Part XV

Updating XML Documents

Torsten Grust (WSI) Database-Supported XML Processors

I 4@
Outline of this part

G Updating XML Trees
@ Update Specification
@ XQuery Update

© mpact on XPath Accelerator Encoding

© Impacts on Other Encoding Schemes

Torsten Grust (WSI) Database-Supported XML Processors

Updating XML trees

Throughout the course, up to now, we have not been looking into
updates to XML documents at all.

@ If we want to discuss efficiency/performance issues w.r.t. mappings
of XML documents to databases, though, we need to take
modifications into account as well as pure retrieval operations.

@ As always during physical database design, there is a trade-off
between accelerated retrieval and update performance.

@ The following examples are formulated in XQuery Update?**, an
extension to XQuery that currently has W3C draft status.

“http://www.w3.org/TR/xquery-update-10/

Torsten Grust (WSI) Database-Supported XML Processors Winter 2012/13 384

Updating XML Trees Update Specification

Updates and tree structures

During our discussion of XQuery, we have seen that tree construction has
been a major concern. Updates, however, cannot be expressed with
XQuery.
@ Yet, we need to be able to specify modifications of existing XML
documents/fragments as well.
@ \We certainly need to be able to express:

e modification of all aspects (name, attributes, attribute values, text
contents) of XML nodes, and
e modifications of the tree structure (add/delete/move nodes or

subtrees).
@ As in the case of SQL, target node(s) of such modifications should
be identified by means of queries.

Torsten Grust (WSI) Database-Supported XML Processors Winter 2012/13 385

Updating XML Trees XUpdate

XQuery Update: ldentify, then modify
XQuery Update statements

insert node n
after [before] p (: insert n as following sibling :)

insert node n
as last [first] into p (: insert n as rightmost child of p :)

delete nodes p

replace node p
with n

replace value of node p
with v (: creates child text node if p is an element node :)

@ Given a context node, evaluate XPath expression p to identify
target XML element node(s).

O . A11SE_DFE es n's identity
Torsten Grust (WSI) Database-Supported XML Processors Winter 2012/13 386

XQuery Update: Text node updates

Obviously, the kind of ¢ determines the overall impact on the updated
tree and its encoding.

XUpdate: replacing text by text

<a>
<b id="0">foo
<b id="1">bar

U replace value of node //b[@id = 1]
. with "foo"

<b id="0">foo
<b id="1">foo

@ New content v: a text node.

Torsten Grust (WSI) Database-Supported XML Processors Winter 2012/13 387

XQuery Update: Text node updates

@ Replacing text nodes by text nodes has local impact only on the
pre/post encoding of the updated tree.

XUpdate statement leads to local relational update

pre post --- text pre post --- text
0 4 NULL 0 4 NULL
1 1 NULL N 1 1 NULL
2 0 foo 2 0 foo
3 3 NULL 3 3 NULL
4 2 bar 4 2 foo

@ Similar observations can be made for updates on comment and
processing instruction nodes.

Torsten Grust (WSI) Database-Supported XML Processors Winter 2012/13

Translated into, e.g., the XPath Accelerator representation, we see that

388

XQuery Update: Structural updates

XUpdate: inserting a new subtree
<a>
a<c><d/><e/></c>
<f><g/>
<h><i/><j/></h>
</f>

) insert node <k><1/><m/></k>
as first into /a/f/g
<a>
a<c><d/><e/></c>
<f><g><k><1/><m/></k></g>
<h><i/><j/></h>
</f>

Question: What are the effects w.r.t. our structure encoding...?

Torsten Grust (WSI) Database-Supported XML Processors Winter 2012/13

389

XQuery Update: Global impact on encoding

Global shifts in the pre/post Plane

post post post+3 pre+3;post+3
0 |
T | @ﬁ
10 + | eh
ta. f| N
T b g - — -
__ .::,l .J =
5 TpF° J o
- - eg - - — —
1 ep |
T '.‘:».CA‘ |
1__I |J.Te| Ly [N
<0’0> LI LI 1T T 1T 1T7 17
1 d s 10 pre pre
Torsten Grust (WSI) Database-Supported XML Processors Winter 2012/13 390
XQuery Update: Global impact on pre/post plane
Insert a subtree of n nodes below parent element v
Q post(v) < post(v) + n
@ VYV €v/following: :node():
pre(v') < pre(V') + n; post(v') < post(v') + n
© VV € v/ancestor::node():
post(v') < post(v') + n
Cost (tree of N nodes) Update cost
O(N) +O(log N) @) is not so much a problem of
N~ S .
® ©) cost but of locking. Why?

Updates and fixed-width encodings

Theoretical result [Milo et.al., PODS 2002]

There is a sequence of updates (subtree insertions) for any persistent*®

tree encoding scheme &, such that £ needs labels of length 2(N) to
encode the resulting tree of N nodes.

@ Fixed-width tree encodings (like XPath Accelerator) are inherently
static.
= Non-solutions:

e Gaps in the encoding,
e encodings based on decimal fractions.

“*A node keeps its initial encoding label even if its tree is updated.
Torsten Grust (WSI) Database-Supported XML Processors Winter 2012/13 392

A variable-width tree encoding: ORDPATH

Here we look at a particular variant of a hierarchical numbering scheme,
optimized for updates.

@ The ORDPATH encoding (used in MS SQL Server ™) assigns node
labels of variable length.

ORDPATH labels for an XML fragment

@ The fragment root receives label 1.
@ Thenth (n=1,2,...) child of a parent node labelled p receives label
p.(2-n—1).

@ Internally, ORDPATH labels are not stored as .-separated ordinals
but using a prefix-encoding (similarities with Unicode).

Torsten Grust (WSI) Database-Supported XML Processors Winter 2012/13 393

ORDPATH encoding: Example

ORDPATH encoding of a sample XML fragment

<a>

<c>
<d/><e/>
. .
<f><g/></f> Cl 3 Leo
</c> 1 .3.5
d') _] °
<h> 1.3.1 1.3.3 1.5 1 1.5v3 1.5.5
<i/><j/><k/>
[)
</h> 1.3.5.1 8

Note:

@ Lexicographic order of ORDPATH labels = document order
= Clustered index on ORDPATH labels will be helpful.

Torsten Grust (WSI) Database-Supported XML Processors Winter 2012/13 394

ORDPATH: Insertion between siblings

In ORDPATH, the insertion of new nodes between two existing sibling
nodes is referred to as “careting in" (caret = insertion mark,).

ORDPATH: node insertion

Let (vq,..., v,) denote a sequence of nodes to be inserted between two
existing sibling nodes with labels p.s and p.(s+ 2), s odd. After
insertion, the new label of v; is

pe(s+1).(2-i—1) .

Label p.(s+ 1) is referred to as a caret.

Torsten Grust (WSI) Database-Supported XML Processors Winter 2012/13 395

Impacts on Other Encoding Schemes

ORDPATH: Insertion between siblings (Example)

Insertion of (<1/>,<m/>) between <j/> and <k/>

e

e

Torsten Grust (WSI) Database-Supported XML Processors Winter 2012/13

396

ORDPATH: Insertion between siblings

ORDPATH: Insertions at arbitrary locations?

) 1.5.4.19 ®]1.5.4.3
1 m

Determine ORDPATH label of new node v inserted
© to the right of <k/>,
@ to the left of <i/>,
@ between <j/> and <1/>,
@ between <1/> and <m/>,

Torsten Grust (WSI) Database-Supported XML Processors Winter 2012/13

397

Impacts on Other Encoding Schemes

Processing XQuery and ORDPATH
Is ORDPATH a suitable encoding £7

Mapping core operations of the XQuery processing model to operations
on ORDPATH labels:

v/parent: :node ()

© Let p.m.n denote v's label (n is odd).
@ If the rightmost ordinal (m) is even, remove it. Goto ().

In other words: the carets (A) do not count for ancestry.

v/descendant: :node()

© Let p.n denote v's label (nis odd).

@ Perform a lexicographic index range scan from p.n to
p . (n+ 1)—the virtual following sibling of v.

Torsten Grust (WSI) Database-Supported XML Processors Winter 2012/13 398

ORDPATH: Variable-length node encoding

@ Using (4 byte) integers for all numbers in the hierarchical numbering
scheme is an obvious waste of space!

@ Fewer (and variable number of) bits are typically sufficient;
@ they may bear the risk of running out of new numbers, though. In
that case, even ORDPATH cannot avoid renumbering.
e In principle, though, no bounded representation can absolutely avoid
the need for renumbering.
@ Several approaches have been proposed so as to alleviate the
problem, for instance:
e use a variable number of bits/bytes, akin to Unicode,
e apply some (order-preserving) hashing schemes to shorten the
numbers,

Torsten Grust (WSI) Database-Supported XML Processors Winter 2012/13 399

ORDPATH: Variable-length node encoding

@ For a 10 MB XML sample document, the authors of ORDPATH
observed label lenghts between 6 and 12 bytes (using Unicode-like
compact representations).

@ Since ORDPATH labels encode root-to-node paths, node labels
share common prefixes.

ORDPATH labels of <1/> and <m/>

1.5.4.1
1.5-4.3

= Label comparisons often need to inspect encoding bits at the far
right.

@ MS SQL Server™ employs further path encodings organized in
reverse (node-to-root) order.

@ Note: Fixed-length node IDs (such as, e.g., preorder ranks) typically
fit into CPU registers.

Torsten Grust (WSI) Database-Supported XML Processors Winter 2012/13 400

