
Advanced SQL
01 — The Core of SQL

Torsten Grust
Universität Tübingen, Germany

1 ┆ The Core of SQL

Let us recollect the core constructs of SQL, synchronize
notation, and introduce query conventions.

If you need to refresh your SQL memory, consider
the notes for Datenbanksysteme 1 (Chapters 6, 9, 13)
the PostgreSQL 9.6 web (Part II, The SQL Language)

We will significantly expand on this base SQL vocabulary
during the semester.

http://db.inf.uni-tuebingen.de/teaching/DatenbanksystemeIWS2015-2016.html
https://www.postgresql.org/docs/9.6/static/sql.html

Sample Table

Table T serves as a common “playground” for the upcoming SQL
queries:

Table T
a b c d
1 'x' true 10
2 'y' true 40
3 'x' false 30
4 'y' false 20
5 'x' true NULL

CREATE TABLE T (a int PRIMARY KEY, -- implies NOT NULL
 b text, -- here: char(1)
 c boolean,
 d int);

2 ┆ Row Variables

Iterate over all rows of table T (in some order: bag
semantics), bind row variable t to current row:

SELECT t -- ➋ t is bound to current row
FROM T AS t -- ➊ bind/introduce t

If you omit AS t in the FROM clause, a row variable T
(generally: AS ‹table name›) will be implicitly
introduced.

This course: always explicitly introduce/name row
variables for disambiguation, clarity, readability.

Row Values

SELECT t -- ➋ t is bound to current row
FROM T AS t -- ➊ bind/introduce t

Row variable t is iteratively bound to row values whose
field values and types are determined by the rows of
table T:

 field names: a b c d
 ↓ ↓ ↓ ↓
 t ≡ (5, 'x', true, NULL) ⎫
 t ≡ (1, 'x', true, 10) ⎬ row values
 ⋮ ⋮
 t ≡ (2, 'y', true, 40) ⎭
 ↑ ↑ ↑ ↑
 field types: int text boolean int

Row Types ✎

t :: T with T = (a int, b text, c boolean, d int).1 Row
type T is defined when CREATE TABLE T (...) is performed.

A row type ‹τ› can also be explicitly defined via

CREATE TYPE ‹τ› AS (a int, b text, c boolean, d int)

A table T1 equivalent to T — well, almost""# — may then
be created via

CREATE TABLE T1 OF ‹τ›

1 Read :: as “has type.”

Row Field Access and *

Named field access uses dot notation. Assume t :: T and
binding t ≡ (5, 'x', true, NULL) then:

t.b evaluates to 'x' (of type text),
t.d evaluates to NULL (of type int).

Field names are not first-class in SQL and must be named
verbatim (i.e., may not be computed).

Notation t.* abbreviates t.a, t.b, t.c, t.d in contexts
where this makes sense.2

2 t.* is most often used in SELECT clauses.

Row Comparisons

Row comparisons between rows t₁, t₂ are performed field-
by-field and lexicographically (provided that the field
types match). Assume t₁ :: T, t₂ :: T:

t₁ = t₂ ⟺ t₁.a = t₂.a AND ⋯ AND t₁.d = t₂.d
t₁ < t₂ ⟺
t₁.a < t₂.a OR (t₁.a = t₂.a AND t₁.b < t₂.b) OR ⋯

A row value is NULL iff all of its field values are NULL.

Assume the binding t ≡ (NULL, NULL, NULL, NULL). Then
t IS NULL holds.

3 ┆ The SELECT Clause

A SELECT clause evaluates n expressions ‹e₁›, ""#, ‹eₙ›:

SELECT ‹e₁› AS ‹c₁›, ..., ‹eₙ› AS ‹cₙ›

Creates n columns named ‹c₁›, ""#, ‹cₙ›.

In absence of AS ‹cᵢ›, PostgreSQL assigns name "?column?"
(for all such unnamed columns) ⇒ ambigiuity !.

This course: explicitly use AS to name columns unless a
name can be derived from ‹eᵢ› (e.g., as in ‹eᵢ› ≡ t.a).

If column or table names are case-sensitive or contain
whitespace/symbols/keywords: use "‹cᵢ›" instead.

Standalone SELECT

If query Q generates n row bindings, SELECT is evaluated
n times to emit n rows (but see aggregates below).

A standalone SELECT (no FROM clause) is evaluated exactly
once and emits a single row:

SELECT 1 + 41 AS "The Answer", 'Gla' || 'DOS' AS Portal;

The Answer portal
42 GlaDOS

4 ┆ Literal Tables (VALUES) ✎

A VALUES clause constructs a transient table from a list of
provided row values ‹eᵢ›:

VALUES ‹e₁›, ..., ‹eₙ›

If n > 1, the ‹eᵢ› must agree in arity and field types
(row value ‹e₁› is used to infer and determine types).

VALUES automatically assigns column names "column‹i›".
Use column aliasing to assign names (see FROM below).

Orthogonality: a VALUES clause (in parentheses) may be
used anywhere a SQL query expects a table.

5 ┆ Generating Row Variable Bindings (FROM) ✎

A FROM clause expects a set of tables ‹Tᵢ› and successively
binds the row variables ‹tᵢ› to the tables' rows:

SELECT ... -- ➊
FROM ‹T₁› AS ‹t₁›, ..., ‹Tₙ› AS ‹tₙ› -- ➋

The ‹Tᵢ› may be table names or SQL queries computing
tables (in (⋯)).

If you need to rename the columns of ‹Tᵢ› (recall the
VALUES clause), use column aliasing on all (or only the
first k !) columns:

 ‹Tᵢ› AS ‹tᵢ›(‹cᵢ₁›, ..., ‹cᵢₖ›)

FROM Computes Cartesian Products ✎

SELECT ...
FROM ‹T₁› AS ‹t₁›, ..., ‹Tₙ› AS ‹tₙ›

This FROM clause generates |‹T₁›| × ⋯ × |‹Tₙ›| bindings.
Semantics: compute the Cartesian product ‹T₁› × ⋯ ×
‹Tₙ›, draw the bindings for the ‹tᵢ› from this product.
✎

FROM operates over a set of tables (',' is associative
and commutative).

In particular, row variable ‹tᵢ› is not in scope in the
table subqueries ‹Tᵢ₊₁›, ""#, ‹Tₙ›.

6 ┆ WHERE Discards Row Bindings ✎

A WHERE clause introduces a predicate ‹p› that is evaluated
under all row variable bindings generated by FROM:

SELECT ... -- ➌
FROM ‹T₁› AS ‹t₁›, ..., ‹Tₙ› AS ‹tₙ› -- ➊
WHERE ‹p› -- ➋

All row variables ‹tᵢ› are in scope in ‹p›.

Only bindings that yield ‹p› = true are passed on.3

Absence of a WHERE clause is interpreted as WHERE true.
3 If ‹p› evaluates to NULL ≠ true, the binding is discarded.

7 ┆ Compositionality: Subqueries Instead of Values

“ The meaning of a complex expression is determined by the

meanings of constituent expressions.”
—Principle of Compositionality

With the advent of the SQL-92 and SQL:1999 standards, SQL
has gained in compositionality and orthogonality:

Whenever a (tabular or scalar) value v is required, a SQL
expression in (⋯) — a subquery — may be used to compute
v.

Subqueries nest to arbitrary depth.

Scalar Subqueries: Atomic Values

A SQL query that computes a single-row, single-column table
(column name □ irrelevant) may be used in place of an atomic
value v:

□
v

In a scalar subquery""#

""# an empty table is interpreted as NULL,
""# a table with > 1 rows or > 1 columns will yield a
runtime error.

Scalar Subqueries: Atomic Values ✎

 generate single column
 ↓
SELECT 2 + (SELECT t.d AS _
 FROM T AS t
 WHERE t.a = 2) AS "The Answer"
 ╰──┬──╯
 equality predicate on key column,
 will yield ≤ 1 rows

Runtime errors: WHERE t.a > 2, SELECT t.a, t.d
Yields NULL: WHERE t.a = 0

AS _ assigns “don't care” column name — this is a case
where column naming is obsolete and adds nothing.

Scalar Subqueries: Row Values

A SQL query that computes a single-row table with column
names ‹cᵢ› may be used in place of row value (v₁, ..., vₙ)
with field names ‹cᵢ›:

‹c₁› ‹cₙn›
v₁ ⋯ vₙ

In a scalar subquery""#

""# an empty table is interpreted as (NULL, ..., NULL),
""# a table with > 1 rows will yield a runtime error.

enclosing query enclosing query

⋮
FROM T AS t ✔ ⋯ t ⋯ ✗
⋮

⋮
⋯ t ⋯ FROM T AS t

⋮

subquery subquery

Row Variable Scoping

Subqueries may refer to any row variable t bound in their
enclosing queries (up to the top-level query):4

Row variable scoping in SQL
4 Note: From inside the subquery — i.e., inside the (⋯) — row variable t is free.

Subqueries, Free Row Variables, Correlation

If t is free in subquery q, we may understand the
subquery as a function q(t): you supply a value for t, I
will compute the (tabular) value of q:

SELECT t1.* evaluated 5 times
FROM T AS t1 under t1 bindings:
WHERE t1.b <> (SELECT t2.b ⎫ t1 ≡ (1, ...)
 FROM T AS t2 ⎬ t1 ≡ (2, ...)
 WHERE t1.a = t2.a) ⎭ t1 ≡ (3, ...)
 ↑ t1 ≡ (4, ...)
 free t1 ≡ (5, ...)

Subqueries featuring free variables are also known as
correlated.

8 ┆ Row Ordering (ORDER BY)

SQL tables are unordered bags of rows, but rows may be
locally ordered for result display or positional access:

SELECT ... -- ➌
FROM ... -- ➊
WHERE ... -- ➋
ORDER BY ‹e₁›, ..., ‹eₙ› -- ➍

The order of the ‹eᵢ› matters: sort order is determined
lexicographically with ‹e₁› being the major criterion.

The sort criteria ‹eᵢ› are expressions that may refer to
column names in the SELECT clause.

SELECT t.* FROM T AS t ✎

⋯ ORDER BY t.d ASC NULLS FIRST
a b c d
5 'x' true NULL
1 'x' true 10
4 'y' false 20
3 'x' false 30
2 'y' true 40

⋯ ORDER BY t.b DESC, t.c
a b c d
4 'y' false 20
2 'y' true 40
3 'x' false 30
1 'x' ⃰ true ⃰ 10
5 'x' ⃰ true ⃰ NULL

Note: ASC (ascending) is default. NULL is larger than any
non-NULL value. Ties :⃰ order is implementation-dependent.

Row Order is Local Only

ORDER BY establishes a well-defined row order that is local
to the current (sub)query:

 may yield rows in any order
 ↓
SELECT t1.*
FROM (SELECT t2.* ⎫ guaranteed row order
 FROM T AS t2 ⎬ inside the subquery only
 ORDER BY t2.a) AS t1; ⎭

⚠ Never rely on row orders that appear consistent across
runs — may vary between DBMSs, presence of indexes, etc.

Q: What, then, is such local row order good for?

┌─────┬─────┐
│ A₁ │ ⋯ │ pos
├─────┼─────┤
│ │ │ ₀ ⎫
│ │ │ ₁ ⎬ n rows skipped
│ │ │ ⋮ ⎭
│ │ ⋮ │ ₙ ⎫
│ │ │ ⋮ ⎬ m rows fetched
│ │ │ ₙ₊ₘ₋₁ ⎭
│ │ │ ⋮
└─────┴─────┘

Positional Access to Rows ✎

Once row order has been established it makes sense to “skip
to the nᵗʰ row” or “fetch the next m rows.”

⋯
ORDER BY A₁
OFFSET ‹n›
LIMIT ‹m›

OFFSET 0 reads from the
start. LIMIT ALL fetches
all rows.

Alternative syntax: FETCH [FIRST | NEXT] ‹m› ROWS ONLY.

9 ┆ Identify Particular Rows Among Peers (DISTINCT ON)

Extract the first row among a group of equivalent rows:

 prefix of ORDER BY clause
 ╭─────┴─────╮
SELECT DISTINCT ON ➍ (‹e₁›,...,‹eₙ›) ‹c₁›,...,‹cₖ› -- ➋
FROM ... -- ➊
ORDER BY ‹e₁›,...,‹eₙ›,‹eₙ₊₁›,...,‹eₘ› -- ➌

1. Sort rows in ‹e₁›,..., ‹eₙ›,‹eₙ₊₁›,...,‹eₘ› order.
2. Rows with identical ‹e₁›,...,‹eₙ› values form one group.
3. From each of these groups, pick the first row in

‹eₙ₊₁›,...,‹eₘ› order.

⚠ Without ORDER BY, step 3 picks any row in each group.

DISTINCT ON: Group, Then Pick First in Each Group ✎

-- For each A₁, extract the row with the largest A₂
SELECT DISTINCT ON (A₁) ...
FROM ...
ORDER BY A₁, A₂ DESC

┌─────┬─────┬─────┐
│ A₁ │ A₂ │ ⋯ │
├─────┼─────┼─────┤
│ ⋮ │ ⋮ │ ⋮ │
│┈┈┈┈┈│┈┈┈┈┈│┈┈┈┈┈│

group ⎰ │ xᵢ │ yᵢ₁ │ ⋯ │ pick
⎱ │ xᵢ │ ⋮ │ ⋮ │ } discard

┈┈┈┈┈┈┈┈┈ │┈┈┈┈┈│┈┈┈┈┈│┈┈┈┈┈│ ┈┈┈┈┈┈┈┈┈┈┈┈┈
⎧ │ xⱼ │ yⱼ₁ │ ⋯ │ pick

group ⎨ │ xⱼ │ ⋮ │ ⋮ │ ⎱ discard
⎩ │ xⱼ │ ⋮ │ ⋮ │ ⎰

│┈┈┈┈┈│┈┈┈┈┈│┈┈┈┈┈│
│ ⋮ │ ⋮ │ ⋮ │
└─────┴─────┴─────┘

DISTINCT: Table-Wide Duplicate Removal

Keep only a single row from each group of duplicates:

SELECT DISTINCT ➌ ‹c₁›,...,‹cₖ› -- ➋
FROM ... -- ➊

True duplicate removal: rows are considered identical if
they agree on all k columns ‹cᵢ›.5

Row order is irrelevant. DISTINCT returns a set of rows.

May use SELECT ALL ... to explicitly document that a
query is expected to return duplicate rows.

5 This is equivalent to SELECT DISTINCT ON (‹c₁›,...,‹cₖ›) ‹c₁›,...,‹cₖ› FROM

10 ┆ Summarizing Values: Aggregates

Aggregate functions (short: aggregates) reduce a collection
of values to a single value (think summation, maximum).

Simplest form: collection ≡ entire table:

SELECT ‹agg₁›(‹e₁›) AS ‹c₁›, ..., ‹aggₙ›(‹eₙ›) AS ‹cₙ›
FROM ...

Reduction of input rows: result table will have one row.

Cannot mix aggregates with non-aggregate expression ‹e›
in SELECT clause:6 which value of ‹e› should we pick?

6 But see GROUP BY later on.

Aggregate Functions: Semantics

SELECT agg(e) AS c -- e will typically refer to t
FROM T AS t -- range over entire table T

Aggregate agg defined by triple (∅ᵃᵍᵍ, zᵃᵍᵍ, ⨁ᵃᵍᵍ):
∅ᵃᵍᵍ (empty): aggregate of the empty value collection
zᵃᵍᵍ (zero): aggregate value initialiser
⨁ᵃᵍᵍ (merge): add value to existing aggregate

 a ← ∅ᵃᵍᵍ -- a will be aggregate value
 for t in T: -- iterate over all rows of T
 x ← e(t) -- value to be aggregated
 if x ≠ NULL: -- aggregates ignore NULL values (⁑)
 if a = ∅ᵃᵍᵍ: -- once we see first non-NULL value:
 a ← zᵃᵍᵍ -- initialize aggregate
 a ← ⨁ᵃᵍᵍ(a, x) -- maintain running aggregate

Aggregate Functions: Semantics

Aggregate agg ∅∅ᵃᵍᵍ zᵃᵍᵍ ⨁⨁ᵃᵍᵍ(a, x)
COUNT 0 0 a + 1
SUM NULL7 0 a + x
AVG8 NULL ‹0, 0› ‹a.1 + x, a.2 + 1›
MAX NULL -∞ max₂(a, x)
MIN NULL +∞ min₂(a, x)

bool_and NULL true a ∧ x
bool_or NULL false a ∨ x

⋮ ⋮ ⋮ ⋮

The special form COUNT(*) counts rows regardless of their
fields' contents (NULL, in particular).

7 If you think “this is wrong,” we're two already. Possible upside: sum differentiates between
summation over an empty collection vs. a collection of all 0s.

8 Returns a.1 / a.2 as final aggregate value.

Aggregate Functions on Table T ✎

SELECT COUNT(*) AS "#rows",
 COUNT(t.d) AS "#d",
 SUM(t.d) AS "∑d",
 MAX(t.b) AS "max(b)",
 bool_and(t.c) AS "∀c",
 bool_or(t.d = 30) AS "∃d=30"
FROM T AS t
WHERE ‹p›

‹p› ≡ true
#rows #d ∑d max(b) ∀∀c ∃d=30
5 4 100 'y' false true

‹p› ≡ false
#rows #d ∑d max(b) ∀∀c ∃d=30
0 0 NULL NULL NULL NULL

Ordered Aggregates ✎

For most aggregates agg, ⨁ᵃᵍᵍ is commutative (and
associative): row order does not matter.

Order-sensitive aggregates admit a trailing
ORDER BY ‹e₁›,...,‹eₙ› argument that defines row order:9

-- cast to text separator string
-- " "
SELECT string_agg(t.a :: text, ',' ORDER BY t.d) AS "all a"
FROM T AS t

all a
'1,4,3,2,5'

9 ⨁ˢᵗʳⁱⁿᵍ⁻ᵃᵍᵍ essentially is || (string concatenation) which is not commutative.

Filtered and Unique Aggregates ✎

SELECT ‹agg›(‹e›) FILTER (WHERE ‹p›)
FROM ...

FILTER clause alters aggregate semantics (see ⁑):

 ⋮
 x ← e(t)
 if x ≠ NULL ∧ p(x):
 ⋮

SELECT ‹agg›(DISTINCT ‹e›)
FROM ...

Aggregates distinct (non-NULL) values of expression ‹e›.
(May use ALL to flag that duplicates are expected.)

11 ┆ Forming Groups of Rows

Once FROM has generated row bindings, SQL clauses operate
row-by-row. After GROUP BY: operate group-by-group:

SELECT ‹e₁›, ..., ‹eₘ› -- ➎
FROM ... -- ➊
WHERE ... -- ➋
GROUP BY ‹g₁›, ..., ‹gₙ› -- ➌
HAVING ‹p› -- ➍

All rows that agree on all expressions ‹gᵢ› (the set of
grouping criteria) form one group.

⇒ At ➍ and ➎ we now process groups (not individual
rows). This affects ‹p› and the ‹eⱼ›.

GROUP BY Partitions Rows

SELECT ... ⯇──┐
FROM ... ├─ evaluated once per group (not per row)
GROUP BY A₁ |
HAVING ... ⯇──┘

┌─────┬─────┬─────┐
│ A₁ │ A₂ │ ⋯ │
├─────┼─────┼─────┤
│ ⋮ │ ⋮ │ ⋮ │
│┈┈┈┈┈│┈┈┈┈┈│┈┈┈┈┈│ Grouping partitions the row

the xᵢ group ⎰ │ xᵢ │ yᵢ₁ │ ⋮ │ bindings:
⎱ │ xᵢ │ yᵢ₂ │ ⋮ │

┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈ │┈┈┈┈┈│┈┈┈┈┈│┈┈┈┈┈│ • there are no empty groups
the xⱼ group ⎧ │ xⱼ │ yⱼ₁ │ ⋮ │

⎱ │ xⱼ │ yⱼ₂ │ ⋮ │ • each row belongs to exactly
│┈┈┈┈┈│┈┈┈┈┈│┈┈┈┈┈│ one group
│ ⋮ │ ⋮ │ ⋮ │
└─────┴─────┴─────┘

GROUP BY Changes Field Types From τ To bag(τ)10

 # $ ⁂ #
 ↓ ↓ ↓ ↓
SELECT t.b, t.d ┊ SELECT the(t.b) AS b, SUM(t.d) AS "∑d"
FROM T AS t ┊ FROM T AS t
GROUP BY t.b ┊ GROUP BY t.b

t.d references current group of d values: violates 1NF!
⇒ After GROUP BY: must use aggregates on field values.
t.b references current group of b values all of which are
equal in a group ⇒ SQL: using just t.b is OK.
(⁂ May think of hypothetical aggregate the(‹e›) that
picks one among equal ‹e› values.)

10 A view of GROUP BY that is due to Philip Wadler.

Aggregates are Evaluated Once Per Group ✎

SELECT t.b AS "group",
 COUNT(*) AS size,
 SUM(t.d) AS "∑d",
 bool_and(t.a % 2 = 0) AS "∀even(a)",
 string_agg(t.a :: text, ';') AS "all a"
FROM T AS t
GROUP BY t.b;

group size ∑d ∀∀even(a) all a
'x' 2 60 true '2;4'
'y' 3 40 false '1;3;5'

HAVING ‹p› acts like WHERE but after grouping:
‹p› = false discards groups (not rows).

Grouping Criteria

The grouping criteria ‹gᵢ› form a set — order is
irrelevant.

Grouping on a key effectively puts each row in its own
singleton group. (Typically a query smell 9.)

Expressions that are functionally dependent on the ‹gᵢ›
are constant within a group (and may be used in SELECT).

If SQL does not know about the FD, explicitly add ‹e›
to the set of ‹gᵢ› — this will not affect the
grouping.

12 ┆ Bag and Set Operations

Tables contain bags of rows. SQL provides the common family
of binary bag operations (no row order):

‹q₁› UNION ALL ‹q₂› -- ⋃⁺ (bag union)
‹q₁› INTERSECT ALL ‹q₂› -- ⋂⁺ (bag intersection)
‹q₁› EXCEPT ALL ‹q₂› -- ∖⁺ (bag difference)

Row types (field names/types) of queries ‹qᵢ› must match.

With ALL, row multiplicities are respected: if row r
occurs nᵢ times in ‹qᵢ›, r will occur max(n₁-n₂,0) times
in ‹q₁› EXCEPT ALL ‹q₂› (INTERSECT ALL: min(n₁,n₂)).

Without ALL: obtain set semantics (no duplicates).

13 ┆ Multi-Dimensional Data

Relational representation of measures (facts) depending
on multiple parameters (dimensions).

Example: table prehistoric with dimensions class,
herbivore?, legs, fact species:

Table prehistoric
class herbivore? legs species
'mammalia' true 2 'Megatherium'
'mammalia' true 4 'Paraceratherium'
'mammalia' false 2 NULL
'mammalia' false 4 'Sabretooth'
'reptilia' true 2 'Iguanodon'
'reptilia' true 4 'Brachiosaurus'
'reptilia' false 2 'Velociraptor'
'reptilia' false 4 NULL

Multiple GROUP BYs: GROUPING SETS ✎

Analyze (here: group, then aggregate) table ‹T› along
multiple dimensions ⇒ perform separate GROUP BYs on each
relevant dimension:

SQL syntactic sugar:

SELECT ‹e₁›, ..., ‹eₘ›
FROM ‹T› -- Gᵢ: grouping criteria
GROUP BY GROUPING SETS (G₁,...,Gₙ) -- sets in ()

Yields n individual GROUP BY queries qᵢ, glued together
by UNION ALL. If ‹eⱼ› ∉ Gᵢ, ‹eⱼ› ≡ NULL in qᵢ.

Hierarchical Dimensions: ROLLUP ✎

Group along a path from any node Gₙ up to the root:

ROLLUP (G₁,...,Gₙ) ≡ GROUPING SETS ((G₁,...,Gₙ₋₁,Gₙ),
 (G₁,...,Gₙ₋₁), ...,
 (G₁),
 ()) ⚠ -- root

hierarchy prehistoric animals

class: mammals reptiles

herbivore?: t f t f

legs: 2 4 2 4 2 4 2 4

Megatherium ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ NULL

Analyze All Dimension Combinations: CUBE ✎

● slice for herbivore? = true ● ●
⬮

● ●
⬮

true ● ● 4
herbivore? legs

false 2

mam rep

class

CUBE (G₁,...Gₙ) ≡ GROUPING SETS ((G₁,...,Gₙ), ⎫ all 2ⁿ
 ⋮ ⎬ subsets
 ()) ⎭ considered

14 ┆ SQL Evaluation vs. Reading Order

SELECT DISTINCT ON (‹es› ➐) ‹es› ➌, ‹aggs› ➏
FROM ‹qs› ➊
WHERE ‹p› ➋
GROUP BY ‹es› ➍
HAVING ‹p› ➎

 UNION / EXCEPT / INTERSECT ➑ ⎱ repeated 0 or more times,
 ⋮ ⎰ all evaluated before ➒

ORDER BY ‹es› ➒
OFFSET ‹n› ➓
LIMIT ‹n› ➓

Reading order is: (➐,➌,➏,➊⚠,➋,➍,➎,➑)⁺,➒,➓.

Query Nesting and (Non-)Readability

SELECT ⋯
FROM (SELECT ⋯
 FROM (SELECT ⋯
 FROM ⋯
 ⋮) AS ‹descriptive›
 ⋮) AS ⋯
⋮

The more complex the query and the more useful the
‹descriptive› name becomes, the deeper it is buried. $

Query is a syntactic monolith. Tough to develop a query
in stages/phases and assess the correctness of its parts.

15 ┆ The let…in of SQL: WITH (Common Table Expressions)

Use common table expressions (CTEs) to bind table names
before they are used, potentially multiple times:

WITH
 ‹T₁›(‹c₁₁›,...,‹c₁﹐ₖ₁›) AS (
 ‹q₁›),
 ⋮ ⎫ Query ‹qᵢ› may refer to
 ‹Tₙ›(‹cₙ₁›,...,‹cₙ﹐ₖₙ›) AS (⎬ tables ‹T₁›,...,‹Tᵢ₋₁›
 ‹qₙ›), ⎭
‹q› } ‹q› may refer to all ‹Tᵢ›

“Literate SQL”: Reading and writing order coincide.
Think of let ‹T₁› = ‹q₁›, ... in ‹q› in your favorite FP
language. The ‹Tᵢ› are undefined outside WITH.

SQL With WITH

1. Define queries in stages, intermediate results in tables
‹Tᵢ›. May use ‹q› ≡ TABLE ‹Tᵢ›11 to debug stage i.

2. Bundle a query with test data:

WITH
 prehistoric(class,"herbivore?",legs,species) AS (
 VALUES ('mammalia',true,2,'Megatherium'),
 ⋮
 ('reptilia',false,4,NULL)
)
SELECT MAX(p.legs)
FROM prehistoric AS p

11 Syntactic sugar for SELECT t.* FROM ‹Tᵢ› AS t.

16 ┆ E Use Case: WITH (Dinosaur Body Shapes)

Paleontology: dinosaur body shape (height/length ratio) and
form of locomotion (using 2 or 4 legs) correlate:

Use this correlation to infer bipedality (quadropedality)
in incomplete dinosaur data sets:

species height length legs
Gallimimus 2.4 5.5 ?

E Dinosaur Body Shapes

Table dinosaurs
species height length legs
Ceratosaurus 4.0 6.1 2
Deinonychus 1.5 2.7 2
Microvenator 0.8 1.2 2
Plateosaurus 2.1 7.9 2
Spinosaurus 2.4 12.2 2
Tyrannosaurus 7.0 15.2 2
Velociraptor 0.6 1.8 2
Apatosaurus 2.2 22.9 4
Brachiosaurus 7.6 30.5 4
Diplodocus 3.6 27.1 4
Supersaurus 10.0 30.5 4
Albertosaurus 4.6 9.1 NULL
Argentinosaurus 10.7 36.6 NULL
Compsognathus 0.6 0.9 NULL
Gallimimus 2.4 5.5 NULL
Mamenchisaurus 5.3 21.0 NULL
Oviraptor 0.9 1.5 NULL
Ultrasaurus 8.1 30.5 NULL

E Dinosaur Body Shapes

WITH
bodies(legs, shape) AS (
 SELECT d.legs, AVG(d.height / d.length) AS shape
 FROM dinosaurs AS d
 WHERE d.legs IS NOT NULL
 GROUP BY d.legs
)
⋮

Transient Table bodies
legs shape

2 0.201
4 0.447

E Dinosaur Body Shapes

Query Plan:12 ✎

1. Assume average body shapes in bodies are available
2. Iterate over all dinosaurs d:

If locomotion for d is known, output d as is
If locomotion for d is unknown:

Compute body shape for d
Find the shape entry b in bodies that matches d
the closest
Use the locomotion in b to complete d, output
completed d

12 In this course, query plan refers to a “plan of attack” for a query problem, not EXPLAIN output.

