
Query Optimization

Torsten Grust

Query Optimization

Search Space Illustration

Dynamic Programming

Example: Four-Way Join

Algorithm

Discussion

Left/Right-Deep vs. Bushy

Greedy join enumeration

1

Chapter 10
Query Optimization
Exploring the Search Space of Alternative Query Plans

Architecture and Implementation of Database Systems
Summer 2013

Torsten Grust
Wilhelm-Schickard-Institut für Informatik

Universität Tübingen

Query Optimization

Torsten Grust

Query Optimization

Search Space Illustration

Dynamic Programming

Example: Four-Way Join

Algorithm

Discussion

Left/Right-Deep vs. Bushy

Greedy join enumeration

2

Finding the “Best” Query Plan

Throttle or break?

SELECT · · ·
FROM · · ·
WHERE · · ·

π

1NL

1hash

R σ

S

T
?

• We already saw that there may be more than one way to
answer a given query.

• Which one of the join operators should we pick? With
which parameters (block size, buffer allocation, . . .)?

• The task of finding the best execution plan is, in fact, the
“holy grail” of any database implementation.

Query Optimization

Torsten Grust

Query Optimization

Search Space Illustration

Dynamic Programming

Example: Four-Way Join

Algorithm

Discussion

Left/Right-Deep vs. Bushy

Greedy join enumeration

3

Plan Generation Process

Query compilation

SQL

Parser

Rewriting

Optimizer

Plan

• Parser: syntactical/semantical analysis

• Rewriting: heuristic optimizations
independent of the current database
state (table sizes, availability of indexes,
etc.). For example:

• Apply predicates early
• Avoid unnecessary duplicate

elimination

• Optimizer: optimizations that rely on a
cost model and information about the
current database state

• The resulting plan is then evaluated by
the system’s execution engine.

Query Optimization

Torsten Grust

Query Optimization

Search Space Illustration

Dynamic Programming

Example: Four-Way Join

Algorithm

Discussion

Left/Right-Deep vs. Bushy

Greedy join enumeration

4

Impact on Performance

Finding the right plan can dramatically impact performance.

Sample query over TPC-H tables

1 SELECT L.L_PARTKEY, L.L_QUANTITY, L.L_EXTENDEDPRICE
2 FROM LINEITEM L, ORDERS O, CUSTOMER C
3 WHERE L.L_ORDERKEY = O.O_ORDERKEY
4 AND O.O_CUSTKEY = C.C_CUSTKEY
5 AND C.C_NAME = ’IBM Corp.’

1

1

L

6 mio

O

1.5 mio

6 mio
σ

C

150,000

1

57 1
1

σ

C
150,000

1
O
1.5 mio

14
L

6 mio

57

• In terms of execution times, these differences can easily
mean “seconds versus days.”

Query Optimization

Torsten Grust

Query Optimization

Search Space Illustration

Dynamic Programming

Example: Four-Way Join

Algorithm

Discussion

Left/Right-Deep vs. Bushy

Greedy join enumeration

5

The SQL Parser

• Besides some analyses regarding the syntactical and
semantical correctness of the input query, the parser creates
an internal representation of the input query.

• This representation still resembles the original query:
• Each SELECT-FROM-WHERE clause is translated into a

query block.

Deriving a query block from a SQL SFW block

SELECT proj-list
FROM R1, R2, . . . , Rn
WHERE predicate-list
GROUP BY groupby-list
HAVING having-list

→

πproj-list

σhaving-list

grpbygroupby-list

σpredicate-list

×
R1 R2 · · · Rn

query block

• Each Ri can be a base relation or another query block.

Query Optimization

Torsten Grust

Query Optimization

Search Space Illustration

Dynamic Programming

Example: Four-Way Join

Algorithm

Discussion

Left/Right-Deep vs. Bushy

Greedy join enumeration

6

Finding the “Best” Execution Plan

SQL

Parser

Rewriting

Optimizer

Plan

The parser output is fed into a rewrite engine
which, again, yields a tree of query blocks.

It is then the optimizer’s task to come up with
the optimal execution plan for the given query.

Essentially, the optimizer

1 enumerates all possible execution plans,
(if this yields too many plans, at least enumerate the “promising”
plan candidates)

2 determines the quality (cost) of each plan, then

3 chooses the best one as the final execution plan.

Before we can do so, we need to answer the question

• What is a “good” execution plan at all?

Query Optimization

Torsten Grust

Query Optimization

Search Space Illustration

Dynamic Programming

Example: Four-Way Join

Algorithm

Discussion

Left/Right-Deep vs. Bushy

Greedy join enumeration

7

Cost Metrics

Database systems judge the quality of an execution plan based
on a number of cost factors, e.g.,

• the number of disk I/Os required to evaluate the plan,

• the plan’s CPU cost,

• the overall response time observable by the database client
as well as the total execution time.

A cost-based optimizer tries to anticipate these costs and find
the cheapest plan before actually running it.

• All of the above factors depend on one critical piece of
information: the size of (intermediate) query results.

• Database systems, therefore, spend considerable effort into
accurate result size estimates.

Query Optimization

Torsten Grust

Query Optimization

Search Space Illustration

Dynamic Programming

Example: Four-Way Join

Algorithm

Discussion

Left/Right-Deep vs. Bushy

Greedy join enumeration

8

Result Size Estimation

Consider a query block corresponding to a simple SFW query Q.

SFW query block

πproj-list

σpredicate-list

×
R1 R2 · · · Rn

We can estimate the result size of Q based on

• the size of the input tables, |R1|, . . . , |Rn|, and

• the selectivity sel(p) of the predicate predicate-list:

|Q| ≈ |R1| · |R2| · · · |Rn| · sel(predicate-list) .

Query Optimization

Torsten Grust

Query Optimization

Search Space Illustration

Dynamic Programming

Example: Four-Way Join

Algorithm

Discussion

Left/Right-Deep vs. Bushy

Greedy join enumeration

9

Join Optimization
• We’ve now translated the query into a graph of query

blocks.
• Query blocks essentially are a multi-way Cartesian

product with a number of selection predicates on top.
• We can estimate the cost of a given execution plan.

• Use result size estimates in combination with the cost
for individual join algorithms discussed in previous
chapters.

We are now ready to enumerate all possible execution plans, i.e.,
all possible 2-way join combinations for each query block.

Ways of building a 3-way join from two 2-way joins

1
1

R S

T

1
1

S R

T

1
1

R T

S

1
1

S T

R

1
1

T R

S

1
1

T S

R

1
R 1

S T

1
S 1

R T

1
R 1

T S

1
S 1

T S

1
T 1

R S

1
T 1

S R

Query Optimization

Torsten Grust

Query Optimization

Search Space Illustration

Dynamic Programming

Example: Four-Way Join

Algorithm

Discussion

Left/Right-Deep vs. Bushy

Greedy join enumeration

10

How Many Such Combinations Are There?

• A join over n+ 1 relations R1, . . . , Rn+1 requires n binary
joins.

• Its root-level operator joins sub-plans of k and n− k − 1
join operators (0 6 k 6 n− 1):

1

k joins
R1, . . . , Rk+1

n − k − 1 joins
Rk+2, . . . , Rn+1

• Let Ci be the number of possibilities to construct a binary
tree of i inner nodes (join operators):

Cn =
n−1∑

k=0

Ck · Cn−k−1 .

Query Optimization

Torsten Grust

Query Optimization

Search Space Illustration

Dynamic Programming

Example: Four-Way Join

Algorithm

Discussion

Left/Right-Deep vs. Bushy

Greedy join enumeration

11

Catalan Numbers

This recurrence relation is satisfied by Catalan numbers:

Cn =
n−1∑

k=0

Ck · Cn−k−1 =
(2n)!

(n+ 1)!n!
,

describing the number of ordered binary trees with n+ 1 leaves.

For each of these trees, we can permute the input relations
(why?) R1, . . . , Rn+1, leading to:

Number of possible join trees for an (n+ 1)-way relational join

(2n)!
(n+ 1)!n!

· (n+ 1)! =
(2n)!
n!

Query Optimization

Torsten Grust

Query Optimization

Search Space Illustration

Dynamic Programming

Example: Four-Way Join

Algorithm

Discussion

Left/Right-Deep vs. Bushy

Greedy join enumeration

12

Search Space

The resulting search space is enormous:

Possible bushy join trees joining n relations

number of relations n Cn−1 join trees

2 1 2
3 2 12
4 5 120
5 14 1,680
6 42 30,240
7 132 665,280
8 429 17,297,280

10 4,862 17,643,225,600

• And we haven’t yet even considered the use of k different
join algorithms (yielding another factor of k(n−1))!

Query Optimization

Torsten Grust

Query Optimization

Search Space Illustration

Dynamic Programming

Example: Four-Way Join

Algorithm

Discussion

Left/Right-Deep vs. Bushy

Greedy join enumeration

13

Dynamic Programming

The traditional approach to master this search space is the use of
dynamic programming.

Idea:

• Find the cheapest plan for an n-way join in n passes.

• In each pass k, find the best plans for all k-relation
sub-queries.

• Construct the plans in pass k from best i-relation and
(k − i)-relation sub-plans found in earlier passes (1 6 i < k).

Assumption:

• To find the optimal global plan, it is sufficient to only
consider the optimal plans of its sub-queries (“Principle of
optimality”).

Query Optimization

Torsten Grust

Query Optimization

Search Space Illustration

Dynamic Programming

Example: Four-Way Join

Algorithm

Discussion

Left/Right-Deep vs. Bushy

Greedy join enumeration

14

Dynamic Programming

Example (Four-way join of tables R1,...,4)

Pass 1 (best 1-relation plans)
Find the best access path to each of the Ri individually
(considers index scans, full table scans).

Pass 2 (best 2-relation plans)
For each pair of tables Ri and Rj, determine the best order to
join Ri and Rj (use Ri 1 Rj or Rj 1 Ri ?):

optPlan({Ri, Rj})← best of Ri 1 Rj and Rj 1 Ri .

→ 12 plans to consider.

Pass 3 (best 3-relation plans)
For each triple of tables Ri, Rj, and Rk , determine the best
three-table join plan, using sub-plans obtained so far:

optPlan({Ri, Rj, Rk})← best of Ri 1 optPlan({Rj, Rk}),
optPlan({Rj, Rk}) 1 Ri, Rj 1 optPlan({Ri, Rk}),

→ 24 plans to consider.

Query Optimization

Torsten Grust

Query Optimization

Search Space Illustration

Dynamic Programming

Example: Four-Way Join

Algorithm

Discussion

Left/Right-Deep vs. Bushy

Greedy join enumeration

15

Dynamic Programming

Example (Four-way join of tables R1,...,4 (cont’d))

Pass 4 (best 4-relation plan)
For each set of four tables Ri, Rj, Rk , and Rl , determine the
best four-table join plan, using sub-plans obtained so far:

optPlan({Ri, Rj, Rk, Rl})← best of Ri 1 optPlan({Rj, Rk, Rl}),
optPlan({Rj, Rk, Rl}) 1 Ri, Rj 1 optPlan({Ri, Rk, Rl}), . . . ,
optPlan({Ri, Rj}) 1 optPlan({Rk, Rl}),

→ 14 plans to consider.

• Overall, we looked at only 50 (sub-)plans (instead of the
possible 120 four-way join plans;↗ slide 12).

• All decisions required the evaluation of simple sub-plans
only (no need to re-evaluate optPlan(·) for already known
relation combinations⇒ use lookup table).

Query Optimization

Torsten Grust

Query Optimization

Search Space Illustration

Dynamic Programming

Example: Four-Way Join

Algorithm

Discussion

Left/Right-Deep vs. Bushy

Greedy join enumeration

16

Sharing Under the Optimality Principle

Sharing optimal sub-plans

151 / 575

Join Ordering Dynamic Programming

Search Space with Sharing under Optimality Principle

R4R3R2R1

{R3, R4}
{R2, R4}

{R2, R3}
{R1, R2}
{R1, R3}
{R1, R4}

{R2, R3, R4}
{R1, R3, R4}

{R1, R2, R3}
{R1, R2, R4}

{R1, R2, R3, R4}

Drawing by Guido Moerkotte, U Mannheim

Query Optimization

Torsten Grust

Query Optimization

Search Space Illustration

Dynamic Programming

Example: Four-Way Join

Algorithm

Discussion

Left/Right-Deep vs. Bushy

Greedy join enumeration

17

Dynamic Programming Algorithm

Find optimal n-way bushy join tree via dynamic programming

1 Function: find_join_tree_dp (q(R1, . . . , Rn))

2 for i = 1 to n do
3 optPlan({Ri})← access_plans (Ri) ;
4 prune_plans (optPlan({Ri})) ;

5 for i = 2 to n do
6 foreach S ⊆ {R1, . . . , Rn} such that |S| = i do
7 optPlan(S)← ∅ ;
8 foreach O ⊂ S with O 6= ∅ do
9 optPlan(S)← optPlan(S)∪

10 possible_joins


 1

optPlan(O) optPlan(S \ O)


 ;

11 prune_plans (optPlan(S)) ;

12 return optPlan({R1, . . . , Rn}) ;

• possible_joins [R 1 S] enumerates the possible joins
between R and S (nested loops join, merge join, etc.).

• prune_plans (set) discards all but the best plan from set.

Query Optimization

Torsten Grust

Query Optimization

Search Space Illustration

Dynamic Programming

Example: Four-Way Join

Algorithm

Discussion

Left/Right-Deep vs. Bushy

Greedy join enumeration

18

Dynamic Programming—Discussion

• Enumerate all non-empty true subsets of S (using C):
1 O = S & -S;
2 do {
3 /* perform operation on O */
4 O = S & (O - S);
5 } while (O != S);

• find_join_tree_dp () draws its advantage from filtering
plan candidates early in the process.

• In our example on slide 14, pruning in Pass 2 reduced
the search space by a factor of 2, and another factor of 6
in Pass 3.

• Some heuristics can be used to prune even more plans:
• Try to avoid Cartesian products.
• Produce left-deep plans only (see next slides).

• Such heuristics can be used as a handle to balance plan
quality and optimizer runtime.

Control optimizer investment

1 SET CURRENT QUERY OPTIMIZATION = n

Query Optimization

Torsten Grust

Query Optimization

Search Space Illustration

Dynamic Programming

Example: Four-Way Join

Algorithm

Discussion

Left/Right-Deep vs. Bushy

Greedy join enumeration

19

Left/Right-Deep vs. Bushy Join Trees

The algorithm on slide 17 explores all possible shapes a join tree
could take:

Join tree shapes

1
1

1
· · · · · ·

· · ·
· · ·

left-deep

1
1

· · · · · ·
1

· · · · · ·
bushy

(everything else)

1
· · · 1
· · · 1
· · · · · ·

right-deep

Actual systems often prefer left-deep join trees.1

• The inner (rhs) relation always is a base relation.

• Allows the use of index nested loops join.

• Easier to implement in a pipelined fashion.

1The seminal System R prototype, e.g., considered only left-deep plans.

Query Optimization

Torsten Grust

Query Optimization

Search Space Illustration

Dynamic Programming

Example: Four-Way Join

Algorithm

Discussion

Left/Right-Deep vs. Bushy

Greedy join enumeration

20

Join Order Makes a Difference

• XPath location step evaluation over relationally encoded XML
data.2

• n-way self-join with a range predicate.

1 2 3 4 5 6 7 8 9 10 11 12
0 0

50 50

100 100

150 150

200 200

250 250

ex
ec

.t
im

e
[s

]

path length 35 MB XML · IBM DB2 9 SQL

2↗ Grust et al. Accelerating XPath Evaluation in Any RDBMS. TODS 2004.
http://www.pathfinder-xquery.org/

Query Optimization

Torsten Grust

Query Optimization

Search Space Illustration

Dynamic Programming

Example: Four-Way Join

Algorithm

Discussion

Left/Right-Deep vs. Bushy

Greedy join enumeration

21

Join Order Makes a Difference

Contrast the execution plans for a path of 8 and 9 XPath location
steps:

Join plans

left-deep join tree bushy join tree

⇒ DB2’s optimizer essentially gave up in the face of 9+ joins.

Query Optimization

Torsten Grust

Query Optimization

Search Space Illustration

Dynamic Programming

Example: Four-Way Join

Algorithm

Discussion

Left/Right-Deep vs. Bushy

Greedy join enumeration

22

Joining Many Relations

Dynamic programming still has exponential resource
requirements:
(↗ K. Ono, G.M. Lohman, Measuring the Complexity of Join Enumeration
in Query Optimization, VLDB 1990)

• time complexity: O(3n)

• space complexity: O(2n)

This may still be too expensive

• for joins involving many relations (∼ 10–20 and more),

• for simple queries over well-indexed data (where the right
plan choice should be easy to make).

The greedy join enumeration algorithm jumps into this gap.

Query Optimization

Torsten Grust

Query Optimization

Search Space Illustration

Dynamic Programming

Example: Four-Way Join

Algorithm

Discussion

Left/Right-Deep vs. Bushy

Greedy join enumeration

23

Greedy Join Enumeration

Greedy join enumeration for n-way join

1 Function: find_join_tree_greedy (q(R1, . . . , Rn))

2 worklist ← ∅ ;
3 for i = 1 to n do
4 worklist ← worklist ∪ best_access_plan (Ri) ;

5 for i = n downto 2 do
// worklist = {P1, . . . , Pi}

6 find Pj, Pk ∈ worklist and 1... such that cost(Pj 1... Pk) is minimal ;
7 worklist ← worklist \ {Pj, Pk} ∪ {(Pj 1... Pk)} ;

// worklist = {P1}
8 return single plan left in worklist ;

• In each iteration, choose the cheapest join that can be made
over the remaining sub-plans at that time (this is the
“greedy” part).

• Observe that find_join_tree_greedy () operates similar
to finding the optimum binary tree for Huffman coding.

Query Optimization

Torsten Grust

Query Optimization

Search Space Illustration

Dynamic Programming

Example: Four-Way Join

Algorithm

Discussion

Left/Right-Deep vs. Bushy

Greedy join enumeration

24

Join Enumeration—Discussion

Greedy join enumeration:

• The greedy algorithm has O(n3) time complexity:
• The loop has O(n) iterations.
• Each iteration looks at all remaining pairs of plans in
worklist. An O(n2) task.

Other join enumeration techniques:

• Randomized algorithms: randomly rewrite the join tree one
rewrite at a time; use hill-climbing or simulated annealing
strategy to find optimal plan.

• Genetic algorithms: explore plan space by combining
plans (“creating offspring”) and altering some plans
randomly (“mutations”).

Query Optimization

Torsten Grust

Query Optimization

Search Space Illustration

Dynamic Programming

Example: Four-Way Join

Algorithm

Discussion

Left/Right-Deep vs. Bushy

Greedy join enumeration

25

Physical Plan Properties

Consider the simple equi-join query

Join query over TPC-H tables

1 SELECT O.O_ORDERKEY
2 FROM ORDERS O, LINEITEM L
3 WHERE O.O_ORDERKEY = L.L_ORDERKEY

where table ORDERS is indexed with a clustered index OK_IDX on
column O_ORDERKEY.

Possible table access plans (1-relation plans) are:

ORDERS • full table scan: estimated I/Os: NORDERS

• index scan: estimated I/Os: NOK_IDX + NORDERS.

LINEITEM • full table scan: estimated I/Os: NLINEITEM.

Query Optimization

Torsten Grust

Query Optimization

Search Space Illustration

Dynamic Programming

Example: Four-Way Join

Algorithm

Discussion

Left/Right-Deep vs. Bushy

Greedy join enumeration

26

Physical Plan Properties

• Since the full table scan is the cheapest access method for
both tables, our join algorithms will select them as the best
1-relation plans in Pass 1.3

To join the two scan outputs, we now have the choices
• nested loops join,
• hash join, or
• sort both inputs, then use merge join.

Hash join or sort-merge join are probably the preferable
candidates, incurring a cost of ≈ 2 · (NORDERS + NLINEITEM).

⇒ Overall cost:
NORDERS + NLINEITEM + 2 · (NORDERS + NLINEITEM).

3Dynamic programming and the greedy algorithm happen to do the same in
this example.

Query Optimization

Torsten Grust

Query Optimization

Search Space Illustration

Dynamic Programming

Example: Four-Way Join

Algorithm

Discussion

Left/Right-Deep vs. Bushy

Greedy join enumeration

27

Physical Plan Properties—A Better Plan

It is easy to see, however, that there is a better way to evaluate
the query:

1 Use an index scan to access ORDERS. This guarantees that
the scan output is already in O_ORDERKEY order.

2 Then only sort LINEITEM and

3 join using merge join.

⇒ Overall cost: (NOK_IDX + NORDERS)︸ ︷︷ ︸
1

+ 2 · NLINEITEM︸ ︷︷ ︸
2 / 3

.

Although more expensive as a standalone table access plan, the
use of the index (order enforcement) pays off later on in the
overall plan.

Query Optimization

Torsten Grust

Query Optimization

Search Space Illustration

Dynamic Programming

Example: Four-Way Join

Algorithm

Discussion

Left/Right-Deep vs. Bushy

Greedy join enumeration

28

Physical Plan Properties: Interesting Orders

• The advantage of the index-based access to ORDERS is that it
provides beneficial physical properties.

• Optimizers, therefore, keep track of such properties by
annotating candidate plans.

• System R introduced the concept of interesting orders,
determined by

• ORDER BY or GROUP BY clauses in the input query, or
• join attributes of subsequent joins (; merge join).

⇒ In prune_plans (), retain
• the cheapest “unordered” plan and
• the cheapest plan for each interesting order.

Query Optimization

Torsten Grust

Query Optimization

Search Space Illustration

Dynamic Programming

Example: Four-Way Join

Algorithm

Discussion

Left/Right-Deep vs. Bushy

Greedy join enumeration

29

Query Rewriting

• Join optimization essentially takes a set of relations and a set
of join predicates to find the best join order.

• By rewriting query graphs beforehand, we can improve the
effectiveness of this procedure.

• The query rewriter applies heuristic rules, without looking
into the actual database state (no information about
cardinalities, indexes, etc.).
In particular, the optimizer

• relocates predicates (predicate pushdown),
• rewrites predicates, and
• unnests queries.

Query Optimization

Torsten Grust

Query Optimization

Search Space Illustration

Dynamic Programming

Example: Four-Way Join

Algorithm

Discussion

Left/Right-Deep vs. Bushy

Greedy join enumeration

30

Predicate Simplification

Rewrite

Example (Query against TPC-H table)

1 SELECT *
2 FROM LINEITEM L
3 WHERE L.L_TAX * 100 < 5

into

Example (Query after predicate simplification)

1 SELECT *
2 FROM LINEITEM L
3 WHERE L.L_TAX < 0.05

� In which sense is the rewritten predicate simpler?

Why would a RDBMS query optimizer rewrite the selection
predicate as shown above?

Query Optimization

Torsten Grust

Query Optimization

Search Space Illustration

Dynamic Programming

Example: Four-Way Join

Algorithm

Discussion

Left/Right-Deep vs. Bushy

Greedy join enumeration

31

Introducing Additional Join Predicates

Implicit join predicates as in

Implicit join predicate through transitivity

1 SELECT *
2 FROM A, B, C
3 WHERE A.a = B.b AND B.b = C.c

can be turned into explicit ones:

Explicit join predicate

1 SELECT *
2 FROM A, B, C
3 WHERE A.a = B.b AND B.b = C.c
4 AND

:::
A.a

:
=
::::
C.c

This makes the following join tree feasible:

(A 1 C) 1 B .

(Note: (A 1 C) would have been a Cartesian product before.)

Query Optimization

Torsten Grust

Query Optimization

Search Space Illustration

Dynamic Programming

Example: Four-Way Join

Algorithm

Discussion

Left/Right-Deep vs. Bushy

Greedy join enumeration

32

Nested Queries and Correlation

SQL provides a number of ways to write nested queries.

• Uncorrelated sub-query:

No free variables in subquery

1 SELECT *
2 FROM ORDERS O
3 WHERE O_CUSTKEY IN (SELECT C_CUSTKEY
4 FROM CUSTOMER
5 WHERE C_NAME = ’IBM Corp.’)

• Correlated sub-query:

Row variable O occurs free in subquery

1 SELECT *
2 FROM ORDERS O
3 WHERE O.O_CUSTKEY IN
4 (SELECT C.C_CUSTKEY
5 FROM CUSTOMER C
6 WHERE C.C_ACCTBAL < O.O_TOTALPRICE)

Query Optimization

Torsten Grust

Query Optimization

Search Space Illustration

Dynamic Programming

Example: Four-Way Join

Algorithm

Discussion

Left/Right-Deep vs. Bushy

Greedy join enumeration

33

Query Unnesting

• Taking query nesting literally might be expensive.
• An uncorrelated query, e.g., need not be re-evaluated for

every tuple in the outer query.

• Oftentimes, sub-queries are only used as a syntactical way to
express a join (or a semi-join).

• The query rewriter tries to detect such situations and make
the join explicit.

• This way, the sub-query can become part of the regular join
order optimization.

� Turning correlation into joins

Reformulate the correlated query of slide 32 (use SQL syntax or
relational algebra) to remove the correlation (and introduce a
join).

↗ Won Kim. On Optimizing an SQL-like Nested Query. ACM TODS, vol. 7,
no. 3, September 1982.

Query Optimization

Torsten Grust

Query Optimization

Search Space Illustration

Dynamic Programming

Example: Four-Way Join

Algorithm

Discussion

Left/Right-Deep vs. Bushy

Greedy join enumeration

34

Summary

Query Parser
Translates input query into (SFW-like) query blocks.

Rewriter
Logical (database state-independent) optimizations;
predicate simplification; query unnesting.

(Join) Optimization
Find “best” query execution plan based on a cost model
(considering I/O cost, CPU cost, . . .); data statistics
(histograms); dynamic programming, greedy join
enumeration; physical plan properties (interesting orders).

Database optimizers still are true pieces of art. . .

Query Optimization

Torsten Grust

Query Optimization

Search Space Illustration

Dynamic Programming

Example: Four-Way Join

Algorithm

Discussion

Left/Right-Deep vs. Bushy

Greedy join enumeration

35

“Picasso” Plan Diagrams

Generated by “Picasso”: SQL join query with filters of
parameterizable selectivities (0 . . . 100) against both join inputs

(a) Plan Diagram (b) Cost Diagram

Figure 1:Smooth Plan and Cost Diagram (Query 7)

The Picasso Tool

As part of our ongoing project on developing value-
addition software for query optimization [24], we have cre-
ated a tool, calledPicasso, that given a query and a rela-
tional engine, automatically generates the associated plan
and cost diagrams. In this paper, we report on the fea-
tures of the plan/cost diagrams output by Picasso on a suite
of three popular commercial query optimizers for queries
based on the TPC-H benchmark. [Due to legal restrictions,
these optimizers are anonymously identified as OptA, OptB
and OptC, in the sequel.]

Our evaluation shows that a few queries in the bench-
mark do produce “well-behaved” or “smooth” plan dia-
grams, like that shown in Figure 1(a). A substantial remain-
der, however, result in extremely complex and intricate plan
diagrams that appear similar tocubist paintings3, providing
rich material for investigation. A particularly compelling
example is shown in Figure 2(a) for Query 8 of the bench-
mark with optimizer OptA4, where no less than 68 plans
cover the space in a highly convoluted manner! Further,
even this cardinality is aconservativeestimate since it was
obtained with a query grid of 100 x 100 – a finer grid size
of 300 x 300 resulted in the plan cardinality going up to 80
plans!

Before we go on, we hasten to clarify that our goal in
this paper is to provide a broad overview of the intrigu-
ing behavior of modern optimizers, butnot to make judge-
ments on specific optimizers, nor to draw conclusions about
the relative qualities of their execution plans. Further, not
being privy to optimizer internals, some of the remarks

3Hence, the name of our tool – Pablo Picasso is considered to bea
founder of the cubist painting genre [23].

4Operating at its highest optimization level.

made here are perforce speculative in nature and should
therefore be treated as such. Our intention is primarily to
alert database system designers and developers to the phe-
nomena that we have encountered during the course of our
study, with the hope that they may prove useful in building
the next generation of optimizers.

Features of Plan and Cost Diagrams

Analyzing the TPC-H-based query plan and cost diagrams
provides a variety of interesting insights, including the fol-
lowing:

Fine-grained Choices: Modern query optimizers often
make extremelyfine-grainedplan choices, exhibiting
a marked skew in the space coverage of the individual
plans. For example, 80 percent of the space is usu-
ally covered by less than 20 percent of the plans, with
many of the smaller plans occupying less thanone
percentof the selectivity space. Using the well-known
Gini index [22], which ranges over [0,1], to quantify
the skew, we find that all the optimizers,across the
board, exhibit a marked skew in excess of 0.5 for most
queries, on occasion going even higher than 0.8.

Further, and more importantly, we show that the
small-sized plans may often be supplanted by larger
siblings without substantively affecting the quality.
For example, the plan diagram of Figure 2(a) which
has 68 plans can be “reduced” to that shown in Fig-
ure 2(b) featuring as few assevenplans, without in-
creasing the estimated cost of any individual query
point by more than 10 percent.

Overall, this leads us to the hypothesis that current
optimizers may perhaps be over-sophisticated in that

(a) Complex Plan Diagram (b) Reduced Plan Diagram

Figure 2:Complex Plan and Reduced Plan Diagram (Query 8, OptA)

they are “doing too good a job”, not merited by the
coarseness of the underlying cost space. Moreover,
if it were possible to simplify the optimizer to pro-
duce only reduced plan diagrams, it is plausible that
the considerable processing overheads typically asso-
ciated with query optimization could be significantly
lowered.

Complex Patterns: The plan diagrams exhibit a variety
of intricate tessellated patterns, includingspeckles,
stripes, blinds, mosaicsandbands, among others. For
example, witness the rapidly alternating choices be-
tween plans P12 (dark green) and P16 (light gray)
in the bottom left quadrant of Figure 2(a). Further,
the boundaries of the plan optimality regions can be
highly irregular – a case in point is plan P8 (dark
pink) in the top right quadrant of Figure 2(a). These
complex patterns appear to indicate the presence of
strongly non-linear and discretized cost models, again
perhaps an over-kill in light of Figure 2(b).

Non-Monotonic Cost Behavior: We have found quite a
few instances where, although the base relation selec-
tivities and the result cardinalities are monotonically
increasing, the cost diagram doesnot show a corre-
sponding monotonic behavior.5 Sometimes, the non-
monotonic behavior arises due to a change in plan,
perhaps understandable given the restricted search
space evaluated by the optimizer. But, more surpris-
ingly, we have also encountered situations where a
plan shows such behavior eveninternal to its optimal-
ity region.

5Our query setup is such that in addition to the result cardinality mono-
tonically increasing as we travel outwards along the selectivity axes, the
result tuples are alsosupersetsof the previous results.

Validity of PQO: A rich body of literature exists onpara-
metric query optimization(PQO) [1, 2, 7, 8, 3, 4, 10,
11, 12]. The goal here is to apriori identify the optimal
set of plans for the entire relational selectivity space
at compile time, and subsequently to use at run time
the actual selectivity parameter settings to identify the
best plan – the expectation is that this would be much
faster than optimizing the query from scratch. Much
of this work is based on a set of assumptions, that we
do not find to hold true,even approximately, in the
plan diagrams produced by the commercial optimiz-
ers.

For example, one of the assumptions is that a plan is
optimal within theentire regionenclosed by its plan
boundaries. But, in Figure 2(a), this is violated by the
small (brown) rectangle of plan P14, close to coordi-
nates (60,30), in the (light-pink) optimality region of
plan P3, and there are several other such instances.

On the positive side, however, we show that some
of the important PQO assumptions do hold approxi-
mately forreducedplan diagrams.

1.1 Organization

The above effects are described in more detail in the re-
mainder of this paper, which is organized as follows: In
Section 2, we present the Picasso tool and the testbed en-
vironment. Then, in Section 3, the skew in the plan space
distribution, as well as techniques for reducing the plan set
cardinalities, are discussed. The relationship to PQO is ex-
plored in Section 4. Interesting plan diagram motifs are
presented in Section 5. An overview of related work is pro-
vided in Section 6. Finally, in Section 7, we summarize

↗ Naveen Reddy and Jayant Haritsa. Analyzing Plan Diagrams of
Database Query Optimizers. VLDB 2005.

Query Optimization

Torsten Grust

Query Optimization

Search Space Illustration

Dynamic Programming

Example: Four-Way Join

Algorithm

Discussion

Left/Right-Deep vs. Bushy

Greedy join enumeration

35

“Picasso” Plan Diagrams

Generated by “Picasso”: SQL join query with filters of
parameterizable selectivities (0 . . . 100) against both join inputs

(a) Plan Diagram (b) Cost Diagram

Figure 1:Smooth Plan and Cost Diagram (Query 7)

The Picasso Tool

As part of our ongoing project on developing value-
addition software for query optimization [24], we have cre-
ated a tool, calledPicasso, that given a query and a rela-
tional engine, automatically generates the associated plan
and cost diagrams. In this paper, we report on the fea-
tures of the plan/cost diagrams output by Picasso on a suite
of three popular commercial query optimizers for queries
based on the TPC-H benchmark. [Due to legal restrictions,
these optimizers are anonymously identified as OptA, OptB
and OptC, in the sequel.]

Our evaluation shows that a few queries in the bench-
mark do produce “well-behaved” or “smooth” plan dia-
grams, like that shown in Figure 1(a). A substantial remain-
der, however, result in extremely complex and intricate plan
diagrams that appear similar tocubist paintings3, providing
rich material for investigation. A particularly compelling
example is shown in Figure 2(a) for Query 8 of the bench-
mark with optimizer OptA4, where no less than 68 plans
cover the space in a highly convoluted manner! Further,
even this cardinality is aconservativeestimate since it was
obtained with a query grid of 100 x 100 – a finer grid size
of 300 x 300 resulted in the plan cardinality going up to 80
plans!

Before we go on, we hasten to clarify that our goal in
this paper is to provide a broad overview of the intrigu-
ing behavior of modern optimizers, butnot to make judge-
ments on specific optimizers, nor to draw conclusions about
the relative qualities of their execution plans. Further, not
being privy to optimizer internals, some of the remarks

3Hence, the name of our tool – Pablo Picasso is considered to bea
founder of the cubist painting genre [23].

4Operating at its highest optimization level.

made here are perforce speculative in nature and should
therefore be treated as such. Our intention is primarily to
alert database system designers and developers to the phe-
nomena that we have encountered during the course of our
study, with the hope that they may prove useful in building
the next generation of optimizers.

Features of Plan and Cost Diagrams

Analyzing the TPC-H-based query plan and cost diagrams
provides a variety of interesting insights, including the fol-
lowing:

Fine-grained Choices: Modern query optimizers often
make extremelyfine-grainedplan choices, exhibiting
a marked skew in the space coverage of the individual
plans. For example, 80 percent of the space is usu-
ally covered by less than 20 percent of the plans, with
many of the smaller plans occupying less thanone
percentof the selectivity space. Using the well-known
Gini index [22], which ranges over [0,1], to quantify
the skew, we find that all the optimizers,across the
board, exhibit a marked skew in excess of 0.5 for most
queries, on occasion going even higher than 0.8.

Further, and more importantly, we show that the
small-sized plans may often be supplanted by larger
siblings without substantively affecting the quality.
For example, the plan diagram of Figure 2(a) which
has 68 plans can be “reduced” to that shown in Fig-
ure 2(b) featuring as few assevenplans, without in-
creasing the estimated cost of any individual query
point by more than 10 percent.

Overall, this leads us to the hypothesis that current
optimizers may perhaps be over-sophisticated in that

(a) Complex Plan Diagram (b) Reduced Plan Diagram

Figure 2:Complex Plan and Reduced Plan Diagram (Query 8, OptA)

they are “doing too good a job”, not merited by the
coarseness of the underlying cost space. Moreover,
if it were possible to simplify the optimizer to pro-
duce only reduced plan diagrams, it is plausible that
the considerable processing overheads typically asso-
ciated with query optimization could be significantly
lowered.

Complex Patterns: The plan diagrams exhibit a variety
of intricate tessellated patterns, includingspeckles,
stripes, blinds, mosaicsandbands, among others. For
example, witness the rapidly alternating choices be-
tween plans P12 (dark green) and P16 (light gray)
in the bottom left quadrant of Figure 2(a). Further,
the boundaries of the plan optimality regions can be
highly irregular – a case in point is plan P8 (dark
pink) in the top right quadrant of Figure 2(a). These
complex patterns appear to indicate the presence of
strongly non-linear and discretized cost models, again
perhaps an over-kill in light of Figure 2(b).

Non-Monotonic Cost Behavior: We have found quite a
few instances where, although the base relation selec-
tivities and the result cardinalities are monotonically
increasing, the cost diagram doesnot show a corre-
sponding monotonic behavior.5 Sometimes, the non-
monotonic behavior arises due to a change in plan,
perhaps understandable given the restricted search
space evaluated by the optimizer. But, more surpris-
ingly, we have also encountered situations where a
plan shows such behavior eveninternal to its optimal-
ity region.

5Our query setup is such that in addition to the result cardinality mono-
tonically increasing as we travel outwards along the selectivity axes, the
result tuples are alsosupersetsof the previous results.

Validity of PQO: A rich body of literature exists onpara-
metric query optimization(PQO) [1, 2, 7, 8, 3, 4, 10,
11, 12]. The goal here is to apriori identify the optimal
set of plans for the entire relational selectivity space
at compile time, and subsequently to use at run time
the actual selectivity parameter settings to identify the
best plan – the expectation is that this would be much
faster than optimizing the query from scratch. Much
of this work is based on a set of assumptions, that we
do not find to hold true,even approximately, in the
plan diagrams produced by the commercial optimiz-
ers.

For example, one of the assumptions is that a plan is
optimal within theentire regionenclosed by its plan
boundaries. But, in Figure 2(a), this is violated by the
small (brown) rectangle of plan P14, close to coordi-
nates (60,30), in the (light-pink) optimality region of
plan P3, and there are several other such instances.

On the positive side, however, we show that some
of the important PQO assumptions do hold approxi-
mately forreducedplan diagrams.

1.1 Organization

The above effects are described in more detail in the re-
mainder of this paper, which is organized as follows: In
Section 2, we present the Picasso tool and the testbed en-
vironment. Then, in Section 3, the skew in the plan space
distribution, as well as techniques for reducing the plan set
cardinalities, are discussed. The relationship to PQO is ex-
plored in Section 4. Interesting plan diagram motifs are
presented in Section 5. An overview of related work is pro-
vided in Section 6. Finally, in Section 7, we summarize

↗ Naveen Reddy and Jayant Haritsa. Analyzing Plan Diagrams of
Database Query Optimizers. VLDB 2005.

Query Optimization

Torsten Grust

Query Optimization

Search Space Illustration

Dynamic Programming

Example: Four-Way Join

Algorithm

Discussion

Left/Right-Deep vs. Bushy

Greedy join enumeration

36

“Picasso” Plan Diagrams

Generated by “Picasso”: each distinct color represent a distinct plan
considered by the DBMSFigure 6:Duplicates and Islands (Query 5, OptC)

Databases # Duplicates # Islands
Original Reduced Original Reduced

OptA 136 14 38 3
OptB 80 15 1 0
OptC 55 7 8 3

Table 3: Duplicates and Islands

PQO, which, as mentioned in the previous section, appears
ill-suited to directly capture the complexities of modern op-
timizers, may turn out to be a more viable proposition in the
space of reduced plan diagrams.

5.2 Plan Switch Points

In several plan diagrams, we find lines parallel to the axes
that run through theentire selectivity space, with a plan
shift occurring forall plans bordering the line, when we
move across the line. We will hereafter refer to such lines
as “plan switch-points”.

In the plan diagram of Figure 7, obtained with Q9 on
OptA, an example switch-point appears at approximately
30% selectivity of theSUPPLIERrelation. Here, we found
acommon changein all plans across the switch-point – the
hash-join sequencePARTSUPP./ SUPPLIER./ PART is al-
tered toPARTSUPP./ PART ./ SUPPLIER, suggesting an in-
tersection of the cost function of the two sequences at this
switch-point.

For the same Q9 query, an even more interesting switch-
point example is obtained with OptB, shown in Figure 8.
Here we observe, between 10% and 35% on theSUPPLIER

axis,six planssimultaneously changing with rapid alterna-
tions to produce a “Venetian blinds” effect. Specifically,
the optimizer changes from P6 to P1, P16 to P4, P25 to
P23, P7 to P18, P8 to P9, and P42 to P47, from one vertical
strip to the next.

The reason for this behavior is that the optimizer alter-
nates between aleft-deephash join and aright-deephash

Figure 7:Plan Switch-Point (Query 9, OptA)

Figure 8:Venetian Blinds Pattern (Query 9, OptB)

join across theNATION , SUPPLIER and LINEITEM rela-
tions. Both variations have almost equal estimated cost,
and their cost-models are perhaps discretized in a step-
function manner, resulting in the observed blinds.

5.3 Footprint Pattern

A curious pattern, similar to footprints on the beach, shows
up in Figure 9, obtained with Q7 on the OptA optimizer,
where we see plan P7 exhibiting a thin (cadet-blue) bro-
ken curved pattern in the middle of plan P2’s (orange) re-
gion. The reason for this behavior is that both plans are of
roughly equal cost, with the difference being that in plan
P2, theSUPPLIER relation participates in asort-merge-
join at the top of the plan tree, whereas in P7, thehash-join
operator is used instead at the same location. This is con-
firmed in the corresponding reduced plan diagram where
the footprints disappear.

Figure 9:Footprint Pattern (Query 7, OptA)

Figure 10:Speckle Pattern (Query 17, OptA)

5.4 Speckle Pattern

Operating Picasso with Q17 on OptA (at its highest opti-
mization level) results in Figure 10. We see here that the
entire plan diagram is divided into just two plans, P1 and
P2, occupying nearly equal areas, but that plan P1 (bright
green) also appears as speckles sprinkled in P2’s (red) area.

The only difference between the two plans is that an ad-
ditional SORT operation is present in P2 on thePART rela-
tion. However, the cost of this sort is very low, and there-
fore we find intermixing of plans due to the close and per-
haps discretized cost models.

5.5 Non-Monotonic Cost Behavior

The example switch-points shown earlier, were allcost-
basedswitch-points, where plans were switched to de-
rive lower execution costs. Yet another example of such
a switch-point is seen in Figure 11(a), obtained with query
Q2 on OptA, at 97% selectivity of thePART relation. Here,

the common change in all plans across the switch-point is
that thehash-join between relationsPART andPARTSUPP

is replaced by asort-merge-join.
But, in the same picture, there are switch-points occur-

ring at 26% and 50% in thePARTSUPPselectivity range,
that result in a counter-intuitivenon-monotoniccost behav-
ior, as shown in the corresponding cost diagram of Fig-
ure 11(b). Here, we see that although the result cardi-
nalities are monotonically increasing, the estimated costs
for producing these results show a marked non-monotonic
step-down behavior in the middle section. Specifically,
at the 26% switch-point, an additional‘sort’ operator
(on ps supplycost) is added, which substantially de-
creases the overall cost – for example, in moving from plan
P2 to P3 at 50%PART selectivity, the estimated cost de-
creases by a factor of 50! Conversely, in moving from P3
to P1 at the 50% switch-point, the cost of the optimal plan
jumps up by a factor of 70 at 50%PART selectivity.

Step-function upward jumps in the cost with increas-
ing input cardinalities are known to occur – for example,
when one of the relations in a join ceases to fit completely
within the available memory – however, what is surprising
in the above is the step-function costdecreaseat the 26%
switch-point. We conjecture that such disruptive cost be-
havior may arise either due to the presence of rules in the
optimizer, or due to parameterized changes in the search
space evaluated by the optimizer.

The above example showed non-monotonic behavior
arising out of a plan-switch. However, more surprisingly,
we have also encountered situations where a plan shows
non-monotonic behaviorinternal to its optimality region.
A specific example is shown in Figure 12 obtained for Q21
with OptA. Here, the plans P1, P3, P4 and P6, show a re-
duction in their estimated costs with increasing input and
result cardinalities. An investigation of these plans showed
that all of them feature anested-loops join, whose esti-
mated costdecreaseswith increasing cardinalities of its in-
put relations – this may perhaps indicate an inconsistency
in the associated cost model. Further, such instances of
non-monotonic behavior were observed with all three opti-
mizers.

6 Related Work

To the best of our knowledge, there has been no prior work
on the analysis of plan diagrams with regard toreal-world
industrial-strengthquery optimizers. However, similar is-
sues have been studied in the parametric query optimization
(PQO) literature in the context of simplified self-crafted op-
timizers. Specifically, in [1, 11, 12], an optimizer modeled
along the lines of the original System R optimizer [16] is
used, with the search space restricted to left-deep join trees,
and the workload comprised of pure SPJ queries with “star”
or “linear” join-graphs. The metrics considered include
the cardinality and spatial distribution of the set of optimal
plans – while [1] considered only single-relation selectivi-
ties, [11, 12] evaluated two-dimensional relational selectiv-
ity spaces, similar to those considered in this paper. Their

Download Picasso at

http://dsl.serc.iisc.ernet.in/projects/PICASSO/index.html.

Query Optimization

Torsten Grust

Query Optimization

Search Space Illustration

Dynamic Programming

Example: Four-Way Join

Algorithm

Discussion

Left/Right-Deep vs. Bushy

Greedy join enumeration

36

“Picasso” Plan Diagrams

Generated by “Picasso”: each distinct color represent a distinct plan
considered by the DBMSFigure 6:Duplicates and Islands (Query 5, OptC)

Databases # Duplicates # Islands
Original Reduced Original Reduced

OptA 136 14 38 3
OptB 80 15 1 0
OptC 55 7 8 3

Table 3: Duplicates and Islands

PQO, which, as mentioned in the previous section, appears
ill-suited to directly capture the complexities of modern op-
timizers, may turn out to be a more viable proposition in the
space of reduced plan diagrams.

5.2 Plan Switch Points

In several plan diagrams, we find lines parallel to the axes
that run through theentire selectivity space, with a plan
shift occurring forall plans bordering the line, when we
move across the line. We will hereafter refer to such lines
as “plan switch-points”.

In the plan diagram of Figure 7, obtained with Q9 on
OptA, an example switch-point appears at approximately
30% selectivity of theSUPPLIERrelation. Here, we found
acommon changein all plans across the switch-point – the
hash-join sequencePARTSUPP./ SUPPLIER./ PART is al-
tered toPARTSUPP./ PART ./ SUPPLIER, suggesting an in-
tersection of the cost function of the two sequences at this
switch-point.

For the same Q9 query, an even more interesting switch-
point example is obtained with OptB, shown in Figure 8.
Here we observe, between 10% and 35% on theSUPPLIER

axis,six planssimultaneously changing with rapid alterna-
tions to produce a “Venetian blinds” effect. Specifically,
the optimizer changes from P6 to P1, P16 to P4, P25 to
P23, P7 to P18, P8 to P9, and P42 to P47, from one vertical
strip to the next.

The reason for this behavior is that the optimizer alter-
nates between aleft-deephash join and aright-deephash

Figure 7:Plan Switch-Point (Query 9, OptA)

Figure 8:Venetian Blinds Pattern (Query 9, OptB)

join across theNATION , SUPPLIER and LINEITEM rela-
tions. Both variations have almost equal estimated cost,
and their cost-models are perhaps discretized in a step-
function manner, resulting in the observed blinds.

5.3 Footprint Pattern

A curious pattern, similar to footprints on the beach, shows
up in Figure 9, obtained with Q7 on the OptA optimizer,
where we see plan P7 exhibiting a thin (cadet-blue) bro-
ken curved pattern in the middle of plan P2’s (orange) re-
gion. The reason for this behavior is that both plans are of
roughly equal cost, with the difference being that in plan
P2, theSUPPLIER relation participates in asort-merge-
join at the top of the plan tree, whereas in P7, thehash-join
operator is used instead at the same location. This is con-
firmed in the corresponding reduced plan diagram where
the footprints disappear.

Figure 9:Footprint Pattern (Query 7, OptA)

Figure 10:Speckle Pattern (Query 17, OptA)

5.4 Speckle Pattern

Operating Picasso with Q17 on OptA (at its highest opti-
mization level) results in Figure 10. We see here that the
entire plan diagram is divided into just two plans, P1 and
P2, occupying nearly equal areas, but that plan P1 (bright
green) also appears as speckles sprinkled in P2’s (red) area.

The only difference between the two plans is that an ad-
ditional SORT operation is present in P2 on thePART rela-
tion. However, the cost of this sort is very low, and there-
fore we find intermixing of plans due to the close and per-
haps discretized cost models.

5.5 Non-Monotonic Cost Behavior

The example switch-points shown earlier, were allcost-
basedswitch-points, where plans were switched to de-
rive lower execution costs. Yet another example of such
a switch-point is seen in Figure 11(a), obtained with query
Q2 on OptA, at 97% selectivity of thePART relation. Here,

the common change in all plans across the switch-point is
that thehash-join between relationsPART andPARTSUPP

is replaced by asort-merge-join.
But, in the same picture, there are switch-points occur-

ring at 26% and 50% in thePARTSUPPselectivity range,
that result in a counter-intuitivenon-monotoniccost behav-
ior, as shown in the corresponding cost diagram of Fig-
ure 11(b). Here, we see that although the result cardi-
nalities are monotonically increasing, the estimated costs
for producing these results show a marked non-monotonic
step-down behavior in the middle section. Specifically,
at the 26% switch-point, an additional‘sort’ operator
(on ps supplycost) is added, which substantially de-
creases the overall cost – for example, in moving from plan
P2 to P3 at 50%PART selectivity, the estimated cost de-
creases by a factor of 50! Conversely, in moving from P3
to P1 at the 50% switch-point, the cost of the optimal plan
jumps up by a factor of 70 at 50%PART selectivity.

Step-function upward jumps in the cost with increas-
ing input cardinalities are known to occur – for example,
when one of the relations in a join ceases to fit completely
within the available memory – however, what is surprising
in the above is the step-function costdecreaseat the 26%
switch-point. We conjecture that such disruptive cost be-
havior may arise either due to the presence of rules in the
optimizer, or due to parameterized changes in the search
space evaluated by the optimizer.

The above example showed non-monotonic behavior
arising out of a plan-switch. However, more surprisingly,
we have also encountered situations where a plan shows
non-monotonic behaviorinternal to its optimality region.
A specific example is shown in Figure 12 obtained for Q21
with OptA. Here, the plans P1, P3, P4 and P6, show a re-
duction in their estimated costs with increasing input and
result cardinalities. An investigation of these plans showed
that all of them feature anested-loops join, whose esti-
mated costdecreaseswith increasing cardinalities of its in-
put relations – this may perhaps indicate an inconsistency
in the associated cost model. Further, such instances of
non-monotonic behavior were observed with all three opti-
mizers.

6 Related Work

To the best of our knowledge, there has been no prior work
on the analysis of plan diagrams with regard toreal-world
industrial-strengthquery optimizers. However, similar is-
sues have been studied in the parametric query optimization
(PQO) literature in the context of simplified self-crafted op-
timizers. Specifically, in [1, 11, 12], an optimizer modeled
along the lines of the original System R optimizer [16] is
used, with the search space restricted to left-deep join trees,
and the workload comprised of pure SPJ queries with “star”
or “linear” join-graphs. The metrics considered include
the cardinality and spatial distribution of the set of optimal
plans – while [1] considered only single-relation selectivi-
ties, [11, 12] evaluated two-dimensional relational selectiv-
ity spaces, similar to those considered in this paper. Their

Download Picasso at

http://dsl.serc.iisc.ernet.in/projects/PICASSO/index.html.

