Advanced SQL

Universitat Tiibingen, Germany

1 ' The Core of SQL

e Let us recollect the core constructs of SQL, synchronize
notation, and introduce query conventions.

e If you need to refresh your SQL memory, consider
o the notes for Datenbanksysteme 1 (Chapters 6, 9, 13)
o the PostgreSQL 9.6 web (Part II, The SQL Language)

e lle will significantly expand on this base SQL vocabulary
during the semester.

http://db.inf.uni-tuebingen.de/teaching/DatenbanksystemeIWS2015-2016.html
https://www.postgresql.org/docs/9.6/static/sql.html

Table T serves as a common “playground” for the upcoming SQL
queries:

Table T
EI_-!-I
1T 'x' true
2 'y true 40
3 'x' false 30
4 'y' false 20
5 'x' true NULL |
CREATE TABLE T (a int PRIMARY KEY, —— implies NOT NULL
b t —— here: char(1)
C b lean,
d int):

2 ' Row Variables

e Iterate over all rows of table T (in some order: bag
semantics), bind row variable t to current row:

SELECT t — @ t 1s bound to current row
FROM T AS t — @ bind/introduce t

e If you omit AS t 1in the FROM clause, a row variable T
(generally: AS <table name>) will be implicitly
introduced.

e This course: always explicitly introduce/name row
variables for disambiguation, clarity, readability.

Row Values

SELECT t — @ t 1s bound to current row
FROM T AS t — @ bind/introduce t

e Row variable t 1s 1iteratively bound to row values whose

field values and types are determined by the rows of
table T:

field names: a b C d
- L - -
t = (5, 'x', true, NULL) 1
t=(, 'x', true, 10) row values
t = (2, 'y', true, 40) |
+ * + +
field types: int text boolean 1in

Row Types

et :: Twith T = (a int, b text, c boolean, d int)." Row
type T is defined when CREATE TABLE T (...) is performed.

e A row type <t> can also be explicitly defined via

CREATE TYPE <t> AS (a int, b text, c boolean, d int)

e A table T1 equivalent to T — well, almost... — may then
be created via

CREATE TABLE T1 OF <>

' Read :: as “has type.”

Row Field Access and *

e Named field access uses dot notation. Assume t :: T and
binding t = (5, 'x', true, NULL) then:

o t.b evaluates to 'x' (of type text),
o t.d evaluates to NULL (of type int).

e Field names are not first-class in SQL and must be named
verbatim (i.e., may not be computed).

e Notation t.* abbreviates t.a, t.b, t.c, t.d 1n contexts
where this makes sense.’

2 t.* is most often used in SELECT clauses.

Row Comparisons

e Row comparisons between rows tq, t. are performed field-
by-field and lexicographically (provided that the field
types match). Assume t; :: T, t, :: T:

t: & ti.a = t2.a AND -~ AND t4.d = t..d

o t1 < t; &
a<t;.aOR (ti.a =tz,.a AND t1.b < t,.b) OR -

O
—
=

]

e A row value 1s NULL iff all of its field values are NULL.

Assume the binding t = (NULL, NULL, NULL, NULL). Then
t IS NULL holds.

3 ' The SELECT Clause

A SELECT clause evaluates n expresSions <€1>, ..., <€p>:
SELECT <eq> AS <cq1>, ..., <en> AS <Cw>
e Creates n columns named <c1>, ..., <Cn>.

e In absence of AS «<c;>, PostgreSQL assigns name "?column?"
(for all such unnamed columns) = ambigiuity @.

e This course: explicitly use AS to name columns unless a
name can be derived from <e;> (e.g., as in <e;> = t.a).

e If column or table names are case-sensitive or contain
whitespace/symbols/keywords: use "<c;>" 1nstead.

SELECT

e If query 0 generates n row bindings, SELECT 1s evaluated
n times to emit n rows (but see aggregates below).

e A standalone SELECT (no FROM clause) is evaluated exactly
once and emits a single row:

SELECT 1 + 41 AS "The Answer", 'Gla' || 'D0OS' AS Portal;

42 GlaDOS |

4 : Literal Tables (VALUES) N

A VALUES clause constructs a transient table from a list of
provided row values <e;>:

VALUES <eq1>, ..., <ep>

e If n > 1, the <e;> must agree 1in arity and field types
(row value <eq1> is used to infer and determine types).

e VALUES automatically assigns column names "column<i>".
Use column aliasing to assign names (see FROM below).

e Orthogonality: a VALUES clause (in parentheses) may be
used anywhere a SQL query expects a table.

5 ' Generating Row Variable Bindings (FROM)

A FROM clause expects a set of tables «<T;> and successively
binds the row variables <t;> to the tables' rows:

SELECT ... — @
FROM <T+> AS <t1>, ooy, <In> AS <t» — ©

e The <T;> may be table names or SQL queries computlng
tables (in (-)).

e If you need to rename the columns of «T;i> (recall the
VALUES clause), use column aliasing on all (or only the
first k @) columns:

<Ti> AS <ti>(KCi10, eeey <Cik>)

FROM Computes Cartesian Products <

SELECT ...
FROM <T+.> AS <t4>, ..., <Th> AS <t

e This FROM clause generates |<T:>| x --- x |<T.>| bindings.
Semantics: compute the Cartesian product <T.> x --- x

<Tn>, draw the bindings for the <ti> from this product.
¢

e FROM operates over a set of tables (',' is associative
and commutative).

e In particular, row variable <t;> 1s not 1in scope in the
table subqueries <T:i+1>, oeey <Th>.

6 ' WHERE Discards Row Bindings

A WHERE clause 1introduces a predicate <p> that 1s evaluated
under all row variable bindings generated by FROM:

SELECT ... — 6
FROM <T+> AS <t1>, «cey, <In> AS <> - @
WHERE <p> — O

e A1l row variables <ti> are 1n scope 1n <p>.

e Only bindings that yield <p> = true are passed on.’

e Absence of a WHERE clause 1s interpreted as WHERE true.

3 If <p> evaluates to NULL # true, the binding is discarded.

7 ' Compositionality: Subqueries Instead of Values

The meaning of a complex expression 1S determined by the
meanings of constituent expressions.

—Principle of Compositionality

With the advent of the SQL-92 and SQL:1999 standards, SQL
has gained in compositionality and orthogonality:

e Wlhenever a (tabular or scalar) value v is required, a SQL
expression in () — a subquery — may be used to compute
V.

e Subqueries nest to arbitrary depth.

A SQL query that computes a single-row, single-column table

(column name O irrelevant) may be used in place of an atomic
value v:

V

In a scalar subquery...

e ... an empty table 1s interpreted as NULL,
e ... a table with > 1 rows or > 1 columns will yield a
runtime error.

Scalar Subqueries: Atomic Values

generate single column

4

SELECT 2 + (SELECT t.d
FROM T AS
WHERE E.a

AS _
t

?) AS "The Answer"

I
equality predicate on key column,

will yield < 1 rows

e Runtime errors: WHERE t.a > 2, SELECT t.a, t.d
e Yields NULL: WHERE t.a = 0

e AS _ assigns “don't care” column name — this 1s a case
where column naming 1s obsolete and adds nothing.

A SQL query that computes a single-row table with column
names <c;> may be used in place of row value (v,, ..., Vv,)
with field names <c;>:

<> |
V, Vn

In a scalar subquery...

e ... an empty table is interpreted as (NULL, ..., NULL),
e ... a table with > 1 rows will yield a runtime error.

Subqgueries may refer to any row variable t bound in their
enclosing queries (up to the top-level query):*

enclosing query enclosing query
s) 4)
FROM T AS t v o f o € X
. 7 :
[t J [EROM T AS tj
9 subquery Y 9 subquery Y

Row variable scoping 1n SQL

* Note: From inside the subquery — i.e., inside the (~) — row variable t is free.

Subqueries, Free Row Variahles, Correlation

e If t 1s free 1n subquery g, we may understand the
subquery as a function g(t): you supply a value for t, I
will compute the (tabular) value of g:

SELECT t1.* evaluated 5 times
FROM T AS t1 under t1 bindings:
WHERE t1.b <> (SELECT t2.b 1 t1=(Q, ...)
FROM T AS t2 - t1= (2, ...)
WHERE t1.a = t2.a) t1 = (3, ...)
U t1 = (4, ...)
free t1 = (5, ...)

e Subqueries featuring free variables are also known as
correlated.

8 ' Row Ordering (ORDER BY)

SQL tables are unordered bags of rows, but rows may be
locally ordered for result display or positional access:

SELECT ... - O
FROM ... -— @
WHERE ... -—- @

ORDER BY <e¢>, ..., <en> — O

e The order of the <e;> matters: sort order 1s determined
lexicographically with <eq> being the major criterion.

e The sort criteria <e;> are expressions that may refer to
column names 1n the SELECT clause.

SELECT t.* FROM T AS t ---

- ORDER BY t.d ASC NULLS FIRST

ﬂll-!ll
x' true NULL
1 'x' true 10
4 'y' false 20
3 'x' false 30
2 y true 40
- ORDER BY t.b DESC, t.c
ﬂ“-!-l
y' false
2 'y' true 40
3 ‘X' false 30
1 'x'* true® 10
5 'X true® NULL

e Note: ASC (ascending) is default. NULL is larger than any
non-NULL value. Ties': order 1s implementation-dependent.

ORDER BY establishes a well-defined row order that is local
to the current (sub)query:

may yleld rows 1n any order

4
SELECT t1.*

FROM (SELECT t2.* 1 sguaranteed row order
FROM T AS t2 +1nside the subquery only
ORDER BY t2.a) AS t1;

e /L. Never rely on row orders that appear consistent across
runs — may vary between DBMSs, presence of 1ndexes, etc.

e): What, then, 1s such local row order good for?

Positional Access to Rows N

Once row order has been established 1t makes sense to “skip
to the n™ row” or “fetch the next m rows.”

ORDER BY A4

A |)
e OFFSET «<n>
;) N rows skipped LIMIT <m>
© L mrous fetched o OFFSET 0 reads from the
\ I start. LIMIT ALL fetches

all rows.

e Alternative syntax: FETCH [FIRST | NEXT] <m> ROWS ONLY.

9 : Identify Particular Rows Among Peers (DISTINCT ON)

Extract the first row among a group of equivalent rows:

prefix of OR?ER BY clause

()
SELECT DISTINCT ON 8 (<e1>,.00,<Bn>) <C1>ye0s <Ck> —— O
FROM ... -— 0

ORDER BY <e1),...,<en>,<en+1>,...,<em) - 6

Sort rows j.n <e1>,ooo, <en>,<en+1),...,<9m> Ordero
Rows with 1dentical <eq>,...,<e,> values form one group.

From each of these groups, pick the first row 1in
CBn+1>,...,<Ep> Order.

e /L Without ORDER BY, step 3 picks any row 1n each group.

DISTINCT ON: Group, Then Pick First in Each Group

—— For each A,, extract the row with the largest A,
SELECT DISTINCT ON (A4) ...

FROM ...

ORDER BY A, A, DESC

A A,
group [| Xi | vyi1 | - | €— pick
1 X3 : : } discard

Xj | ys1 | =~ | €— pick
: : } discard

DISTINCT: Table-Wide Duplicate Removal

Keep only a single row from each group of duplicates:

SELECT DISTINCT CC1>y00sy<Cxk> —— O
FROM ... -- @

e True duplicate removal: rows are considered identical 1if
they agree on all k columns <c;»>.°

e Row order 1s irrelevant. DISTINCT returns a set of rows.

e May use SELECT ALL ... to explicitly document that a
query 1s expected to return duplicate rows.

> This is equivalent to SELECT DISTINCT ON (<cq>,..., <CKk>) <C1%yeun, <cx> FROM

Aggregate functions (short: aggregates) reduce a collection
of values to a single value (think summation, maximum).

e Simplest form: collection = entire table:

SELECT <aggq>(<eq>) AS <C1>, ..., <aggn>(<en>) AS <Cp>
FROM

e Reduction of 1nput rows: result table will have one row.

e Cannot mix aggregates with non-aggregate expression <e>
in SELECT clause:® which value of <e> should we pick?

6 But see GROUP BY later on.

Aggregate Functions: Semantics

SELECT agg(e) AS ¢ —- e will typically refer to t
FROM T AS t —— range over entire table T

e Aggregate agg defined by triple (g299, za99, pac9):
o ¢p299 (empty): aggregate of the empty value collection
o 2299 (zero): aggregate value initialiser
o @299 (merge): add value to existing aggregate

a « ¢age —- a will be aggregate value
for t 1n T: —— 1terate over all rows of T
x « e(t) -— value to be aggregated
if x # NULL: -— aggregates ignore NULL values (})
1f a = ¢a99; —— once we see first non-NULL value:
a « 2299 —— initialize aggregate

a + §299(a, X) —- maintain running aggregate

Aggregate agg m

COUNT a + 1

SUM NULL7 0 a + X

AVGS NULL <0, 0> «<a.1 + X, a.2 + D>
MAX NULL - maxz(a, X)

MIN NULL +w min,(a, X)

bool_and NULL true a A X
bool_or NULL false a Vv X

e The special form COUNT(*) counts rows regardless of their
fields' contents (NULL, in particular).

" If you think “this is wrong,” we're two already. Possible upside: sum differentiates between
summation over an empty collection vs. a collection of all Os.

8 Returns a.1 / a.2 as final aggregate value.

T

SELECT COUNT(*) AS "#rows",
COUNT(t.d) AS "#d",
SUM(t.d) AS "3d",
MAX(t.b) AS "max(b)",

bool_and(t.c) AS "Yc",
bool_or(t.d = 30) AS "3d=30"

FROM T AS t
WHERE <p>
<p> = true
IZEIIZI
100 'y false true |
<p> = false

IEIII-

NULL NULL NULL NULL

Ordered Aggregates

e For most aggregates agg, @299 is commutative (and
associative): row order does not matter.

e Order-sensitive aggregates admit a trailing
ORDER BY <eq>,...,<e,> argument that defines row order:?

— cast to text separator string
—— J J
SELECT string_agg(t.a :: text, ',' ORDER BY t.d) AS "all a"

FROM T AS t
'1,4,3,2,5'

9 @string-age pssentially is || (string concatenation) which is not commutative.

Filtered and Unique Aggregates

SELECT <agg>(<e>) FILTER (WHERE <p>)
FRONM

e FILTER clause alters aggregate semantics (see %):

X « e(t)
if x # NULL A p(x):

SELECT <agg>(DISTINCT <e>)
FRONM

e Aggregates distinct (non-NULL) values of expression «<e>.
(May use ALL to flag that duplicates are expected.)

11 ' Forming Groups of Rows

Once FROM has generated row bindings, SQL clauses operate
row-by-row. After GROUP BY: operate group-by-group:

SELECT <eq1>, ..., <€mw S
FROM ... ——
WHERE ... ——
GROUP BY <g+1>, ..., <gn> —
HAVING <p> —

QOO

e A1l rows that agree on all expressions <g;> (the set of
grouping criteria) form one group.

e = At @ and © we now process groups (not individual
rows). This affects <p> and the <e;>.

GROUP BY

SELECT ... <4“—
FROM ... — evaluated once per group (not per row)
GROUP BY A,
HAVING ... “—

A A,
........ . I Grouping partitions the row
the x; group { Xi | Yin : bindings:
Xi | Yi2 :

... P there are no empty groups

the x; group { Xi | Vi1 :
Xj | Yj2 : * each row belongs to exactly

.. One gr‘oup

GROUP BY Changes Field Types From t To bag(t)™

& T & E

€ L € 4
SELECT t.b, t.d E SELECT the(t.b) AS b, SUM(t.d) AS "yd"
FROM T AS t . FROM T AS t
GROUP BY t.b . GROUP BY t.b

e t.d references current group of d values: violates 1NF!
= After GROUP BY: must use aggregates on field values.

e t.b references current group of b values all of which are
equal 1n a group = SQL: using just t.b 1s OK.

o (# May think of hypothetical aggregate the(<e>) that
picks one among equal <e> values.)

%A view of GROUP BY that is due to Philip Wadler.

SELECT t.b AS "group”,

COUNT(*) AS size,
SUM(t.d) AS uzdu,
bool_and(t.a 7% 2 = 0) AS "Veven(a)",

string_agg(t.a :: text, ';') AS "all a"
FROM T AS t
GROUP BY t.b;

IEHMMIIEEIIHEEIIMEM&NH!IIHIIEIII
60 true '2:;4"
'y' 3 40 false 15355

e HAVING <p> acts like WHERE but after grouping:
<p> = false discards groups (not rows).

e The grouping criteria <g;> form a set — order 1s
irrelevant.

e Grouping on a key effectively puts each row 1in 1ts own
singleton group. (Typically a query smell &.)

e Expressions that are functionally dependent on the <g;»
are constant within a group (and may be used in SELECT).

o If SQL does not know about the FD, explicitly add <e>
to the set of <g;> — this will not affect the

grouping.

12 ' Bag and Set Operations

Tables contain bags of rows. SQL provides the common family
of binary bhag operations (no row order):

<qq> UNION ALL <q2> -- u* (bag union)
<qq1> INTERSECT ALL <g2> -- n* (bag intersection)
<q1> EXCEPT ALL <g2> -- * (bag difference)

e Row types (field names/types) of queries <q;> must match.

e With ALL, row multiplicities are respected: 1f row r
occurs n; times in <q;>, r will occur max(ni-nz,0) times
in <qq> EXCEPT ALL <qg2> (INTERSECT ALL: min(n4,n2)).

o Without ALL: obtain set semantics (no duplicates).

e Relational representation of measures (facts) depending
on multiple parameters (dimensions).

e Example: table prehistoric with dimensions class,
herbivore?, legs, fact speciles:

Table prehistoric

_class | herbivore? EE-M

'mammalia’ true 'Megatherium'

'mammalia’ true 4 'Paraceratherium'

'mammalia’ false 2 NULL
'mammalia’ false 4 'Sabretooth’
‘reptilia’ true 2 ‘Iguanodon'’
'reptilia’ true 4 'Brachiosaurus’
'reptilia’ false 2 ‘Velociraptor'
'reptilia’ false 4 NULL

Multiple GROUP BYs: GROUPING SETS

e Analyze (here: group, then aggregate) table <T> along
multiple dimensions = perform separate GROUP BYs on each
relevant dimension:

e SQL syntactic sugar:

SELECT <eq>, ..., <€m>
FROM <T>» —— Gi: grouplng criteria
GROUP BY GROUPING SETS (G1,...,Gn) —- sets in (---)

e Yields n 1individual GROUP BY queries q:i, glued together
by UNION ALL. If <ej;> ¢ G;, <e;> = NULL 1n q;.

ROLLUP

e Group along a path from any node G, up to the root:

ROLLUP (G1y...46n) = GROUPING SETS ((G1yeesyGn-1,Gn),

(G1,...,Gn—1),

(61),
()) A - root
hierarchy prehlstorlc animals
0\ class: mammals reptlles

herbivore?:
legs:

Megatherium s es NULL

CUBE

® slice for herbivore? = true ° °
[~T]
® / ©
0
. true | o ° 4
herbivore? — legs
false 2
mam rep
I I
I
class

CUBE (G1,...6n) = GROUPING SETS ((G14...,6n),] all 2n
: + subsets
) | considered

14 ' SQL Evaluation vs. Reading Order

SELECT DISTINCT ON (<es> W) <es> B, <aggs> B
FROM <qs> @
WHERE <p> B
GROUP BY <es> @
HAVING <p> 5

UNION / EXCEPT / INTERSECT 8 1 repeated O or more times,
E / all evaluated hefore 8

ORDER BY <es> B

OFFSET <nm> 10
LIMIT < 10

e Reading order is: (0,0,0,0',0,0,0,0),0,0.

Query Nesting and (Non-)Readability

SELECT --
FROM (SELECT -
FROM (SELECT -
FROM
:) AS <«descriptive>
) AS -

e The more complex the query and the more useful the
<descriptive> name becomes, the deeper it is buried.

e Query 1s a syntactic monolith. Tough to develop a query
1n stages/phases and assess the correctness of 1ts parts.

15 ' The let..in of SQL: WITH (Common Table Expressions)

Use common table expressions (CTEs) to bind table names
before they are used, potentially multiple times:

WITH
(T1>(<C11>,...,(C1,k1>) AS (
<g1>),
: Query <qg;> may refer to
<Tn>(<Cn1>yeeey<Cn,kn>) AS ({ tables <T1>,...,<T5-1>
Qn>), J
<> } «<q> may refer to all «<T;>

“Literate SQL”: Reading and writing order colncide.
Think of let <T¢> = <g4>, ... 1n <q> 1n your favorite FP
language. The <T;> are undefined outside WITH.

SQL With WITH

1. Define queries in stages, intermediate results in tables
<Ti>. May use <g> = TABLE «T:>" to debug stage 1.

2. Bundle a query with test data:

WITH
prehistoric(class,"herbivore?",legs,species) AS (
VALUES ('mammalia',true,?,'Megatherium'),

(‘reptilia’,false,4,NULL)
)
SELECT MAX(p.legs)

FROM prehistoric AS p

" Syntactic sugar for SELECT t.* FROM <T;> AS t.

WITH

Paleontology: dinosaur body shape (height/length ratio) and
form of locomotion (using 2 or 4 legs) correlate:

e Use this correlation to infer bipedality (quadropedality)
1n 1ncomplete dinosaur data sets:

mm

Gallimimus 2.4 ?

Table dinosaurs

 species helght 1ength [E;l
Ceratosaurus
Deinonychus 1. 2.7 2
Microvenator 0.8 1.2 2
Plateosaurus 2.1 7.9 2
Spinosaurus 2.4 12.2 2
Tyrannosaurus 7.0 15.2 2
Velociraptor 0.6 1.8 2
Apatosaurus 2.2 22.9 4
Brachiosaurus 7.6 30.5 4
Diplodocus 3.6 27.1 4
Supersaurus 10.0 30.5 4
Albertosaurus 4.6 9.1 NULL
Argentinosaurus 10.7 36.6 NULL
Compsognathus 0.6 0.9 NULL
Gallimimus 2.4 5.5 NULL
Mamenchisaurus 5.3 21.0 NULL
Oviraptor 0.9 1.5 NULL
Ultrasaurus 8.1 30.5 NULL |

Y Dinosaur Body Shapes

WITH
bodies(legs, shape) AS (
SELECT d.legs, AV6(d.height / d.length) AS shape
FROM dinosaurs AS d
WHERE d.legs IS NOT NULL
GROUP BY d.legs

)

Transient Table bodies

_legs
0.201
4 0.447

2

Y Dinosaur Body Shapes

e Query Plan:"” @&

1. Assume average body shapes 1n bodies are avallable
2. Iterate over all dinosaurs d:
» If locomotion for d 1s known, output d as 1s
» If locomotion for d 1s unknown:
= Compute body shape for d
» Find the shape entry b in bodies that matches d
the closest
» Use the locomotion i1n b to complete d, output
completed d

12 In this course, query plan refers to a “plan of attack” for a query problem, not EXPLAIN output.

