aside.html block is moved to the bottom of the page (not
visible here).

15

Figure 5.2: The home page rendered on a desktop device. One can see the different partials that
are part of the base layout. The content of the Markdown file is rendered in the box
marked with ”Content”. In the base layout there is also an aside box to the left of the
content, which is not rendered on the home page.

Figure 5.2 shows the structure of the base template as it is rendered on large screens.
The header contains the logo of the University which is a link to the home page of the
University. Underneath, there are links to the department of computer science and to the
chair of database systems. Next, there is the menu in blue and lastly the breadcrumbs.
The main part of the page contains the content and optionally a sidebar on the left and an
HTML aside box to the right. The sidebar to the left is not visible in Figure 5.2 because it is
not used for the home page. But on almost every other page there is the left-sidebar.html
(See Section 5.1.2).
The box that is marked as ”Content” contains the compiled Markdown from the content
file.

16 Chapter 5 Implementation

At the bottom of each page, there is the footer which contains links to the imprint, the
Really Simple Syndication (RSS) feed, the privacy statement and some other things.
Figure 5.1 depicts the home page rendered on mobile. There, one can see that the mobile
layout has some differences to the desktop layout: Instead of a first level navigation bar,
the menu is hidden. It is opened with the menu button in the top right corner. Furthermore,
the left-sidebar.html is hidden. On small screens, the right-aside.html box is moved to
the very bottom of the page in full width.

5.1.1 Menu

Front Matter:

• redirectToFirstChild:
The menu item of this page will link to its first child. This is used when a
page should not be accessed (because it has no content). For example used on
/research/current-projects.

• noMenuChildEntries:
If set on a page, all of the children of this page will not appear in the menu. Used
for /teaching/archive

Partials:

• navigation.html
Renders the menu.
Uses Front Matter: redirectToFirstChild, noMenuChildEntries

Navigating to the different parts of the website is made possible through the main menu.
Since the directory structure of the content represents the structure of the website, the
menu is built from it.
The menu has two front matter parameters, which can be set for any page. The first one
redirectToFirstChild is for pages that do not have an actual web page. For example,
/research/current-projects does not have any content. When clicking on a menu entry
whose page has redirectToFirstChild set to true, one is redirected to the first child of that
page.
The other parameter is noMenuChildEntries. It is for sub pages that have too many children
to be displayed in the menu. The lecture archive at /teaching/archive is a good example.
Lectures under the archive do not get displayed in the menu because there are around 100
of them.
In Figure 5.3, there is the opened menu for desktop and mobile. The desktop version has 3
visible layers. Each of the layers is visible in the menu except for pages that have a parent

5.1 Base Layout 17

page that is marked with noMenuChildEntries: true.
The mobile version of the menu only shows one layer at once in full screen. This is due
to the limited space on mobile devices. Users can navigate down the hierarchy with the
greater-than buttons, and back with the back button.
The partials that produce the menu are navigation.html and for the recursive calls
navigation-entry.html.

Figure 5.3: The menu on desktop (top) and mobile (bottom). The mobile version is showing the
menu entries under /teaching

5.1.2 Section Menu

Front Matter: Same as for menu. See Section 5.1.1
Partials:

• left-sidebar.html
Renders the section menu to the left.
Uses Front Matter: redirectToFirstChild, noMenuChildEntries, year from a publica-
tion or thesis, assignedTo from a thesis

Most pages have a section menu to the left of the content. It is visible for breakpoint md
(768px) and up. The section menu gives the user an overview of the section as well as a
quick navigation. Generally, the section menu is rendered from the folder structure of the
section. An example of this concerning the research section can be seen in Figure 5.4. The
research section contains each research project of the chair, grouped in current projects
and past projects.
This works in most cases, but in sections like publications or theses, the section menu is
slightly different: These sections have over 100 child pages, which would blow up the sec-
tion menu extensively. Instead, the sidebar contains a list of every year in which there was

18 Chapter 5 Implementation

a publication (a thesis). These entries are anchor links that link to the group of publica-
tions (theses) that were published that year. The groups are on the list pages (publications,
/theses). For this to work, there is a front matter parameter year which can be set on pub-
lications and theses (See more in Section 5.3.3, Section 5.3.5).
Pages that contain a section menu are: /team, /teaching, /research, /publications and
/thesis.

Figure 5.4: On the left, there is the section menu for /research. It contains all child pages.

5.2 Content Structure

There are several data models contained in the site. Each of the sections contains its own
data model except for the contact section. In Hugo, there are different ways to implement
data models. The most common way is to have one data set per page. The data is declared
in the front matter of the page.
Relations between the models are implemented as Hugo indices. More information con-
cerning the implementation of the relations is found in Section 5.5.
Figure 5.5 depicts a diagram showing the different data models and their relations to each
other. The most important relation is the person relation. Almost all models use it. A
lecture (found under /teaching) is held by one or many people. A publication has one or
many authors and belongs to one research project. A thesis has one or many authors. A
news article can belong to one or many or no lectures.
It is important to note that the consistency of the relations is not checked by Hugo, since
it does not know about them. For Hugo, these are more like buckets. Pages that have the
same index declaration and value belong to the same bucket (e.g. person: denis-hirn is
set for Denis’ team member page and for all of the publications that he worked on). This

5.2 Content Structure 19

means that Hugo is unaware of the fact that logically, a publication belongs to a person,
and not the other way around.
To warn about inconsistencies, some checks were implemented in components that de-
pend on these relations.

Figure 5.5: The data models and their relations. All attributes are implemented as front matter.
Attributes marked with ”(id)” should have one unique value as they serve as a unique
id.

5.3 Section Components

Every section has its own components that display the section specific data. There are
components that render one piece of data, like single, details or summary: The single.html
partial of the news section renders the complete news article whereas the summary.html
partial renders a smaller summary. Furthermore, there are list components as well that
render a list of data like list.html.
In the following, the most important components are presented.

20 Chapter 5 Implementation

5.3.1 Team

Front Matter

• indices: person (id)

• details
An object containing information about the person.
Format: details:{function, phone, email, address:{insitute, chair, street,
city}, room}

Page Resouces

• portrait
A portrait image of the person.

Shortcodes

• team/portraits-grid.html
Grid view of all team members with links to their pages. See Figure 5.6.
Front matter: details.function
Page resources: portrait

• person/single.html
The portrait of a person with details. See Figure 5.7.
Front matter: details (optional)
Page resources: portrait

• person/single-picture-only.html
Renders the portrait of a person.
Page resources: portrait

Partials

• team/people-comma-list.html
Renders a list of names of related persons.
Front matter: person

• team/person-link.html
Renders link to related person.
Front matter: person.

5.3 Section Components 21

This section provides a great component, namely the portraits-grid.html partial. In Fig-
ure 5.6, the rendered component is shown with the members of the chair, their names
and their function. The grid is responsive: its column count is adapted depending on the
screen width. The grid tiles are links to the page of a person.
The profile pictures are automatically cropped to the face of the person. This is done with
a function provided by Hugo.

Figure 5.6: The portraits-grid.html showing all members of the chair with links to their pages.
It appears on the team list page /team. It uses the page resource portrait and the
front matter details

Another important component is the person/single.html shortcode. One can see it in Fig-
ure 5.7. It renders a profile of the person. The picture to the left has to be declared as
a page resource with the name portrait. The information on the right comes from the
details front matter variable. It contains the person’s function at the chair and some
contact information.

22 Chapter 5 Implementation

Figure 5.7: The person/single.html shortcode. It renders the portrait of a person and the infor-
mation that is provided under the details front matter key.

5.3 Section Components 23

5.3.2 Teaching

Front Matter:

• indeces: lecture (id), person

• lectureType
A string, describing the form of the lecture. (example values: Seminar, Lecture, ...)

Page Resources:

• lecture-image
A characteristic image of the lecture.

Shortcodes:

• teaching/single.html
A lecture overview, see Figure 5.10. Uses team/people-comma-list.html partial. Inner
content is passed as tag content (Markdown).
Front matter: lectureType
Page resources: lecture-image

Partials:

• teaching/semester-summary-grid.html
Renders a grid for a semester page with links to the lectures. Renders title if
shortTitle is not present.
Front matter: shortTitle (optional)
Page resources: lecture-image

• teaching/list.html
Renders the teaching/semester-summary-grid.html for all non-archived semesters.

• teaching/semester-list.html
Renders semester-summary-grid.html for a semester page.

• teaching/archive/semster-summary-grid.html
A grid of the lecture titles of one semester in the archive. Takes lecture pages as
parameter.

• teaching/archive/list.html
Renders summary grid for each semester in the archive. Used on the
/teaching/archive page. See Figure 5.9.

24 Chapter 5 Implementation

The list page of the teaching section renders an overview of the lectures from the recent
semesters (all non-archived semesters). Similar to the team/portraits-grid.html compo-
nent, each page of the recent semesters has a lecture image that is rendered above the
name of the lecture. Figure 5.8 shows the rendered semester-summary-grid.html compo-
nent. It renders a quick view of the lectures of one semester. Some lectures have really
long names, which would blow up the grid-view. To avoid these long names, one can spec-
ify a shortTitle front matter parameter for the lecture. If it is set, it is used in the grid tile
instead of the title.

Figure 5.8: The rendered teaching/semester-summary-grid.html shortcode. It gives an overview
of a semester. At the top of a tile is the lecture-image. At the bottom is its title or
shortTitle (if it is set)

This component is also used on the list pages of the not-archived semesters.
On the list page of the teaching section (/teaching), there is the
semester-summary-grid.html rendered for the latest semesters which are directly under
/teaching. Archived lectures are to be found in the lecture archive under /teaching/archive.
When a new semester approaches, one can create a new folder for it under /teaching. The
semester-summary-grid.html component automatically renders the newly created lectures
under the new semester as well. If an old semester is archived, which means that it is
moved to /teaching/archive, it does not appear on the /teaching list page anymore but in
the archive.
The archive has a list view that renders all archived lectures by semester. In Figure 5.9 one
can see an extract of the archive list page.
Lectures have several different front matter parameters: There is the lecutreType, which
is an arbitrary string. It describes the type of the course. This could be something like
Lecture or Seminar.
On the lecture single pages, the teaching/single.html shortcode is rendered. Figure 5.10
illustrates it the ”DB 2” lecture from 2022.

5.3 Section Components 25

Figure 5.9: A cropped view of the /teaching/archive page. On the left there is the archive side
bar. It shows all archived semesters with their lectures. On the right the title of
each lecture is rendered as a link.

Figure 5.10: The rendered teaching/single.html shortcode. The header is the lectureType front
matter. The body is passed as the body in Markdown. The picture on the left is the
lecture-image page resource. This shortcode is rendered on each lecture page.

26 Chapter 5 Implementation

5.3.3 Publications

Front Matter:

• indeces: person, researchProject

• publicationType: Used for grouping. Values: paper or report.

• year, month: Year and month of publication. Used for sorting.

• keyInfo: Key information about the publication in Markdown.

• additionalLinks: Array of link objects with src and title.

Page Resources:

• paper-pdf: The PDF version of a publication.

• poster: The poster that belongs to a publication.

Shortcodes:

• publications/info-box.html
Uses publications/details.html partial to render a summary box like in Figure 5.11,
but without publication title and buttons. Used on single pages.

Partials:

• publications/details.html
Renders all information about a publication. This partial is never used directly, but
integrated in the info-box.html and summary.html components.
Front matter: paperLink, additionalLinks
Page resources: paper-pdf, poster

• publications/summary.html
Summary of a publication with its title.

• publications/list.html
Renders list of all publications, see /publications page in Figure 5.11.

• publications/by-project.html
List of publications that belong to one researchProject. Used on /research single
pages.

• publications/recent-list.html
List of publications by a person. Used on team member pages.

5.3 Section Components 27

In the publications section appear all publications of the chair. At the section root
/publications there is the list-view of the publications as seen in Figure 5.11. The publi-
cations are presented in two different categories: publications and reports (front matter
parameter publicationType with values publication or report). Reports appear at the bot-
tom of the page because they are older and there have not been many new ones. The large
majority of publications are papers. These are listed starting at the top of the page. To
get a better overview of the papers, they are grouped and sorted by the publication date
(front matter parameters year and month). The author is defined with the person key. It
references a team member.

Figure 5.11: A cropped view of the /publications page. There are two publications, rendered
using the publications/summary.html partial

One can define some information about the publication, like the submitted conference et
cetera with the keyInfo parameter. The keyInfo is defined as Markdown.
The publication can be assigned to a research project with the researchProject parameter.
It should reference an existing project in the research section.
A PDF of the paper can be defined with a page resource that has the name paper-pdf. A
link to the PDF is rendered in summary.

28 Chapter 5 Implementation

With the additionalLinks parameter, one can reference any external resources. These links
are rendered next to the ’Learn More’ button.
The ’Learn More’ button is a link to the single page of the publication. The pages for each
publication contains a details.html box that is the same as the summary.html but without
the publication title. This is because the title is already rendered as the page title above
the box.
Two other sections use publications as well: team and research. On the team
member pages the recent publications of the person are rendered using the
publications/recent-list.html partial. Each research project renders its publications with
the publications/by-project.html partial.

5.3.4 Research

Front Matter indices: researchProject (id)

The research section contains all current and past research projects of the chair. Other
than the description of the project, each project has a list of its publications. The partial
that is rendering the list is the publications/by-project.html partial. Each research project
has a researchProject front matter parameter. Publications that are marked with the same
researchProject value appear in the list of the project.

5.3 Section Components 29

5.3.5 Theses

Front Matter:

• person (index): The supervisor. Can be team member or any string.

• thesisType: String describing the type of thesis (e.g. Bachelor Thesis).

• assignedTo: Name of student.

• year: Year of submission.

Page Resources:

• pdf: PDF of thesis.

Shortcodes:

• theses/info-box.html
Renders a box with all essential information about the thesis. Used on /theses
single pages.
Front matter: thesisType, assignedTo, person
Page resources: pdf

Partials:

• theses/list.html
Renders list of all theses categorized into
Open Thesis: year, assignedTo not set
Thesis in progress: Only assignedTo set to name of student
Finished thesis grouped by year: Both year and assignedTo set

• theses/single.html
Renders a summary of a thesis. Uses same page resources/front matter, as
theses/info-box.html partial above.

The theses section gives visitors information about past, open, and assigned thesis topics.
The structure of this section is very similar to the publications section. The list page renders
a short summary of each thesis topic. Each summary has a link to its own page and a button
to download the thesis (if the pdf was set).
The theses are grouped by their state:

• Open thesis topics appear at the top of the page. These do not have assignedTo set
and also no year parameter set.

• Pending thesis topics do not have a year set but they are assigned to someone. There-
fore the assignedTo parameter has the name of the student set. This parameter can

30 Chapter 5 Implementation

have an arbitrary string and has nothing to do with the person parameter.

• Finished thesis topics have the assignedTo parameter set and a year in which they
were finished. All past theses are grouped by year underneath the open and pending
thesis topics.

A PDF can be attached to a thesis. For that, the page resource pdf has to be specified.
With the person parameter one can give the thesis one or more supervisors.
A thesisType should be added to a thesis, which would probably be either Master Thesis or
Bachelor Thesis. But generally it can be any string value. The section specific components
are very similar to the ones from the publications section.

5.3.6 News

Front Matter:

• indices: lecture (id), person: the author.

• date: Date of publishing (yyyy-mm-dd)

Page Resources:

• icon: An icon that is used in the RSS feed as enclosure. RSS readers can display it.

Shortcodes:

• news/list-single.html
Renders each news item of a lecture. Sorted by date.
Front Matter: lecture, date

• news/list-summary.html
Renders all news items. Sorted by date. Used on home page and /news.
Front matter: person, lecture, date

Partials:

• news/news-box.html
Renders a summary of the news article.
Arguments: link, author

• news/single.html
Renders the whole news article. Uses team/person-link.html.
Front matter: person, date

• news/summary.html Renders a summary of a news article. Uses news-box.html
Front matter: person, lecture (optional)

5.3 Section Components 31

Occasionally, the chair has to publish information about various things like, for instance,
events which is done in the news section. It renders a summary list of all news articles,
beginning with the latest. A news article has an author that is declared with the person key.
In this way a link to a team member can be set. A date formatted as yyyy-mm-dd determines
the publishing date by which news articles are sorted.
News articles oftentimes give important information about a specific lecture. To be able
to see all news articles related to one lecture, one can specify a lecture front matter value
that refers to a lecture which has the same value. The news/list-single.html shortcode
renders the related news articles for a lecture. It is used on each lecture single page.
On the list page of the news section (/news) the news/list-summary.html shortcode is ren-
dered. It uses the news/summary.html partial to render a summary of each news article. In
Figure 5.12 the rendered component is shown.

Figure 5.12: news/summary.html partial. It shows the author, the date of publication and a sum-
mary of the article.

The website has a template for rendering an RSS feed as well. It is found under
layouts/_default/rss.xml. The template iterates over all news articles and renders their
content as the description. It is also possible to specify an icon for the news article. If
present, the icon is used in the RSS feed as an enclosure. RSS readers can use the icon if
they want to. The icon has to be declared as a page resource with the name icon.

5.4 Additional Components

• partial.html
This shortcode is an adapter to render partials in content files. In Hugo, one can only
use partials in template files and shortcodes in content files. If one wants to use
the same component in both template and content files, one would have to create
a shortcode and a partial for it. This code duplication should be avoided. With the
partial.html shortcode one can instead define the component as a partial to use it
in template files. To use the component in content files one can call it through the
partial.html component. There is an example in Figure 4.8, line 21.

32 Chapter 5 Implementation

• html.html
This shortcode is for rendering pure HTML in markdown files. The HTML is passed as
the body.

• title-link.html
It Renders a link into a heading and is used on /research page to link to research
projects.

• carousel.html
This is a basic HTML/CSS carousel. The carousel accepts a page resource name as
argument. In Figure 5.13 there is a usage example of the carousel. Figure 5.14 shows
the rendered component.

1 resources:
2 - src: 'carousel*'
3 name: image -: counter
4 ---

5 {{< carousel "image -**" >}}

Figure 5.13: carousel.html shortcode usage example. All files starting with “carousel” will be
added as a page resource with the name “image-:counter”. Hugo replaces the
:counter variable with ascending numbers. The carousel.html component is given
the name of the page resource, that defines the images. The double star “**” is a
wildcard, so this collects all images defined in the page resource.

Figure 5.14: The rendered carousel.html shortcode on desktop. In the bottom right corner, there
are the navigation buttons. At the bottom, the dots represent the number of total
images. Only one picture is displayed at a time on small screen sizes.

5.4 Additional Components 33

5.5 Build Environments

Some of the functions of the website can be configured with configuration files. Those
reside in the config directory. The config/_default/config.yaml file contains all configu-
rations that apply to every build environment. The production environment is used when
running the hugo command. The development environment is used when running the de-
velopment server with the hugo server command.
In the default configuration the baseURL is set which is prepended to links, created with the
ref or Permalink function. In production this is the domain where the website is hosted.
In the development environment, the website is running locally so this value has to be
different. This is the purpose of the config/development/config.yaml file which has as its
only entry a baseURL of /, so that the website can be opened at localhost:1313.
In the default configuration all services like twitter or instagram are deactivated. If one
wanted to embed tweets or instagram posts in the future, these would need to be acti-
vated first.
One of the most important entries are the related indices. There are three of them:
researchProject, person and lecture. These indices are used to access the related con-
tent of pages as depicted in Figure 5.5. To create a relation between pages, one has to
declare the same value for an index, each member, for example has the person index set
with their name as value. To assign a publication to that person, one has to declare the
person index for a publication with the corresponding name: person: <some-name>.
Hugo provides the Site.RegularPages.RelatedIndices <page> <index> template function.
This functionality is used for example in the publications/summary.html component in Fig-
ure 5.11. This is where the authors of the paper are calculated using the RelatedIndices
function.

5.6 JS/CSS compilation

As explained in Chapter 2, one prerequisite for the website was to implement it using
the styles of the cooperate design of the University. These styles are contained in the
assets/css/page.css file. This file was just copied out of the browser so that if the University
changes their styles, one can download them and exchange the old stylesheet with the new
one.
The assets/sass/custom.sass file contains custom styles that were added to the cooporate
design. It contains - for instance - style rules for the team grid in Figure 5.6.
The JavaScript (JS) files from the University cannot be used, because they contain a lot of
unnecessary code like the cookie banner. Because the file is minified, one cannot extract
parts of the code to use it for this site. Therefore the logic for themenu was reimplemented,
which is the opening and closing of the menu on desktop and mobile. This logic is found

34 Chapter 5 Implementation

in the assets/js/page.js file. The top-scroller.js file contains the logic for the “scroll-to-
top” button. The button appears upon scrolling a short distance down a page. Finally the
carousel.js file contains all logic that is needed for the carousel component.
The script in Figure 5.15 handles all the JS asset bundling. All JS files are concatenated to
one file. The resulting file is minified to reduce download size. Then it is fingerprinted for
cache busting. The JS file is embedded in the site in the scripts.html component.
The process of JS bundling is similar to the CSS/SASS asset bundling.

1 {{ $page := resources.Get "js/page.js" }}
2 {{ $topScroller := resources.Get "js/top -scroller.js" }}
3 {{ $carousel := resources.Get "js/carousel.js" }}

4 {{ $js := slice $page $topScroller $carousel | resources.Concat "js/
main.js" | minify | fingerprint }}

5 {{ return $js }}

Figure 5.15: func/compileJs.html partial. JS is bundled, minified and fingerprinted

5.7 Archetypes

Archetypes in Hugo serve as templates to create new page content. They can be used from
the command line as explained in detail in Section 4.7. There are archetypes of each type
of data that is present in the site: member, alumni, lecture, publication, thesis, news.

5.7 Archetypes 35

6
Conclusion

In this work the concept of SSGs was explored and tested by implementing a real web-
site. Using the SSG Hugo, the website of the Database Systems chair of the University of
Tübingen was reimplemented. The website was realized according to the cooperate design
guidelines [5] of the University.
A few downsides of Hugo transpired, during the process:
First of all, debugging is sometimes hard in Hugo, because the error messages are difficult
to interpret. This drawback becomes apparent when implementing a more complex algo-
rithm. Apart from error messages, the only debugging tool that Hugo supplies is a console
logger function. To be fair, most of the time one does not implement very complex algo-
rithms in a Hugo website.
The other downside is the fact that Hugo does not provide lambda functions and higher
order functions like map or filter. This is a minor issue but having these functions available
would be more convenient at times.
The website itself could also be improved in some ways:
Firstly, one could let Hugo run in a Docker container [8]. In doing so the environment (Hugo,
go, rsync) would be abstracted from the server, thus making its maintenance easier.
Secondly, the website contains one huge CSS file with 16,000 lines that was copied from
the website of the University. It would be better to have the CSS split up in SASS files.
Unfortunately, it was not possible to get a hold of the original non-compiled style sheets
from the University. The only advantage of using the compiled CSS file is that it can be just
replaced with the new version if the University makes style changes for some components.
Finally, either Hugo or oneself could implement more sophisticated data model relations
with relation integrity.
Other than in these few instances where the website could be improved, the website is a to-
tal success. Hugo build times are really fast (on a mediocre laptop: 3 seconds - 372 pages).
The deployment pipeline is very fast and easy to use. Content management is quite easy
since content is written in Markdown and data is declared in YAML Ain’t Markup Language
(YAML) as front matter. With the cooperate design, the website has a great look. Hugo is
simple enough to have people learn it quickly and at the same time complex enough to
implement important functionality. These traits make it a great framework. Enjoy!

37

Bibliography

[1] internetlivestats.com. internet life stats. URL:
https://www.internetlivestats.com/total-number-of-websites/. (accessed:
05.09.2022).

[2] DB Systems Group. Database Systems Website. URL:
https://db.inf.uni-tuebingen.de/. (accessed: 05.09.2022).

[3] Jason Long Scott Chacon. Git. URL: https://git-scm.com/. (accessed: 05.09.2022).
[4] John Gruber. Daring Fireball: Markdown. URL:

https://daringfireball.net/projects/markdown/. (accessed: 09.09.2022).
[5] Universität Tübingen. Cooperate Design - University of Tübingen. URL:

https://uni-tuebingen.de/en/einrichtungen/verwaltung/stabsstellen/
hochschulkommunikation/service-fuer-beschaeftigte/corporate-design/startseite/.
(accessed: 05.09.2022).

[6] Bjørn Erik Pedersen. The world’s fastest framework for building websites. URL:
https://gohugo.io/. (accessed: 05.09.2022).

[7] Google. The Go Programming Language. URL: https://go.dev/. (accessed: 05.09.2022).
[8] Docker Inc. Docker. URL: https://www.docker.com/. (accessed: 05.09.2022).

Bibliography 39

https://www.internetlivestats.com/total-number-of-websites/
https://db.inf.uni-tuebingen.de/
https://git-scm.com/
https://daringfireball.net/projects/markdown/
https://uni-tuebingen.de/en/einrichtungen/verwaltung/stabsstellen/hochschulkommunikation/service-fuer-beschaeftigte/corporate-design/startseite/
https://uni-tuebingen.de/en/einrichtungen/verwaltung/stabsstellen/hochschulkommunikation/service-fuer-beschaeftigte/corporate-design/startseite/
https://gohugo.io/
https://go.dev/
https://www.docker.com/

	Abstract
	Acronyms
	Introduction
	Objective
	Content
	University Corporate Design
	Maintainability
	Responsiveness
	Git Support and Deployment
	Static Website

	Deployment Pipeline
	Harald? - No, my name is Hugo
	Content Files - Pages
	Templates
	Go Templates
	Partials and Shortcodes
	Page Bundles
	Themes
	Archetypes
	Site Configuration

	Implementation
	Base Layout
	Menu
	Section Menu

	Content Structure
	Section Components
	Team
	Teaching
	Publications
	Research
	Theses
	News

	Additional Components
	Build Environments
	JS/CSS compilation
	Archetypes

	Conclusion
	Bibliography

