Chapter 10
Query Optimization

Exploring the Search Space of Alternative Query Plans

Architecture and Implementation of Database Systems

Summer 2013

Torsten Grust
Wilhelm-Schickard-Institut fur Informatik

Universitat Tlibingen

Query Optimization

Torsten Grust

&

Query Optimization
Search Space lllustration
Dynamic Programming
Example: Four-Way Join
Algorithm
Discussion
Left/Right-Deep vs. Bushy

Greedy join enumeration

Finding the “Best” Query Plan

Query Optimization
Throttle or break?

Torsten Grust

.

Query Optimization
NNL y Op!
SELE CT 2 Search Space lllustration
¢ VAN D —
Example: Four-Way Join
FROM AN Mhash T
Algorithm
AR Discussion
WHERE VRN
R o Left/Right-Deep vs. Bushy
‘ Greedy join enumeration

° We already saw that there may be more than one way to
answer a given query.

* Which one of the join operators should we pick? With
which parameters (block size, buffer allocation, ...)?

° The task of finding the best execution plan is, in fact, the
“holy grail” of any database implementation.

Plan Generation Process

Query compilation

’ Parser

l

’ Rewriting

I

’ Optimizer

° Parser: syntactical/semantical analysis

° Rewriting: heuristic optimizations

independent of the current database
state (table sizes, availability of indexes,
etc.). For example:

° Apply predicates early
° Avoid unnecessary duplicate
elimination

Optimizer: optimizations that rely on a
cost model and information about the
current database state

The resulting plan is then evaluated by
the system’s execution engine.

Query Optimization

Torsten Grust

Query Optimization
Search Space lllustration
Dynamic Programming
Example: Four-Way Join
Algorithm
Discussion
Left/Right-Deep vs. Bushy
Greedy join enumeration

1
2
3
4
5

Impact on Performance

Finding the right plan can dramatically impact performance.

Sample query over TPC-H tables

SELECT L.L_PARTKEY, L.L_QUANTITY, L.L_EXTENDEDPRICE
FROM LINEITEM L, ORDERS 0, CUSTOMER C

WHERE L.L_ORDERKEY = 0.0_ORDERKEY
AND 0.0_CUSTKEY = C.C_CUSTKEY

AND C.C_NAME =
|57 | 57
X X
6mi(/ \ M1V \Qnﬂm
X o 1/ N\ 1.5mio
6mio/ \15mio [150,000 1500001
L 0 C C

° In terms of execution times, these differences can easily
mean “seconds versus days.”

Query Optimization

Torsten Grust

Query Optimization
Search Space lllustration
Dynamic Programming
Example: Four-Way Join
Algorithm
Discussion
Left/Right-Deep vs. Bushy
Greedy join enumeration

The SQL Parser

° Besides some analyses regarding the syntactical and
semantical correctness of the input query, the parser creates
an internal representation of the input query.

° This representation still resembles the original query:

° Each SELECT-FROM-WHERE clause is translated into a
query block.

Deriving a query block from a SQL SFW block

0

Toro st query block
\
SELECT proj-list O having-list
FROM R;, Ra, ..., Rn !
P rpb; ,
WHERE predicate-list — b yg""“""y"’“
GROUP BY groupby-list Upredi‘care-h'sr
HAVING having-list %
Ra R2 Rn

° Each R; can be a base relation or another query block.

Query Optimization

Torsten Grust

&

Query Optimization
Search Space lllustration
Dynamic Programming
Example: Four-Way Join
Algorithm
Discussion
Left/Right-Deep vs. Bushy

Greedy join enumeration

Finding the “Best” Execution Plan

Query Optimization

Torsten Grust

The parser output is fed into a rewrite engine

which, again, yields a tree of query blocks.

Query Optimization
It is then the optimizer’s task to come up with
the optimal execution plan for the given query.

Essentially, the optimizer

Search Space lllustration

Dynamic Programming

Example: Four-Way Join

Algorithm

Discussion
Left/Right-Deep vs. Bushy

© enumerates all possible execution plans,

(if this yields too many plans, at least enumerate the “promising”

plan candidates)

® determines the quality (cost) of each plan, then
© chooses the best one as the final execution plan.

Greedy join enumeration

Before we can do so, we need to answer the question
° What is a “good” execution plan at all?

Cost Metrics

Query Optimization

Torsten Grust

Database systems judge the quality of an execution plan based 4’
on a number of cost factors, e.g.,
* the number of disk I/Os required to evaluate the plan, T
* the plan’s CPU cost, e oty
* the overall response time observable by the database client st
as well as the total execution time.

Left/Right-Deep vs. Bushy

Greedy join enumeration

A cost-based optimizer tries to anticipate these costs and find
the cheapest plan before actually running it.
* All of the above factors depend on one critical piece of
information: the size of (intermediate) query results.

° Database systems, therefore, spend considerable effort into
accurate result size estimates.

Result Size Estimation

Consider a query block corresponding to a simple SFW query Q
SFW query block

Tproj-list

Opredicate-list

X

Ry R, Rn

We can estimate the result size of Q based on
* the size of the input tables, |Ry],. .., |Rn|, and
* the selectivity sel(p) of the predicate predicate-list:

|Q| & |R1| - [Ra| - - - |Rn| - sel(predicate-list)

Query Optimization

Torsten Grust

Query Optimization

Search Space lllustration
Dynamic Programming
Example: Four-Way Join
Algorithm
Discussion
Left/Right-Deep vs. Bushy

Greedy join enumeration

Join Optimization

° We've now translated the query into a graph of query
blocks.

° Query blocks essentially are a multi-way Cartesian
product with a number of selection predicates on top
° We can estimate the cost of a given execution plan.

° Use result size estimates in combination with the cost
for individual join algorithms discussed in previous
chapters.

We are now ready to enumerate all possible execution plans, i.e.,
all possible 2-way join combinations for each query block.

Ways of building a 3-way join from two 2-way joins

X X [X X X
/N /N /N /N /N /N
[[i % X s X
/N /N /N /N /N /N
S S R T S T R
X X X [X X
7N\ /N 7N\ /N /N /7 N\
R N X ¥ s W X
/N /N /N /N
S T R T S

7 W
/N /N
R S

Query Optimization

Torsten Grust

&

Query Optimization
Search Space lllustration
Dynamic Programming
Example: Four-Way Join
Algorithm
Discussion
Left/Right-Deep vs. Bushy

Greedy join enumeration

How Many Such Combinations Are There?

° Ajoin over n + 1 relations Ry, . .., Rh11 requires n binary
joins.

* Its root-level operator joins sub-plans of k and n — k — 1
join operators (0 < k< n—1):

X

k joins n—k — 1 joins
Ri, .. R

Ri+25 -+ Rop

° Let C; be the number of possibilities to construct a binary
tree of i inner nodes (join operators):

-1
Co=2 Ci- Coko
k=0

Query Optimization

Torsten Grust

Query Optimization

Search Space lllustration
Dynamic Programming
Example: Four-Way Join
Algorithm
Discussion
Left/Right-Deep vs. Bushy

Greedy join enumeration

Catalan Numbers

This recurrence relation is satisfied by Catalan numbers:

—1
(2n)!
Cr = G Crk—1= 757)
Z Inl
— (n+1)n!

describing the number of ordered binary trees with n + 1 leaves.

For each of these trees, we can permute the input relations
(why?) Ry,...,Rny1, leading to:

Number of possible join trees for an (n + 1)-way relational join

2n)! 2n)!
(n(—i—l))!n! k= (n!)

Query Optimization

Torsten Grust

Query Optimization
Search Space lllustration
Dynamic Programming
Example: Four-Way Join
Algorithm
Discussion
Left/Right-Deep vs. Bushy

Greedy join enumeration

Search Space Query Optimization

Torsten Grust

The resulting search space is enormous: 0
Possible bushy join trees joining n relations

number of relationsn C,_; join trees o:;zhc::::::::n
2 1 2 Example: Four-Way Join
3 2 12 st
4 5 120 el
5 14 1,680
6 42 30,240
7 132 665,280
8 429 17,297,280
10 4,862 17,643,225,600

° And we haven't yet even considered the use of k different
join algorithms (yielding another factor of k("—")!

Dynamic Programming

The traditional approach to master this search space is the use of
dynamic programming.

Idea:

* Find the cheapest plan for an n-way join in n passes.

° In each pass k, find the best plans for all k-relation
sub-queries.

° Construct the plans in pass k from best i-relation and
(k — i)-relation sub-plans found in earlier passes (1 < /i < k).

Assumption:

* To find the optimal global plan, it is sufficient to only

consider the optimal plans of its sub-queries (“Principle of
optimality”).

Query Optimization

Torsten Grust

&

Query Optimization
Search Space lllustration
Dynamic Programming
Example: Four-Way Join
Algorithm
Discussion
Left/Right-Deep vs. Bushy

Greedy join enumeration

Dynamic Programming

Example (Four-way join of tables R; .. 4)

Pass 1 (best 1-relation plans)

Find the best access path to each of the R; individually
(considers index scans, full table scans).

Pass 2 (best 2-relation plans)
For each pair of tables R; and R;, determine the best order to
join R; and R; (use R; X R; or R; M R; ?):
optPlan({R;,R;}) < best of R; X R; and R; X R; .
- 12 plans to consider.
Pass 3 (best 3-relation plans)
For each triple of tables R;, R;, and Ry, determine the best
three-table join plan, using sub-plans obtained so far:
optPlan({R;, R;,R«}) + best of R; X optPlan({R;, Rx}),
optPlan({Rj, Rk}) X R;, Rj X optPIan({R,-, Rk}), 500 o

— 24 plans to consider.

Query Optimization

Torsten Grust

&

Query Optimization

Search Space lllustration
Dynamic P

mming
Example: /ay Join
Algorithm
Discussion
Left/Right-Deep vs. Bushy

Greedy join enumeration

Dynamic Programming

Example (Four-way join of tables R; ... 4 (cont'd))

Pass 4 (best 4-relation plan)

For each set of four tables R;, R;, Ry, and R, determine the
best four-table join plan, using sub-plans obtained so far:

optPlan({Ri, R;, Rk, Ri}) < best of R; X optPlan({R;, Rk, Ri}),
optPlan({R;, Rk, Ri}) X Ri, R; X optPlan({R;, Rk, Ri}), . . .,
optPlan({R;, R;}) X optPlan({Rx,Ri}),

- 14 plans to consider.

° Overall, we looked at only 50 (sub-)plans (instead of the
possible 120 four-way join plans; 7 slide 12).
* All decisions required the evaluation of simple sub-plans

only (no need to re-evaluate optPlan(-) for already known
relation combinations = use lookup table).

Query Optimization

Torsten Grust

&

Query Optimization
Search Space lllustration
Dynamic Programming
Example: Four-Way Join
Algorithm
Discussion
Left/Right-Deep vs. Bushy

Greedy join enumeration

Sharing Under the Optimality Principle

Sharing optimal sub-plans

{R1, Ra, Ry, Ru}

{R1, Ry, Ry} {R1, Ry, Ry}
{R1, Ry, Ry} {Ry, R3, Ry}
{R1, Ry}
{R1, Rs} {Rs, R}
{R1, Ry} {Rs. R}
{Rs, Rs}
Ry Ry

Rs Ry

Query Optimization

Torsten Grust

Query Optimization
Search Space lllustration
Dynamic Programming
Example: Four-Way Join
Algorithm
Discussion
Left/Right-Deep vs. Bushy

Greedy join enumeration

Dynamic Programming Algorithm

1

2

Find optimal n-way bushy join tree via dynamic programming

Function: find_join_tree_dp (q(R1,...,Rn))

for i=1tondo
optPlan({Ri}) < access_plans (R ;
| prune_plans (optPlan({Ri})) ;

for i=2tondo
foreach S C {Ri,...,Ry} such that |S| =i do
optPlan(S) + @ ;
foreach O C S with O # @ do
optPlan(S) < optPlan(S) U

X
PN

possible_joins
optPlan(0) optPlan(S \ O)

| prune_plans (optPlan(S)) ;

return optPlan({Ri,...,Ra});

° possible_joins [R X S] enumerates the possible joins
between R and S (nested loops join, merge join, etc.).

° prune_plans (set) discards all but the best plan from set.

Query Optimization

Torsten Grust

&

Query Optimization
Search Space lllustration
Dynamic Programming
Example: Four-Way Join
Algorithm
Discussion
Left/Right-Deep vs. Bushy

Greedy join enumeration

Dynamic Programming—Discussion

[
1
2
3
4
5

Enumerate all non-empty true subsets of S (using C):
0=5Sg-S;
do {
/* perform operation on O =/
0=S& (0-795;
} while (O !'= S);
find_join_tree_dp () draws its advantage from filtering
plan candidates early in the process.

° In our example on slide 14, pruning in Pass 2 reduced
the search space by a factor of 2, and another factor of 6
in Pass 3.
Some heuristics can be used to prune even more plans:
° Try to avoid Cartesian products.
° Produce left-deep plans only (see next slides).

Such heuristics can be used as a handle to balance plan
quality and optimizer runtime.

Control optimizer investment

1

SET CURRENT QUERY OPTIMIZATION = n

Query Optimization

Torsten Grust

Query Optimization
Search Space lllustration
Dynamic Programming
Example: Four-Way Join
Algorithm
Discussion
Left/Right-Deep vs. Bushy
Greedy join enumeration

Left/Right-Deep vs. Bushy Join Trees

The algorithm on slide 17 explores all possible shapes a join tree
could take:

Join tree shapes

X X X
M/ \ .. VRN 4 \M
VAN X X
X / \ / \ X
TSI PP PN
.. bushy
left-deep (everything else) right-deep

Actual systems often prefer left-deep join trees.'
° The inner (rhs) relation always is a base relation.
° Allows the use of index nested loops join.

° Easier to implement in a pipelined fashion.

"The seminal System R prototype, e.g., considered only left-deep plans.

Query Optimization

Torsten Grust

&

Query Optimization
Search Space lllustration
Dynamic Programming
Example: Four-Way Join
Algorithm
Discussion
Left/Right-Deep vs. Bushy

Greedy join enumeration

Join Order Makes a Difference

° XPath location step evaluation over relationally encoded XML

data.?

° n-way self-join with a range predicate.

250 T T T T

200

150

100 -

exec. time [s]

50

S
1 2 5 6 7

path length

8

Il
10 11 12

35MB XML - IBM DB2 9 SQL

2 7 Grust et al. Accelerating XPath Evaluation in Any RDBMS. TODS 2004.

http://www.pathfinder-xquery.org/

250

200

150

100

50

Query Optimization

Torsten Grust

Query Optimization
Search Space lllustration
Dynamic Programming
Example: Four-Way Join
Algorithm
Discussion
Left/Right-Deep vs. Bushy

Greedy join enumeration

Join Order Makes a Difference

Query Optimization

Torsten Grust

Contrast the execution plans for a path of 8 and 9 XPath location
steps:

m Join plans

Query Optimization
Search Space lllustration
Dynamic Programming
Example: Four-Way Join
Algorithm
Discussion
Left/Right-Deep vs. Bushy
Greedy join enumeration

left-deep join tree

bushy join tree
= DB2's optimizer essentially gave up in the face of 9+ joins.

Joining Many Relations

Dynamic programming still has exponential resource
requirements:

(" K. Ono, G.M. Lohman, Measuring the Complexity of Join Enumeration
in Query Optimization, VLDB 1990)

° time complexity: O(3")
° space complexity: O(2")

This may still be too expensive
* for joins involving many relations (~ 10-20 and more),

* for simple queries over well-indexed data (where the right
plan choice should be easy to make).

The greedy join enumeration algorithm jumps into this gap.

Query Optimization

Torsten Grust

&

Query Optimization
Search Space lllustration
Dynamic Programming
Example: Four-Way Join
Algorithm
Discussion
Left/Right-Deep vs. Bushy

Greedy join enumeration

: s Q Optil .
Greedy Join Enumeration uery Optimization

Torsten Grust

Greedy join enumeration for n-way join

Function: find_join_tree_greedy (q(Ri,...,Rn)) ‘
worklist < & ;
for i=1tondo

~

w

Query Optimization

4 L worklist < worklist U best_access_plan (R;) ; D?th:g"‘w:;
s for i = n downto 2 do :Z‘:Z\:mm,,wmn
// worklist = {P1, coo ,P,‘} Discussion
6 find Pj, Px € worklist and ... such that cost(P; X... Py) is minimal ; i

~

worklist < worklist \ {P;, Px} U {(P; M. P)};

// worklist = {P,}
return single plan left in worklist ;

®

° In each iteration, choose the cheapest join that can be made
over the remaining sub-plans at that time (this is the
“greedy” part).

° Observe that find_join_tree_greedy () operates similar
to finding the optimum binary tree for Huffman coding.

Join Enumeration—Discussion

Query Optimization

Torsten Grust

Greedy join enumeration: 40

° The greedy algorithm has O(n?) time complexity:
* The loop has O(n) iterations.

Query Optimization

Search Space lllustration
* Each iteration looks at all remaining pairs of plans in o
worklist. An O(n?) task. i
Left/Right-Deep vs. Bushy
Other join enumeration techniques:

Greedy join enumeration
° Randomized algorithms: randomly rewrite the join tree one

rewrite at a time; use hill-climbing or simulated annealing
strategy to find optimal plan.

° Genetic algorithms: explore plan space by combining

plans (“creating offspring”) and altering some plans
randomly (“mutations”).

Physical Plan Properties

1
2
3

Consider the simple equi-join query

Join query over TPC-H tables
SELECT 0.0_ORDERKEY

FROM ORDERS 0, LINEITEM L
WHERE 0.0_ORDERKEY = L.L_ORDERKEY

where table ORDERS is indexed with a clustered index OK_IDX on
column O_ORDERKEY.

Possible table access plans (1-relation plans) are:

ORDERS * full table scan: estimated 1/Os: Ngrpgrs

° index scan: estimated 1/Os: Ngk_1px + Norpegs-

LINEITEM © full table scan: estimated 1/Os: Ny1ygrren.

Query Optimization

Torsten Grust

Query Optimization

Search Space lllustration
Dynamic Programming
Example: Four-Way Join
Algorithm
Discussion
Left/Right-Deep vs. Bushy

Greedy join enumeration

. . uery Ontiminati
Physical Plan Properties uery Optimization

Torsten Grust

* Since the full table scan is the cheapest access method for
both tables, our join algorithms will select them as the best

. . Query Optimization
1-relation plans in Pass 1.3 ———
Dynamic Programming
To join the two scan outputs, we now have the choices Example: FourWay Join
Algorithm
° nested loops join, S
° hash join or Left/Right-Deep vs. Bushy
’

Greedy join enumeration

° sort both inputs, then use merge join.
Hash join or sort-merge join are probably the preferable
candidates, incurring a cost of ~ 2 - (Noppers + NLnErTEM)-
= Overall cost:

Norpers + Numerren + 2 - (Norpers + Neiverten)-

3Dynamic programming and the greedy algorithm happen to do the same in
this example.

Physical Plan Properties—A Better Plan

Query Optimization

Torsten Grust
It is easy to see, however, that there is a better way to evaluate 40
the query:
Query Optimization
© Use an index scan to access ORDERS. This guarantees that B —
the scan output is already in 0_ORDERKEY order.

® Then only sort LINEITEM and piscuson
© join using merge join.

Left/Right-Deep vs. Bushy

Example: Four-Way Join
Algorithm

Greedy join enumeration

= Overall cost: (NDK_IDX + NDRDERS) + 2 - Noinertem.

/0

Although more expensive as a standalone table access plan, the
use of the index (order enforcement) pays off later on in the
overall plan.

Physical Plan Properties: Interesting Orders

* The advantage of the index-based access to ORDERS is that it
provides beneficial physical properties.

° Optimizers, therefore, keep track of such properties by
annotating candidate plans.

° System R introduced the concept of interesting orders,
determined by

° ORDER BY or GROUP BY clauses in the input query, or
° join attributes of subsequent joins (~ merge join).

= In prune_plans (), retain

° the cheapest “unordered” plan and
* the cheapest plan for each interesting order.

Query Optimization

Torsten Grust

&

Query Optimization
Search Space lllustration
Dynamic Programming
Example: Four-Way Join
Algorithm
Discussion
Left/Right-Deep vs. Bushy

Greedy join enumeration

Query Rewriting Query Optimization

Torsten Grust

° Join optimization essentially takes a set of relations and a set
of join predicates to find the best join order.

Query Optimization

Search Space lllustration

* By rewriting query graphs beforehand, we can improve the e

Example: Four-Way Join
effectiveness of this procedure. faertn

Discussion
Left/Right-Deep vs. Bushy

Greedy join enumeration

° The query rewriter applies heuristic rules, without looking
into the actual database state (no information about
cardinalities, indexes, etc.).

In particular, the optimizer

° relocates predicates (predicate pushdown),
° rewrites predicates, and
° unnests queries.

Predicate Simplification

Query Optimization

Rewrite

Torsten Grust

Example (Query against TPC-H table)
1 SELECT *
FROM LINEITEM L
WHERE L.L_TAX * 100 < 5

Query Optimization

Search Space lllustration
Dynamic Programming
Example: Four-Way Join
. Algorithm
into Discussion
Example (Query after predicate simplification)
1 SELECT *

Left/Right-Deep vs. Bushy
Greedy join enumeration
FROM LINEITEM L

WHERE L.L_TAX < 0.05

D In which sense is the rewritten predicate simpler?

Why would a RDBMS query optimizer rewrite the selection
predicate as shown above?

A w N o

Introducing Additional Join Predicates

Implicit join predicates as in

Implicit join predicate through transitivity

SELECT *
FROM A, B, C
WHERE A.a = B.b AND B.b = C.c

can be turned into explicit ones:

Explicit join predicate
*

SELECT
FROM A, B, C

WHERE A.a = B.b AND B.b = C.c
AND A2 = Cic

This makes the following join tree feasible:
(AXC)XB .

(Note: (A X C) would have been a Cartesian product before.)

Query Optimization

Torsten Grust

Query Optimization
Search Space lllustration
Dynamic Programming
Example: Four-Way Join
Algorithm
Discussion
Left/Right-Deep vs. Bushy

Greedy join enumeration

Nested Queries and Correlation

SQL provides a number of ways to write nested queries.

° Uncorrelated sub-query:

No free variables in subquery

SELECT =*
FROM ORDERS 0
WHERE O_CUSTKEY IN (SELECT C_CUSTKEY
FROM CUSTOMER
WHERE C_NAME =)

“uor woN =

° Correlated sub-query:

Row variable 0 occurs free in subquery

1 SELECT *

2 FROM ORDERS 0

3 WHERE 0.0_CUSTKEY IN

4 (SELECT C.C_CUSTKEY

5 FROM CUSTOMER C

6 WHERE C.C_ACCTBAL < 0.0_TOTALPRICE)

Query Optimization

Torsten Grust

Query Optimization
Search Space lllustration
Dynamic Programming
Example: Four-Way Join
Algorithm
Discussion
Left/Right-Deep vs. Bushy

Greedy join enumeration

Query Unnesting

Query Optimization

Torsten Grust
° Taking query nesting literally might be expensive.

° An uncorrelated query, e.g., need not be re-evaluated for 0
every tuple in the outer query.
° Oftentimes, sub-queries are only used as a syntactical way to
express a join (or a semi-join).

Query Optimization

Search Space lllustration

* The query rewriter tries to detect such situations and make o
the join explicit. Agoritm

Discussion

* This way, the sub-query can become part of the regular join
order optimization.

Left/Right-Deep vs. Bushy

Greedy join enumeration

D Turning correlation into joins

Reformulate the correlated query of slide 32 (use SQL syntax or

relational algebra) to remove the correlation (and introduce a
join).

/* Won Kim. On Optimizing an SQL-like Nested Query. ACM TODS, vol. 7,
no. 3, September 1982.

Summary

Query Parser

Translates input query into (SFW-like) query blocks
Rewriter

Logical (database state-independent) optimizations;
predicate simplification; query unnesting.
(Join) Optimization

Find “best” query execution plan based on a cost model
(considering 1/0 cost, CPU cost, ...); data statistics
(histograms); dynamic programming, greedy join

enumeration; physical plan properties (interesting orders).

Database optimizers still are true pieces of art...

Query Optimization

Torsten Grust

&

Query Optimization

Search Space lllustration
Dynamic Programming
Example: Four-Way Join
Algorithm
Discussion
Left/Right-Deep vs. Bushy

Greedy join enumeration

“Picasso” Plan Diagrams

Generated by “Picasso”: SQL join query with filters of
parameterizable selectivities (0 ... 100) against both join inputs

30.a5 [l o1
30.a0 [l e
16.53 il e
12.01 [l va

1.00 [l e6

" Naveen Reddy and Jayant Haritsa. Analyzing Plan Diagrams of
Database Query Optimizers. VLDB 2005.

Query Optimization

Torsten Grust

Query Optimization
Search Space lllustration
Dynamic Programming
Example: Four-Way Join
Algorithm
Discussion
Left/Right-Deep vs. Bushy
Greedy join enumeration

“Picasso” Plan Diagrams

Generated by “Picasso”: SQL join query with filters of
parameterizable selectivities (0. .. 100) against both join inputs

30.a5 [l o1
30.a0 [l e
16.53 il e
12.01 [l va

1.00 [l e6

SUPPLIER

68 Plans

" Naveen Reddy and Jayant Haritsa. Analyzing Plan Diagrams of
Database Query Optimizers. VLDB 2005.

Query Optimization

Torsten Grust

Query Optimization
Search Space lllustration
Dynamic Programming
Example: Four-Way Join
Algorithm
Discussion
Left/Right-Deep vs. Bushy
Greedy join enumeration

“Picasso” Plan Diagrams

Generated by “Picasso”: each distinct color represent a distinct plan

considered by the DBMS

10

17

SUPPLIER

Query Optimization

Torsten Grust

Query Optimization
Search Space lllustration
Dynamic Programming
Example: Four-Way Join
Algorithm
Discussion
Left/Right-Deep vs. Bushy

Greedy join enumeration

. . I
“Picasso” Plan Diagrams s Gpmizten

Torsten Grust

Generated by “Picasso”: each distinct color represent a distinct plan &
considered by the DBMS \

Query Optimization

Search Space lllustration
Dynamic Programming

Example: Four-Way Join

0 Algorithm

» Discussion

ol 6616 S F1 Left/Right-Deep vs. Bushy
m .01 [lle2

Greedy join enumeration

17

SUPPLIER

Download Picasso at

http://dsl.serc.iisc.ernet.in/projects/PICASSO/index.html.

