Eberhard Karls Universitat Tiibingen

Mathematisch-Naturwissenschaftliche Fakultat
Fachbereich Informatik
Database Systems Research Group

Bachelor Thesis:

Exploring Ways to Evaluate
Functional Style User-
Defined Functions in Parallel

An Exploration of Naive Parallelization in and
around Databases.

Tim Fischer

27.08.2020

Reviewers: Christian Duta Torsten Grust
Research Assistant Professor

Database Systems Research Group Database Systems Research Group






Tim Fischer — 1

ABSTRACT

When analyzing recursive functions it is common to look at the function calls by building a call graph
for an example input. By doing so a lot of the time we face the fact that we should be able to
parallelize those parts of said call graph, which are mostly independent of each other. But some
languages and systems make this process harder for us than it should be. One such system is the
DBMS PostgreSQL, even though it allows for recursive UDFs they are poorly optimized and only viable
for inputs yielding minimal amounts of recursive steps. To parallelize this directly is a chore in and of
itself, but we can make use of a method introduced by Christian Duta and Torsten Grust in their 2020
paper “Functional-Style SQL UDFs With a Capital 'F'" [Duta20]. They propose a method to translate a
given 'functional-style' UDF into a query that first builds the call graph and then walks said call graph
to calculate the result. Injecting parallelization into this two phase approach is what this work focuses
on. We propose a simple method of extending the two phases such that the building of the call graph
also partitions said call graph into disjointed, or at least mostly disjointed, sub-problems and that the
evaluation uses said information to actually run these sub-problems in parallel. We found during our
testing, that there can be major benefits for certain problems, but also that not all recursive problems
lend themselves to being parallelized. We found that in general the more tree-like the call graph is,
the more benefits can be gained from parallelization.






Tim Fischer — 3

CONTENTS

1 INtroduUCtiOn ««ccc v vttt iititteeeeeteeeeeeeeeeennnnnnnnnns 5
1.1 BaSIC PrOIMISE + -« v v cvrrmmneemnmnneeenunneeeeeunaeeeennnneeennnneeenns 5

D ParalleliZatiOn -« - -« v eeeemmremnmneenanneena ettt 7
2.1 Partition Boundary .................................................... 8
2.1.1 Finding Partition Boundaries in Polytrees «-----cceeeeeeeeeeeeeen... 8

2.1.2 EXLENSION 1O DAGS v cvvvvrenmeeennntemanueemaneeeanneenannen, 10

2.1.3 EdQE CaSES « - v+ verrrrnennsnetetat ittt 10

2.2 FEVAIUQION - v v v rrrerreemmnneeeeaaeeeinaeeeanaeeenneeeennnnnns 11

3 Implementation .......................................................... 13
3.1 GENEral LayOUuL -« e e e ceenrrennneeunnetuee ettt 13
3.2 PArtitiOning « -« cceesrerennerenneemunn et 13
3.3 FEVAlUALION v v rrrrmeeeremnneeeennneeeeeineeeeennaeeeeanneeeennnnnns 14
3.3.1 PL/PGSQL + dblink «««cvvvvvveenemmmneim i 14

3.3.2 PythON 3+ PSYCOPE2 v v v v v rrrmrseemnnseeunneeeeunne et 14

B4 TESE PIODIEITIS -+« v v v v v v eemmeneeeeesnnnnnneeeeeeeeannneeeeeeeseannnneens 15
3.4.1 Dummy problem: “Threshold” ««««««ceeerrrernnieeniiiiii, 15

3.4.2 Binomial COEffiCIEnt -« -vvvvcrrrrrrrermmnneeeiineeeeiinaeeennnns 15

3.4.3 Dynamic Time Warp -« -«eceeeerrenerneneenenaiaiaiiia... 16

A RESUIES ++ v vvveeeeeenmmmmneeeeeenennneeeeeeeeeennneeeeeeeannnuneeeeenns 17
4.1 MethodOLOgY <« v« revmrrrrmnn ettt 17
4.1.1 Hardware and SOFTWATE -« -« cceerrrremnnteennmutemanneernneeennns 17

4.1.2 SELUP + v v v rree e et 17

4.0 OVEIAll TIMME -« v veeremeeenmeeennaneeennneenaneeenaneeaaneeeanneennn 18
4.3 System and Parameter Influence :«:::ccccveeeeeeennnnnnnneeeiiieeeenns 19
4.4 Callgraph COMPATISON « -+« v e rremnsemmnneeuunneeii e, 19

5 COMCIUSION - v vt v v e v mmee ettt ettt ettt iai s 21
5.1 POSSible IMPIrOVEIMENLS «+«« v v v senrnenenenetatn ettt . 21

6 Bibliography .............................................................. 23






Tim Fischer — 5

INTRODUCTION

There are a lot of common and highly studied methods to speed up computation. Some rely on simply
choosing a more intelligent way of storing and using intermediate computational results. Others go a
step further and make clever use of some underlying properties the target problem may have. But one
that comes to mind fairly naturally is simply doing multiple things at once, in other words simply
process some parts in parallel. Though this may seem trivial at first, it is far from it. Proper
parallelization requires a lot of work, doesn't generalize easily and more often then not is simply not
worth the overhead required to do it properly. Putting that aside for a moment though, parallelization
can bring massive performance benefits when it is optimized properly for the target problems. These
benefits are most pronounced when the given input to a problem yields a massive callgraph, i.e.
requires a large amount of computation to be solved. One place where algorithms often encounter
massive problem sizes is in the world of databases, where an algorithm may at times be required to
run over tens of thousands of gigabytes of input data.

This thesis will study the initial benefits of parallelization in and around databases through the use of
call graph analysis and parallelized sub-problem evaluation. Doing so requires access to some notion
of a call graph and a complementary method of evaluating one as well. For this requirement, in
combination with our target implementation domain, there exists a novel method introduced by
Christian Duta and Thorsten Grust in their 2020 paper on “Functional-Style SQL UDFs With a Capital
'F"" [Duta20]. They propose a method of transforming recursive SQL UDFs into a single recursive query,
that benefits from all the query plan optimization already present in RDBMSs. Their resulting queries
operate through a two phased approach, in which they first build the call graph and then evaluate it
through traversal techniques that integrate common optimization patterns such as call-sharing. The
main reason they deemed this work as necessary, is that modern RDBMSs which implement recursive
UDFs do so with barely any optimization.

1.1 BASIC PREMISE

The basic premise this thesis builds upon is that we can accommodate parallelization by extending
this two phase approach through a partitioning step, which divides the call graph into one rootgraph
and multiple parallelizable subgraphs containing no external dependencies. The evaluation step is



6 — Introduction

extended to use this partitioning to evaluate the subgraphs in parallel.

The remainder of this thesis will focus on a the partitioning of DAGs, multiple options for parallel sub
graph evaluation, analyzing the benefits and drawbacks of parallelizing the workload for different
problems and discussing the overall impact and possible improvements.



Tim Fischer — 7

PARALLELIZATION

It is helpful to take a more detailed look at a general overview of what this method tries to achieve.
The core idea is that we can take a callgraph and divide it into a so called root graph and multiple

subgraphs:
| l rootgraph

St
A T Y

O OO0 OO0 OO O 0O OO0 OO0 OO0 O

Figure 1: Partitioning example

Once we have this we can evaluate the problem by first solving the subgraphs in parallel and then
stitch their results and rootgraph together for a final evaluation step:

£ onan
mm mm ¢ & ¢ o

O OO0 OO OO O
Step 1: Eval Subgraphs Step 2: Complete and Eval Rootgraph

Figure 2: Evaluation example

This method doesn't allow for chains of dependent subproblems. Including this could be a potiential



8 — Parallelization

area for future improvements, as large subgraphs could also be parallelized.

2.1 PARTITION BOUNDARY

Partitioning a callgraph is far from trivial, as callgraphs are DAGs and partitioning those is NP-hard,
as Feldmann and Foschini found out [Feldmann12]. Furthermore it turns out that if we want to find a
balanced partitioning, unless P = NP, we will have major difficulties finding an efficient alogrithm,
as Andreev and Récke pointed out that this special form is even NP-complete [Andreev04]. But the type
of “partitioning” we are targeting here is very specific and allows us to perform trivial linear time
graph traversals that are informed by some simple heuristics.

In layman's terms, what we are looking for can be defined as follows:

Chopping up a call graph into a root graph and multiple, as loosely connected as possible, sub
graphs.

In more concrete terms this can be described as finding a partition boundary in the call graph. This
boundary can be further defined as a cut C in a DAG G = (V,T) such that the C splits G into
G; = (Vi, E;), i € [1,...,n| subgraphs with the following two properties:

.Vi>1:ViNV; =0,and
2. E/(Uie[l,...,n] E;) =C.

These two requirements can be read as:

1. G is the “rootgraph”, i.e. the part of the call graph between the initial call, aka. the “root”, and
the partition boundary. And this sub graph must be completely disjointed from all other
subgraphs.

2. The cut contains all the edges that aren't in any subgraph, i.e. the edges that we wish to construct
in parallel later on.

2.1.1 FINDING PARTITION BOUNDARIES IN POLYTREES

The core idea behind defining this partition boundary in such a way is that it can be easily determined
using trivial graph traversals such as depth-first and breadth-first traversal. These graph traversals
can easily be guided through the use of simple heuristics. We can demonstrate how this guidance can
be implemented through the use of some simple python code. Let's have a look at a very simple case
were we assume the input is a Polytree in adjacency-lists format and we do not prematurely terminate
the traversal:

def subtree(
source: T,
tree: Dict[T, Set[TI],
) -> Dict[T, Set[T1l:
stack = [(None, source)] # < Stack contains edges and
sub_tree: Dict[T, Set[T]] = defaultdict(set) # starts with a pseudo edge
# to the root node.
while len(stack) > 0:
parent, current = stack.pop()
stack.extend(
(current, child)
for child in treel[current]
if child in tree
)
if parent is not None: # < Skip the root node.
sub_tree[parent].add(current)



Tim Fischer — 9

return sub_tree

Listing 1: Implementation of BF-traversal on Polytrees

The simplest heuristic in graph traversals is only allowing for nodes with a maximum depth, i.e.
distance to the root node. To visualize this let's take a look at an example:

Gi1: rootgraph

S
)

OO OO0 OO0 OO O

J

: partition boundary

Gi: subgraphs (i > 1)

[ —

Figure 3: Partitioning cut in a Polytree with max-depth(2)

We can implement this into the BF-traversal from before by simply terminating the traversal once
we've reached a given maximal depth:

def subtree_max_depth(
source: T,
tree: Dict[T, Set[TIl,
max_depth: Union[int, float]
) -> Dict[T, Set[T11:
stack = [(None, source, 1)]
sub_tree: Dict[T, Set[T]l] = defaultdict(set)

while len(stack) > 0:
parent, current, depth = stack.pop()
if depth <= max_depth: # < Cut-off nodes that exceed
stack.extend( #  maximum depth.
(current, child, depth + 1)
for child in treel[current]
if child in tree
)
if parent is not None:
sub_tree[parent].add(current)

return sub_tree

Listing 2: BF-traversal with max-depth heuristic

To calculate the partition boundary, or rather the subgraphs G;, we need to first traverse the given
polytree until we reach a given maximal depth using subtree_max_depth (Listing 2) to find our rootgraph
G . Afterwards we can make use of subtree (Listing 1) to find all the remaining subgraphs G;;% > 1:

def partition(
tree: Dict[T, Set[T1l,
max_depth: Union[int, float]
) -> List[Dict[T, Set[T111:
root = list(gather_roots(tree))[0] # < This assumes given tree could
# actually be a forest.

root_tree = subtree_max_dist(root, tree, max_depth) # < Calculate the root tree based
# on the max-depth heuristic.
return [root_tree] + [

subtree(child, tree) # < Calculate the sub-tree
for leaf in gather_leaves(root_tree) # attached to all nodes that
for child in tree[leaf] # are direct children of the

] # leaves of the root-tree.



10 — Parallelization
Listing 3: Partitioning using constrained BF-traversal

This algorithm is effectively a simple BF-traversal with a short stop in between. We can easily see that
the time complexity must be linear, i.e. O(n).

2.1.2 EXTENSION TO DAGS

The prior section used a example heuristic on Polytrees. However, our callgraphs will be proper DAGs.
Extending the example algorithms to handle DAGs as well can be done by simply using the BF-
traversal for graphs, i.e. adding a "visitation check":

def subgraph(
source: T,
graph: Dict[T, Set[Tl],
) -> Dict[T, Set[T1l:
stack = [(None, source)]
sub_graph: Dict[T, Set[T]] = defaultdict(set)
seen: Set[T] = set() # < Visitation data.

while len(stack) > 0:
parent, current = stack.pop()

if current not in seen: # < Only follow edges with

stack.extend( # unvisited target nodes.
(current, child)
for child in graphlcurrent]
if child in graph

)

if parent is not None:
sub_graph[parent].add(current)

seen |= current # < Mark the current node as

# visited.
return sub_graph

Listing 4: Implementation of BFS on DAGs

21.3 EDGE CASES

The first edge case that this method produces is when two or more callgraphs overlap directly after

the partition boundary. For example:
l' ll l' ll { C: partition boundary

G2 63
o o o0 OO O

G1: rootgraph

—_———

1
f Gi: subgraphs (i > 1)
)

Figure 4: Overlapping subgraphs Gz and Gs

In this case the two subgraphs Gz and Gs are either fully identical or one is completely covered by the
other. These two possibilities and their impact on performance will be discussed in more detail later
in this thesis.



Tim Fischer — 11

Another case that we need to account for is an overlap immediately before the partition boundary. This
causes the algorithm to produce two (or more) identical subgraphs. Though the demonstrated python
implementation does not necessarily suffer from this, it does require extra attention to detail during
the implementation to ensure that such unnecessary work is avoided.

lr—c Owl { C: partition boundary

v
6.
63

o O O O O O

Gi1: rootgraph

—_———

Gi: subgraphs (i > 1)

[ ——

Figure 5: Duplicate subgraph root nodes in Gz and Gs

2.2 EVALUATION

Once we have identified a proper partitioning boundary the actual evaluation becomes pretty easy. All
we need to do is evaluate all the subgraphs in parallel and “prime” the rootgraph using those results.
Afterwards we just need to evaluate the rootgraph to retrieve the total result. This process can be seen
in Figure 2 at the beginning of this chapter.



12 — Parallelization



Tim Fischer — 13

IMPLEMENTATION

3.1 GENERAL LAYOUT

During the adaptation of the original method some changes were required:

e The callgraph needs to be materialized to facilitate proper access between
processes/threads/cursors.

¢ Instead of a single query that handles the two phases as common table expressions (CTE), said
CTEs were extracted into their own functions. Leaving us with one for building the callgraph and
one for evaluating it.

The general layout of the implementation consists of a few functions, these being:

e build_callgraph: building a callgraph.

e _eval_graph: the original callgraph evaluation method.

e x_serial_eval, *_parallel_eval: wrapping extensions to _eval_graph, where * describes the
implementation method.

3.2 PARTITIONING

The original method builds the callgraph using a recursive Common Table Expression (CTE) that is
implemented via a BF-traversal, so all we need to do is implement the heuristic as an additional
terminal condition. Doing this only requires us to carry along a depth value during the recursive steps
and check said value versus a given input parameter. To avoid this value influencing the UNION inside
the recursive CTEs, we also needed to define a new datatype for this depth value that is basically just
an integer that doesn't implement any ordering operators and vyields a constant value for
comparisons.

CREATE FUNCTION build_callgraph(args args, param param)
RETURNS TABLE (...) $$
WITH RECURSIVE
root_call_graph(...) AS ...,
cut_leaves(...) AS ...,
partitioned_call_graph(...) AS ...



14 — Implementation

SELECT ... FROM root_call_graph
UNION ALL
SELECT ... FROM cut_leaves
UNION ALL
SELECT ... FROM partitioned_call_graph;
$$ LANGUAGE SQL;

Listing 5: General UDF layout for building callgraphs

The CTEs in the wrapped query correlate to the following parts in listing 3:

1. root_call_graph — Line 8: subtree_max_dist
2. cut_leaves — Line 12+13: gather_leaves
3. partitioned_call_graph — Line 11: subtree

This implementation calculates all the subgraphs serially, i.e. not in parallel. One possible
improvement would be to do said calculation in parallel as well, as we need to ensure
“interoperability” between the calculation of individual subgraphs. We've forgone this improvement
for this thesis but acknowledge that this could lead to a significant speed up in callgraph building
times.

3.3 EVALUATION

The main reason for multiple implementations in the thesis is for comparing different approaches to
solving this problem. For this we decided on the following:

1. First, we need some parallel implementation that runs within Postgres. The easiest way to do this
is by using dblink to open multiple cursors and punt the work over to those.

2. And second, we need some parallel implementation that runs outside of Postgres to check if
process boundaries have any major impact. As I am most fluent in python at the time of this
thesis I decided on using that in conjunction with the psycopg?2 library to interface with a Postgres
instance.

Both of these work by checking the callgraph table for all existing subgraph labels. They dispatch
multiple workers to process each subgraph using _eval_graph and using those calculation results to
complete the rootgraph. Afterwards they run _eval_graph once more on the rootgraph to complete the
calculation.

3.3.1 PL/PGSQL + DBLINK

As stated before this implementation uses dblink to open multiple “remote” cursors and punt out the
work over to those. These are cursors are not very “remote” as they are on the same Postgres instance,
but from the perspective of this implementation they are treated as proper remote cursors. So a
possible future improvement would be to setup up some kind of Postgres cluster and split up the
workload between multiple machines. Though this “improvement” must contend with network delay
and as such only is viable for very large callgraphs.

3.3.2 PYTHON 3 + PSYCOPG2

Python and parallelism are two things that are notorious for being hard to do get working properly
together. However we don't need to do a lot of the work in python. The program only needs to
coordinate and compose the calls of multiple UDFs inside our Postgres instance. For this we make use
of the psycopg? library to open multiple serverside cursors on the instance and keep track of



Tim Fischer — 15

computation results via Future objects spawned by a concurrent.futures.ThreadPoolExecutor. We can
poll these futures for resolution via concurrent.futures.as_completed and process the resolved ones in
the main thread. The use of threads does not negatively impact the performance and saves us some
overhead versus subprocesses. Pythons GIL doesn't affect this implementation to heavily since all the
threads spawned by the executor are doing, is effectively waiting for the computation in Postgres to
complete. This results in the main thread holding on to the GIL during most of the execution time.

3.4 TEST PROBLEMS

3.41 DUMMY PROBLEM: “THRESHOLD"

The first experiment function is one we decided to dub “threshold” it doesn't calculating anything
meaningful to our knowledge but it only produces callgraphs that are true Polytrees and as such is a
wonderful candidate for analyzing the maximum effectiveness thanks to its fully disjointed
subgraphs. We've defined it as follows:

1 if [i — j] < 2,

threshold(i, j) = { threshold (i, %) + threshold (%, j) else

CREATE FUNCTION threshold(i int, j int) RETURNS int
AS §$
SELECT CASE
WHEN ABS(threshold.i - threshold.j) < 2 THEN 1
ELSE (
threshold(threshold.i, threshold.i + (threshold.j-threshold.i)/2) +
threshold(threshold.i + (threshold.j-threshold.i)/2, threshold.j)
)
END;
$$ LANGUAGE SQL STABLE STRICT;

Listing 6: Threshold as fsUDF

3.4.2 BINOMIAL COEFFICIENT

For the second experiment we chose the standard recursive definition of the binomial coefficient, as
this function yields callgraphs that are proper DAGs and isn't to complicated. This recursive definition

is as follows:
n\ 1 fk=0Vk=n,
k) L) + (G5 else

CREATE FUNCTION bin_coef(n real, k real) RETURNS real
AS $$
SELECT CASE
WHEN k = 0 OR k = n THEN 1
ELSE bin_coef(n - 1, k) + bin_coef(n - 1, k - 1)
END;
$$ LANGUAGE SQL;

Listing 7: Binomial Coefficient as fsUDF



16 — Implementation

3.4.3 DYNAMIC TIME WARP

And last but not least we needed a function that is a bit more in-depth and inter-operates with
persistent data inside the database, to make sure that this doesn't interfere with performance through
postgres query planning. To cover this we opted to use the dynamic time warp function, which is the
same one used as an example in the original paper by Duta and Grust [Duta20], as it reads data from
two tables and is fairly simple mathematically:

0
00

dtw(i, j) =

dtw(i — 1,7 — 1)

|z; — y;| +min ¢ dtw(i — 1, 5)

CREATE TABLE TX (
pos serial PRIMARY KEY,
v double precision

K

CREATE TABLE TY (
pos serial PRIMARY KEY,
v double precision

)8

CREATE FUNCTION dtw(i int, j int)
RETURNS double precision AS

$$
SELECT CASE

dtw(i,j— 1)

WHEN i = 0 AND j = 0 THEN 0 :: double precision

WHEN i = 0 OR j = 0 THEN 'infinity'

ELSE (

:: double precision

ifi=35=0,
ifi=0Vvj=0,
else

SELECT abs(X.v - Y.v) + LEAST(dtu(i - 1, j - 1), dtw(i - 1, j), dtu(i, j - 1))

FROM TX AS X, TY AS Y
WHERE (X.pos,Y.pos) = (i,j)
)
END;
$$ LANGUAGE SQL;

Listing 8: DTW as fsUDF



Tim Fischer — 17

RESULTS

4.1 METHODOLOGY

411 HARDWARE AND SOFTWARE

All results where captured on a lenovo 4180AJ3 ThinkPad T420 with an Intel i5-2520M (4) @ 3.2 GHz
processor and 7846 MiB of RAM running Manjaro Linux using the version 5.4.47_rt28-1 Linux Kernel.
To constrain the postgres process' access to system resource these experiments were run inside a
docker container using the official postgres:12.3-alpine image configured with access to 3 CPU-cores
and 5 GB of memory. The python parts were also run inside the same container using an installation of
Python 3.8.3. The evaluation of the experiments was done on the host machine, instead of the
container, using an installation of anaconda3-2020.02.

412 SETUP

1. Between each call to the callgraph building function the callgraph table was cleared via DELETE
FROM call_graph and all invalidated rows properly deleted from disk through VACUUM FULL.

2. The experiment coordination was handled via a python script running inside the container and
the measurements were written to stdout and to disk using tee.

3. In every experiment the partitioning was run with a max-depth parameter of 1.

4.In every experiment we used the following input series to maximize the graph sizes and
symmetries:

threshold(1,5-107),  je {1,2,5,7},Vf € [1,5]

binom (z EJ) : i€ [1,131]

dtw(i, 1), i €[1,50]

5. sql_baseline refers to the original method from the paper by Duta and Grust [Duta20].



18 — Results

4.2 OVERALL TIME

The following plots plot the total evaluation time, including the callgraph building time, over the
total amount of nodes in the callgraph. This was chosen instead of plotting the time over the inputs to
ensure a more “readable” plot.

Timing: threshold

—— dblink_parallel
10000 ms 1 —— python_parallel
—— sql_baseline
O ms L T T T T T T T
0 10000 20000 30000 40000 50000 60000
Timing: binom
—— dblink_parallel
400 ms 11 __ python_parallel
200ms4 —— sql_baseline
0 ms - : . . . .
0 1000 2000 3000 4000
Timing: dtw
2000ms 4 —— dblink_parallel
——— python_parallel
1000 ms 4 —— sal_baseline
O ms h T T T T T T
0 500 1000 1500 2000 2500

Figure 6: Runtimes over Node amounts

These plots show that our method can produce a performance increase, that being in threshold. And
that there isn't much difference between our implementation when compared to the original method.
But they also demonstrate that in the case of binom and dtw we loose more than we gain. After looking
a bit deeper at were we lost all the benefits we found the following:

Timing: threshold

4000 ms 4 —— baseline /
— eval
2000ms 1 ___ build+eval
0 ms A
0 10000 20000 30000 40000 50000 60000
Timing: binom
400msd baseline
—— eval
200 ms 4 —— build+eval
0 ms - : . . . .
0 1000 2000 3000 4000
Timing: dtw
2000 ms 4 —— baseline
—— eval
1000 ms - —— build+eval
0 ms - : : . T . T
0 500 1000 1500 2000 2500

Figure 7: Split overview over time influences in dblink_parallel


file:///home/timfi/doc/uni/ba/thesis/img/timing_comparison.svg
file:///home/timfi/doc/uni/ba/thesis/img/timing_split_comparison.svg

Tim Fischer — 19

This shows that most of the time is lost during the building/partitioning of the callgraph. To ensure
the viability of this method the callgraph generation needs some major work. This could for example
include the parallel generation of the subgraphs.

4.3 SYSTEM AND PARAMETER INFLUENCE

Another major factor on any parallelization method of course is the amount work one can actually do
in parallel. Throughout all the experiments so far the docker container was able to make use of up to 3
CPU cores, but limiting this to just 2 CPU cores we see that even threshold doesn't show any
performance benefits:

Timing: threshold 3 CPUs

4000ms I gplink_parallel
2000 ms 4 python_parallel
0 ms - — : : : : : :
0 10000 20000 30000 40000 50000 60000
Timing: threshold 2 CPUs
—— dblink_parallel
100000 ms python_parallel
O mS L T T T T T T
0 200000 400000 600000 800000 1000000

Figure 8: Runtimes on 2 vs. 3 CPU cores

4.4 CALLGRAPH COMPARISON

As stated before we see some stunted performance when it comes to the experiments that have
overlapping subgraphs, but how large is this overlap.

threshold binom dtw
1000000 1 —— baseline 80001 —— baseline 50001 — paseline
800000 - partitioned partitioned 4000 A partitioned
6000 -
600000 - 3000 A
4000 -
400000 A 2000 1
200000 - 20001 1000
0 L T T O L T - T 0 L T T
threshold(1,10) threshold(1,1000000) binom(1, 1) binom(131, 66) dtw(1,1) dtw(50,50)

Figure 9: Node amounts over inputs

As is easily visible, threshold has zero difference between the baseline callgraph and the partitioned
one, which is to be expected as we chose this dummy problem specifically for this reason. But the
other two experiments show a significant difference, which can be attributed to us allowing the
subgraphs to overlap. It is pretty obvious that processing a callgraph that is effectively double the size
will take more time unless we throw massive amounts of resources at it.

Another way to inspect subgraph overlap is to look at it in terms of a heatmap where the overlap
between each subgraph can be seen intuitively. When the heatmap “lights up all over like a christmas-
tree” we know that there is to much overlap.


file:///home/timfi/doc/uni/ba/thesis/img/timing_cpu_comparison.svg
file:///home/timfi/doc/uni/ba/thesis/img/graph_size_comparison.svg

20 — Results

threshold(1,5000) binom(66, 33) 100 dtw(26,26)

100
0- 0-
°
H
1 80 3 1 80
60 60
2 2
a0 40
i 80 i i 80
4 1 2

0 1 2 0 1 2 3

100

(%] depiano
[9%] depiano

(%] dey.

Figure 10: Overlap heatmap of Figure 11: Overlap heatmap of Figure 12: Overlap heatmap of dtw
threshold on an average input binomon an average input on an average input

These heatmaps show that threshold has zero overlap, which is to be expected thanks to the Polytree
nature of its callgraphs. But the other two, binom and dtw, have partially overlapping subgraphs and
fully occluded subgraphs respectively. In this method “overlap” indicates duplicate work. Though we
knew this from the beginning, we naively assumed that small amounts of overlap wouldn't impact the
performance to much. But the chosen experiments tend to produce very large amounts of overlap. For
example the following is the callgraph for dtw(2,2):

Figure 13: dtw(2,2) partitioned to a depth of 1

As we can see the the two outermost subgraphs Gz and Gs both contain Gi. We could eliminate this
duplicate work by only evaluating subgraphs that are not completely contained in others. This would
require multiple values from a subgraph evaluation, which is slightly outside of the scope of this
thesis and is best left for future work.


file:///home/timfi/doc/uni/ba/thesis/img/overlap_heatmap_threshold.svg
file:///home/timfi/doc/uni/ba/thesis/img/overlap_heatmap_binom.svg
file:///home/timfi/doc/uni/ba/thesis/img/overlap_heatmap_dtw.svg

Tim Fischer — 21

CONCLUSION

Proper parallelization can yield massive performance benefits. However, it needs to cover many edge
cases and is heavily reliant on proper partitioning of the workload. As threshold demonstrated major
benefits are possible, and easily reachable if the callgraph is a Polytree. In the cases of dtw and binom
however we had major overlap in the subgraphs, and these benefits were nowhere to be found. There
is a lot more optimization possibilities left in this method.

5.1 POSSIBLE IMPROVEMENTS

Some of the possible future improvements to this method could be:

1. Speeding up callgraph building time by ways of parallelization.

2. Balance subgraph sizes using a better heuristic.

3. Eliminating fully overlapped subgraphs by allowing multiple return values during the parallel
evaluation.

4. Re-write as proper PSQL-Extension, for example in C.

5. Also parallelize subgraph evaluation.



22 —— Conclusion



Tim Fischer — 23

BIBLIOGRAPHY

[Duta20] Christian Duta and Torsten Grust. 2020. Functional-Style SQL UDFs With a Capital ‘F’. In
Proceedings of the 2020 ACM SIGMOD International Conference on Management of Data
(SIGMOD’20), June 14-19, 2020, Portland, OR, USA. ACM, New York, NY, USA, Pages 1273
- 1287 https://doi.org/10.1145/3318464.3389707

[Andreev04] Konstantin Andreev and Harald Rédcke. 2004. Balanced graph partitioning. In Proceedings
of the sixteenth annual ACM symposium on Parallelism in algorithms and architectures.
June 2004, Pages 120—124. https://doi.org/10.1145/1007912.1007931

[Feldmann12] Andreas Emil Feldmann and Luca Foschini. 2012. Balanced partitions of trees and
applications. In Proceedings of the 29th International Symposium on Theoretical Aspects
of Computer Science (STACS’12). February 29 - March 13, 2012, Paris, France, Pages 100 -
111. https://doi.org/10.4230/LIPIcs.STACS.2012.100


https://doi.org/10.1145/3318464.3389707
https://doi.org/10.1145/1007912.1007931
https://doi.org/10.4230/LIPIcs.STACS.2012.100

24 — Bibliography



Tim Fischer — 25

DECLARATION OF AUTHORSHIP

I hereby declare that the thesis submitted is my own unaided work. All
direct or indirect sources used are acknowledged as references.

I am aware that the thesis in digital form can be examined for the use
of unauthorized aid and in order to determine whether the thesis as a
whole or parts incorporated in it may be deemed as plagiarism. For the
comparison of my work with existing sources I agree that it shall be
entered in a database where it shall also remain after examination, to
enable comparison with future theses submitted. Further rights of
reproduction and usage, however, are not granted here.

This paper was not previously presented to another examination board
and has not been published.

City, date and signature



