Part XIlII

Index Support

Torsten Grust (WSI) Database-Supported XML Processors

I
Outline of this part

e Index Support
@ Overview
@ Pre/Post Encoding and Bt Trees
@ Pre/Post Encoding and R Trees
@ More on Physical Design Issues

Torsten Grust (WSI) Database-Supported XML Processors

Index Support Overview

Index support

All known database indexing techniques (such as BT trees, hashing, ...)
can be employed to—depending on the chosen representation—support
some or all of the following:

uniqueness of node [Ds,

direct access to a node, given its node ID,

ordered sequential access to document parts (serialization),
name tests,

value predicates,

structural traversal along some or all of the XPath axes,

We will only look into a few interesting special cases here.

Torsten Grust (WSI) Database-Supported XML Processors Winter 2012/13 346

Pre/post encoding and BT trees

As we have already seen before, the XPath Accelerator encoding leads to
conjunctions of a lot of range selection predicates on the pre and post
attributes in the resulting SQL queries.

Two BT tree indexes on the accel table, defined over pre and post
attributes:

pre ... post

Bt tree : : : Bt tree
on pre on post

Torsten Grust (WSI) Database-Supported XML Processors Winter 2012/13 347

the BT trees:
post

Index Support

Query evaluation (example)
Evaluating, e.g., a descendant step can be supported by either one of

N

Pre/Post Encoding and B+ Trees

Two options:

(D Use index on pre.

@ Start at v and scan

y along pre.
(7] SEL N VL V.S NI WL N N L L L
0 TSI .
& e IERKAK @ Many false hits!
gXRIRIELHKS
3y 20300 00000202020202020: :
LERRSIRRELLLLRR @ Use index on post.
IROL0002020202002020%0
POt0t0%0 0 0 e 00202
RR00020202020302020 %020
Y RGRRRARAKLLRKRRL @ Start at v and scan
% [OICAIH XX
CSRESLEADEIR L |
[RCIRSEIAKBC along post.
RRRRIEHRIRRKK, _
> pre @ Many false hits!
scan
@ Many false hits either way!

Pre/Post Encoding and B Trees

Torsten Grust (WSI) Database-Supported XML Processors

Query evaluation using index intersection

Standard B™ trees on those columns will support really efficient query
evaluation, if the DBMS optimizer generates index intersection
evaluation plans.

Query evaluation plans for predicates of the form
“pre € [...] Apost € [...]" will then

@ evaluate both indexes separately to obtain pointer lists,
© merge (i.e., intersect) the pointer lists,
© only afterwards access accel tuples satisfying both predicates.

Winter 2012/13

349

Pre/post encoding and R trees

In the geometric/spatial database application area, quite a few
multi-dimensional index structures have been developed. Such indexes
support range predicates along arbitrary combinations of dimensions.

_ @ Diagonal of pre/post plane
Pre/post encoding of a 100-node densely populated.

XML fragment

@ R-Trees partition plane

post incompletely, adapts well to
' c N, node distribution.
S . . :
oe ~ @ Node encodings are points
\J . . .
I N in 5-dimensional space.
9 .
[] . .
s\\‘ @ 5-dimensional R-Tree
WV evaluates XPath axis and
\‘.\ node tests in parallel.
5‘ 'S
\Q
— > pre

Pre/Post Encoding and R Trees
Preorder packed R tree

_ _ @ Insert node encodings into
R tree loaded in ascending R tree in ascending order of
preorder, leaf capacity 6 nodes pre ranks.

post @ Storage utilization in R tree

o leaf pages maximized.
13? @ Coverage and overlapping of
% leaves minimized.

[' E @ Typical: preorder packing
preserves document order
N, on retrieval.

R
, pre

Torsten Grust (WSI) Database-Supported XML Processors Winter 2012/13 351

More on physical design issues

As always, chosing a clever physical database layout can greatly improve
query (and update) performance.

@ Note that all information necessary to evaluate XPath axes is
encoded in columns pre and post (and par) of table accel.

@ Also, kind tests rely on column kind, name tests on column tag
only.

Which columns are required to evaluate the steps below?

Location step Columns needed

descendant: :text ()
ancestor: :x

child: :comment ()
/descendant-or-self::y

Torsten Grust (WSI) Database-Supported XML Processors Winter 2012/13 352

More on Physical Design Issues
Splitting the encoding table

These observations suggest to split accel into binary tables:

rekind

é e?em
elem
text
com
elem

elem
elem

Ei
elem

text

Full split of accel table

prepost prepar
pre- = par
0 O NU

tag

OO~NDUTTD WN O

OO OOHO
OCONOOIPWN -

OCONOUIPRWN -
AONPWOIONO -

@ NB. Tuples are narrow (typically < 8 bytes wide)

= reduce amount of (secondary) memory fetched
= lots of tuples fit in the buffer pool/CPU data cache

Torsten Grust (WSI) Database-Supported XML Processors Winter 2012/13 858

Index Support More on Physical Design Issues

vectors”

@ Tuples even narrower. Tree
shape now encoded by ordered
integer sequence (cf. “data

“Vectorization”

@ In an ordered Storage Dense pre Column
(clustered index!), the pre

. . repost
column of table prepost is plain ﬂ?.

redundant.

AN WOIONO -

idea).

@ Use positional access to access such tables (— MonetDB).
e Retrieving a tuple t in row #n implies t.pre = n.

Torsten Grust (WSI) Database-Supported XML Processors Winter 2012/13

354

Index Support More on Physical Design Issues

SELECT
FROM
WHERE
AND
AND
AND

Indexes on encoding tables?

DISTINCT vl.pre

accel v2, accel vl

v2.kind = elem and v2.tag = a -
vl.pre > v2.pre
vl.post < v2.post
vl.kind = text crtext ()

} descendant

ORDER BY vl.pre

“2Supported by tools like the IBM DB2 index advisor db2advis.

Torsten Grust (WSI) Database-Supported XML Processors Winter 2012/13

@ Analyse compiled XPath query to obtain advise on which indexes to
create on the encoding tables.*?

path(fn:root () /descendant-or-self::a/descendant: :text())

855

Index Support More on Physical Design Issues

© CREATE
© CREATE
© CREATE

Torsten Grust (WSI) Database-Supported XML Processors

Query analysis suggests:

INDEX
INDEX
INDEX

© CREATE UNIQUE INDEX
© CREATE UNIQUE INDEX

e (D—(): Hash/B-tree

SQL index creation commands

itag
ikind
ipar
ipost

ipre

Indexes on encoding tables

ON
ON
ON
ON
ON

indexes

accel
accel
accel
accel

accel

(tag)
(kind)
(par)

(post ASC)

(pre ASC

) CLUSTER

@—@®): B-tree indexes

Winter 2012/13

356

Index Support More on Physical Design Issues

ipost

accel
Po 0 g 02 0
P1 1 1 P1
02 2 0 P3
03 3 2 Pe
P4 4 8 P7
Ps 5 5 Ps
Pe 6 3 P9
P7 7 4 Ps
Ps 8 7 P4
P9 g 6 Po

Resulting storage layer layout

Table and index contents (ordered!)

OO NO O WN -

Notes:

Torsten Grust (WSI) Database-Supported XML Processors

ikind

00 elem
01 elem
P4 elem
05 elem
P6 elem
Ps elem
02 text
P9 text
03 com
p7 pi

@ p; In RID column: database internal row identifiers.
@ Rows of table accel ordered in preorder (CLUSTER).

Winter 2012/13

357

Evaluation plan (DB2)

Plan for the query given above

FETCH
/ pre
SORT N
unique accel
NLJOIN
index

FETCH///////

pre,post IXAI\{E
— A IXSCAN
B(AI\Q accel B(AI\Q Kind—text

IXSCAN IXSCAN IXSCAN .. |
tag=a k{i(dszceéym > pre < post ikind
I | I I
itag ikind ipre ipost
Torsten Grust (WSI) Database-Supported XML Processors Winter 2012/13 358

More on Physical Design Issues
A note on the IBM DB2 plan operators

Query plan operators used by IBM DB2 (excerpt)

Operator Effect

IXSCAN Index scan controlled by predicate on indexed
column(s); yields row ID set
IXAND Intersection of two row ID sets; yields row ID set
FETCH Given a row ID set, fetch specified columns from
table; yields tuple set
SORT Sort given row ID/tuple set, optionally removing duplicates
NLJOIN Nested loops join, optionally using index lookup for inner
Input

TBSCAN Scan entire table, with an optional predicate filter

Torsten Grust (WSI) Database-Supported XML Processors Winter 2012/13 359

