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1. THE TRANSFORMATION LIFECYCLE
When developing data transformations—a task omnipresent in

applications like data integration, data migration, data cleaning,
or scientific data processing—developers quickly face the need to
verify the semantic correctness of the transformation. Declara-
tive specifications of data transformations, e.g. SQL or ETL tools,
increase developer productivity but usually provide limited or no
means for inspection or debugging. In this situation, developers to-
day have no choice but to manually analyze the transformation and,
in case of an error, to (repeatedly) fix and test the transformation.

As a simple example, consider a developer who wonders why some
products are missing from a SQL query result (making it obvious
for him that the query is faulty). Possible reasons abound, e.g. were
product tuples filtered by a particular selection or are expected join
partners missing? Usually, the developer will test several modified
versions of the original query, all targeted towards identifying the
reason for the missing tuples, for example by relaxing or removing
a selection predicate and then observing whether the products ap-
pear in the result. The original query is fixed based on the result
of this analysis. For instance, the developer may decide to employ
a left-outer join instead of a natural join. He then tests the query
again (1) to see if his expectations are finally met and (2) to verify
that his changes do not introduce unwanted side-effects, e.g. return
too many products. Developers will typically undergo several such
manual analyze-fix-test (AFT) cycles before reaching the expected
result—a truly tedious, time consuming, and error-prone task.

The need for transformation development support has already
been recognized, for instance in data cleaning [17], data integra-
tion [1, 5, 20], data extraction [12], and scientific workflows [7].
However, we are not aware of tools that support the complete AFT
cycle. With respect to data cleaning, ensuring semantic correctness
of data transformations helps avoid data errors in the result. It thus
complements methods to correct data errors, once they entered a
database.

The problem of analyzing, fixing, and testing data transformations
not only arises when a transformation is initially developed. Over
time, requirements on a data transformation change, e.g. new at-
tributes have to be returned due to new laws, autonomous sources
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change, or customers now require information formatted differ-
ently. This evolution of a transformation entails change which,
again, requires at least one AFT cycle.

Overall, we observe that from the creation of a transformation to
its ultimate retirement when applications no longer rely on it, the
transformation undergoes many AFT cycles. We qualify this as the
transformation lifecycle that, as mentioned previously, is mostly
dealt with manually today. No systematic, tool-supported manage-
ment of the AFT cycle, let alone of a sequence of AFT cycles,
possibly spread over a long period of time, exists today.

We advocate that the time is ripe for database researchers to step
in and support transformation lifecycle management (TLM). Our
vision is that developers leverage semi-automatic tools for TLM to
ease the process and reduce the time needed for AFT cycles per-
formed during transformation development or evolution. This pa-
per introduces Nautilus1, our approach to TLM for relational data
transformations expressed in SQL. More specifically, after cover-
ing related work (Section 2) we discuss (1) the interactions and
the workflow (Section 3) of the Nautilus system, (2) its architec-
ture (Section 4) with (preliminary) algorithms employed in the
different system components; and (3) a benchmark proposal for
systems like Nautilus (Section 5). Nautilus is an ongoing and long-
term project and the discussion highlights our current status as well
as future research challenges and possible solutions to these.

2. RELATED WORK
Throughout the paper, we will include the closest related work

directly in the relevant discussion. In this section, we briefly
mention further related work pertinent to the three phases of the
AFT cycle.

As mentioned above, although the need for transformation devel-
opment support has been recognized, no tools that support the com-
plete AFT cycle exist. Indeed, previous approaches solely focus on
analysis based on sample output data, e.g. by leveraging their data
provenance [4]. Potter’s Wheel [17] additionally supports testing
by automatic discrepancy detection. Other approaches analyze the
behavior of a data transformation through the generation of test data
that exercises all transformation paths [10, 14] or observe the eval-
uation of transformation subexpressions at arbitrary granularity [9].
Integrated support for the identification of sensible modifications,
i.e. the fix phase, or the evolution of a transformation over time, is
missing, though.

In the context of the fix phase of an AFT cycle, algorithms
for schema evolution [6, 16, 21], which adapt a transformation to
changes in source schemas, provide support for one specific type
of requirement change (i.e. a source schema change). Changing a
1www.nautilus-system.org



transformation such that it generates additional specific output tu-
ples is addressed in [18] in terms of SQL rewriting.

Concerning the analysis and the test phase, the well-known prob-
lems of view update translation [8] and view maintenance [2] are
relevant. However, as we shall see in Section 3, Nautilus not only
copes with updates to the data, but also with updates to the query.

Having put Nautilus in perspective to existing work, let us focus on
the system itself, starting with a description of its workflow.

3. NAUTILUS WORKFLOW
The Nautilus system is intended to support TLM for the partic-

ular case of data transformations expressed as SQL queries. Cur-
rently, we are focusing on possibly nested SQL queries involving
selection, projection, joins (θ-join and outer joins), union, set dif-
ference, aggregation and grouping.

SQL developer

Analyze

Fix

Test

Nautilus

(1) debugging scenario
(2) explanations

(3) explanation annotations
(4) modification request
(5) query modifications

(6) modification annotations
(7) modification decision
(8) modification impact

time

(9) impact annotation

1  debugging scenario
2  explanations
3  explanation annotations
4  query modification request
5  query modifications
6  modification annotations
7  modification decision
8  modification impact
9  impact annotation

Figure 1: Interactions along
one AFT cycle.

The Nautilus workflow
throughout one AFT cycle,
depicted in Figure 1, consists of
an analysis, fix, and test phase.
Developers may iterate over the
Nautilus workflow just like they
do for the manual workflow.

Analyze. First, a developer
specifies a debugging sce-

nario S (Step 1�) that includes
(i) SQL queries to be analyzed,
(ii) source data, (iii) a descrip-
tion of the desired result, and
(iv) further constraints that
potentially restrict the set of
possible explanations (extends

formal definition of [11]). Consider the SQL queries Q1 and Q2
over the source instance D that consists of tables R and T (Figure 2).
Assume that the developer specifies that both queries should return
the same number of tuples (a realistic requirement in a scenario
where for every department in the result of query Q1 there needs
to be an associated manager in the result of Q2, for example).
Should that constraint be violated, the developer suspects the error
to be in Q1. He thus declares the result of Q2 over D, denoted
as Q2(D), as “immutable”, meaning that the extension of Q2(D)
should not change during the AFT process. When using Nautilus,
a developer simply has to specify what he wants during analysis
and returned explanations provide guidance for the fix and test
phases. Opposed to that, the old manual process requires him to
identify “suspicious” spots of the transformation, to explicitly spell
out changes, and to verify that the manual changes do not violate
the constraints in debugging scenario S.

R
A B C
1 2 3
4 5 6
7 8 6

T
C D
1 3
2 6
6 8

Q1: SELECT A, D
FROM R, T
WHERE R.C = T.C AND R.C < 10

Q2: SELECT C
FROM R
WHERE C <10

Figure 2: Sample data and queries (note: |Q1| = 2 �= 3 = |Q2|).

Explanations returned by Nautilus in Step 2� provide information
on why the expected result occurred or what may cause a dis-
crepancy between the actual and the expected result. In the for-
mer case, data provenance techniques [4] are a natural choice to
generate explanations and Nautilus reuses existing techniques. In
the latter case, techniques that explain why data is missing from

a query result have been proposed. The methods proposed to ex-
plain such missing answers either return instance-based [11, 12],
query-based [3], or modification-based [18] explanations. Contin-
uing with our example of Figure 2, we observe that the require-
ment that both queries return the same number of tuples is not met.
A possible instance-based explanation points out modifications to
the source data, e.g., that R needs to contain one more tuple that
joins with a tuple in T in order to return three tuples as well. A
query-based explanation identifies the query operator responsible
for filtering tuples from the result, which, in this example is the
join between R and T. Finally, a possible modification-based ex-
planation suggests a query rewrite such as replacing the join by a
left-outer join.

The unification of data provenance of existing data and miss-
ing answers is an ongoing effort, for which a model using causality
has recently been proposed [13]. Nautilus can benefit from such a
unification, but efficient algorithms generating such unified prove-
nance information are yet to be developed.

Explanations cover many different possibilities of why the de-
sired result was (not) computed. Should, based on this information,
the developer deem the query to be correct, he is done. Otherwise,
if the returned explanations suggest that one of the queries is faulty,
a subsequent fix phase becomes necessary. To guide the fix algo-
rithms, the developer attaches a Boolean annotation to some expla-

nations, identifying them as being (ir)relevant (Step 3�). For in-
stance, he may deem the query-based explanation described above
as relevant, but may disagree with the modification-based expla-
nation. This translates his belief that the join operator is indeed
the faulty operator, but that a left-outer join is not the solution to
the problem. In general, all annotations provided throughout an
AFT cycle (i.e. explanation annotations and annotations made in
subsequent steps) are logged to learn from these for future steps in
the same or future AFT iterations.

Fix. In Step 4�, the developer issues the request to generate modi-

fications to the query. Nautilus then computes query modifications

(Step 5�) based on annotated explanations and constraints speci-
fied in S. A query modification consists of a rewritten SQL query
annotated with changes to the actual query code. Two possible
query modifications of Q1 in our example appear in Figure 3, where
changes to the original SQL query (Q1 in Figure 2) are underlined.
These Nautilus-generated query modifcations allow developers to
restrict the set of (correct) edits to consider—otherwise, these edits
would have to be verified manually.

SELECT A, D
FROM R, T
WHERE R.C = D AND R.C < 10

SELECT A, D
FROM R LEFT OUTER JOIN T ON R.C = T.C
WHERE R.C < 10

(a) Query Modification 1. (b) Query Modification 2.

Figure 3: Query modifications generated for Q1 (edits marked).

Similarly to explanation annotation, the developer has the pos-
sibility to annotate query modifications (Step 6�). These annota-
tions are considered in subsequent iterations of the AFT cycle, for
instance, to better rank returned query modifications or to avoid
recomputing irrelevant modifications again. In our example of Fig-
ure 3, let Query Modification 1 be annotated as relevant, whereas
Query Modification 2 is irrelevant.

Test. Based on his analysis and annotation of modifications, the de-
veloper now has gained sufficient knowledge to modify the actual
query according to his requirements. In our simple example, the
modification decision (Step 7�) simply corresponds to deciding that
Query Modification 1 yields the new query. However, in a more
complex setting, such a direct correspondence between a candidate



query modification and the actual revised query does not necessar-
ily exist. For instance, if the developer annotates both modifica-
tions of Figure 3 as relevant, the final query he derives may be the
query Q

�
1 depicted below, in which both the join type as well as the

join predicate have changed compared to the original query Q1.
Q
�
1: SELECT A, D

FROM R LEFT OUTER JOIN T ON R.C = D
WHERE R.C < 10

The new query is now tested w.r.t. the constraints defined in de-
bugging scenario S. If constraints are violated, Nautilus returns
corresponding error messages. Moreover, Nautilus determines the
modification’s impact on the query result. Indeed, although all con-
straints are satisfied, e.g. the number of tuples returned by Q

�
1 and

Q2 is the same, the values in Q
�
1(D) now differ from previous val-

ues. Nautilus indicates this impact by reporting statistics such as
“one tuple added to Q1(D)”, “100% of new values in column D”,
“new values in column D range from 3 to 6” or “number of distinct
values in column D equals two”. It is important to be aware of such
effects, e.g. when the result of Q1 is the input to another query.
Therefore, Nautilus determines the difference between an original
query result Q(D) and its modified version Q

�(D) (Step 8�).
Such statistics provide a developer with valuable information to

verify that query changes have no adverse impact on query results.
Without Nautilus, a developer would have to study this impact man-
ually and, on large data sets in particular, it is easy to overlook
differences in comparison to previous results.

The final step is impact annotation (Step 9�), where a developer
marks data changes as acceptable or unacceptable. The developer
will not be notified of acceptable changes in subsequent iterations
of the AFT cycle. Unacceptable query result changes, however,
translate to new constraints that are added to scenario S. In our
example, a developer may determine that a minimum value of 3 in
column D is unexpected thus flags this impact as unacceptable.

4. ARCHITECTURE
Figure 4 shows the Nautilus architecture, which embeds com-

ponents for the three phases of the AFT process. The explanation

manager takes care of all steps relevant for analysis whereas the
query modification manager is responsible for generating, annotat-
ing, analyzing, and ranking query modifications during the fixing
phase. The development cycle manager serves as an interface be-
tween the explanation manager, the query modification manager,
and the metadata repository. It thus has a global view of the cur-
rent state of the development process, which is necessary during the
test phase. Therefore, the development cycle manager additionally
encompasses all components relevant to the test phase.

Nautilus accesses source data stored in a relational database
(DB). This database may be (a sample of) a production database,
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Figure 4: Nautilus Architecture

providing example data to analyze the behavior of the transforma-
tion. As such example data may not cover all cases and some errors
may go undetected, algorithms to generate data to analyze the query
semantics and that cover all test cases have been proposed [10, 14].
Such techniques are complementary to Nautilus and are not in the
focus of this paper.

The metadata repository persists all data and metadata that Nau-
tilus saves through one or more AFT iterations. This information
is accessed by the development cycle manager and passed on to
the explanation manager and the query modification manager that
require these during their respective computations. As the infor-
mation stored highly depends on the algorithms used, we do not
provide a detailed discussion here. Essentially, annotations and a
history of decisions and performed computations are stored in the
metadata repository. Interesting issues are the efficient and effec-
tive storage of meta-data, and its efficient retrieval.

The graphical user interface (GUI) lies between the Nautilus
user and the algorithms underlying Nautilus. Our Nautilus proto-
type is implemented as an Eclipse plugin. For sceenshots, please
visit the project website.

We now discuss selected Nautilus components in more detail,
beginning with the explanation manager. We leave out those com-
ponents whose purpose is obvious and that do not require solving
new challenges (i.e., ranker components, the GUI, and the debug-
ging scenario manager). Note that the architecture is intended to
be open and to provide interfaces to easily plug in individual algo-
rithms and solutions.

4.1 Explanation Manager
Explanation generator. As discussed in Section 3, Nautilus re-
turns explanations w.r.t. a debugging scenario S as provenance in-
formation of existing or missing data. Let us discuss two issues
and our current solutions that arise for explanation generation, i.e.,
debugging scenario expressiveness and explanation scope.

Considering the expressiveness of debugging scenarios, methods
for data provenance of existing data allow to compute the prove-
nance of (sets of) tuples resulting from relational queries [4]. Our
system prototype reuses the lineage tracing capabilities of Trio [19]
and returns, given a set of tuples T ∈ Q(D), the actual source tu-
ples that contribute to tuples in T . However, what about questions
of the form “Why are there more than 10,000 tuples where attribute
A is null?”, or “Why is the average temperature in California less
than the average temperature in Germany?”. Such analytical prove-
nance queries are not directly supported by todays provenance sys-
tems but are of great interest especially when dealing with large
query results where users cannot manually analyze the provenance
of every single relevant tuple. Answering such analytical questions
requires the computation of the provenance of tuples, the aggre-
gation of provenance information, and the comparison of (aggre-
gated) provenance information.

Current approaches to compute the provenance of missing
data [3, 11, 12, 18] explain why one or more tuples, the so-called
missing-answers, do not exist in query results. Currently, Nau-
tilus supports the Artemis algorithm we devised [11], Missing-
Answers [12] and Why-Not [3] and we plan to include Con-
QueR [18] in the near future. As all these algorithms do not yet
support all types of queries in the scope of Nautilus (especially
non-monotonic queries and nested queries are not yet supported)
and efficiency improvements are necessary to make any of these
approaches usable in practice, we are actively working on algo-
rithms to fill these gaps when explaining missing-answers. How-
ever, missing-answers are not the only conceivable non-observed



fact. For instance, developers may question the correctness of a
combination of attribute values in a tuple (e.g., an employee has
apparently been joined to the wrong department) or wonder why,
given that employee A is in the result, why his colleague B is not.
Besides methods to explain these complex observations, it is also
important to study how to enable users to specify such questions.
Clearly, a large enough set of questions should be expressible, but
the way to express them should not be too complex, so as to require
a debugger of its own.

Let us now focus on explanation scope. Whereas algorithms to
compute the provenance of existing data consider D, Q, and Q(D)
to be fixed, algorithms determining the provenance of missing data
make varying assumptions about which of these components may
require changes. Whereas Why-Not considers D and Q as fixed to
generate query-based explanations, Artemis and Missing-Answers
assume only Q to be fixed and compute instance-based explana-
tions. Finally, ConQueR only fixes D and produces modification-
based explanations that modify Q. Hence, it is possible that one
type of explanation can be computed while another type cannot.
For instance, assume that on the output of Q2 in Figure 2, a devel-
oper wonders why none of the tuples that Q2 returns has a value
for C = 1. Whereas an instance-based explanation indicating that
a tuple containing C = 1 is missing from R can be computed, no
query- or modification-based explanation is possible.

We propose a new type of explanation, named hybrid explana-

tion, that prevents a user from worrying about the above differ-
ences in the scope of each individual algorithm. Thus, no matter
the debugging scenario, Nautilus returns the most complete set of
explanations, regardless of their type. This complete coverage goes
beyond unifying all explanations of different types. In fact, new
explanations are possible when allowing, for example, a combi-
nation of an instance-based and a modification-based explanation.
For instance, to explain why tuple (11) is missing from Q2(D) and
assuming Q2 is no longer fixed, we need a modification to table
R that inserts a tuple with C = 11. But additionally, we have to
change the selection predicate C< 10 to a predicate that lets the de-
sired tuple pass. To compute hybrid explanations, we are currently
developing the Conseil algorithm2. Given a SQL query Q (that
may include nested queries and set difference as opposed to pre-
vious algorithms explaining missing-answers), a missing-answer t,
Q(D) and D, Conseil computes the set of all possible explanations,
i.e., the union of all instance-based, query-based, and hybrid ex-
planations. While details of the algorithm are out of the scope of
this paper, for the purpose of our subsequent discussion of the fix
phase, we nevertheless mention that Conseil computes these ex-
planations by transforming an annotated logical query tree repre-
sentation determined based on Q and t into an analogous tree of
a tuple similar to t but existing in Q(D). Intuitively, Conseil thus
“tracks” similar tuples in Q(D) and analyzes why t does not follow
the same path. The query tree transformation is determined using
a tree-edit-distance-like algorithm and the edit script translates into
an explanation.

Explanation annotator. This component links annotations pro-
vided by a developer in Step 3� of Figure 1 to explanations com-
puted by the explanation generator. Our current implementation
considers a Boolean annotation that allows developers to mark ex-
planations as relevant or irrelevant w.r.t. the debugging scenario.
Marking an explanation as relevant translates a developer’s belief
that the explanation exposes an interesting fact that warrants closer
analysis. On the contrary, all facts exposed by irrelevant explana-
tions should not be further explored. These annotations are used
2Conseil was a passenger of the Nautilus in Verne’s novel and means advice in French.

as guidance on how the space of all possible explanations is ex-
plored and exposed to the developer. To this end, we translate them
into probabilities of their relevance (e.g., 1 and 0 for relevant and
irrelevant, respectively).

Not all explanations need to be annotated by a developer. For
those not explicitly annotated, an annotation of unknown is as-
sumed or, as discussed next, a derived annotation is determined.
Explanations with an unknown annotation have a probability of rel-
evance between those of relevant and irrelevant annotations.

Annotations managed by the explanation annotator serve as in-
put to various Nautilus components: the explanation annotation an-
alyzer uses these to derive further annotations. The explanation
ranker requires annotations to compute a better rank for explana-
tions. Finally, the explanation generator may use annotations to ei-
ther prune the computation of explanations (i.e., those explanations
that are derived to be irrelevant) or to prioritize the computation
of some explanations (based on derived relevant annotations). Fi-
nally, the development cycle manager disseminates annotations to
the metadata repository and the query modification manager.

Explanation annotation analyzer. Based on annotations collected
by the explanation annotator, the explanation annotation analyzer
derives information concerning “related” explanations. To illus-
trate, given that the query-based explanation that identified the join
in Q1 (Figure 2) as faulty has been marked as irrelevant by the user,
the explanation annotation analyzer decides that all modification-
based explanations that modify the join operator are irrelevant as
well (Example 1). On the other hand, if the developer annotated
as relevant an instance-based explanation that describes that tuples
from R that join with tuples in T are missing, then the explanation
annotation analyzer derives that most likely, the query-based ex-
planation that returns the join operator is relevant, too (Example 2).
We distinguish the following types of derived annotations.
• Boolean-valued derived annotations correspond to relevant or

irrelevant explanations. These are derived when, given one an-
notation, the same (or opposite) annotation needs to be valid for
related explanations. Example 1 above illustrates a Boolean-
valued derived irrelevant annotation.

• Real-valued derived annotations correspond to a probability
indicating how relevant an annotation is, given a set of related
annotations. Example 2 above illustrates a real-valued derived
relevant annotation.
Currently, we model explanations and relationships between

them as a Bayesian network [15]. The nodes in the network rep-
resent (sets of) explanations. The probability of each node trans-
lates the relevance of the corresponding explanations. We are cur-
rently studying different conditional probability distribution func-
tions. Further work will focus on incrementally and efficiently
adapting the network based on new user input and as new expla-
nations are added, occurring for instance when computing explana-
tions incrementally for efficiency and interactivity reasons.

Derived annotations are fed back to the explanation annotator.
One use of derived annotations is determining the priority of ex-
planations, which is part of explanation generation. Essentially, the
higher the probability that a non-computed explanation is relevant
based on derived annotations, the sooner it should be computed.

4.2 Query Modification Manager
The query modification manager takes as input a debugging sce-

nario, explanations, and their annotations (passed to the develop-
ment cycle manager by the explanation annotator). When available,
it further considers modification annotations that the modification
annotator manages. The modification annotator, the modification



annotation analyzer, and the modification ranker are analogous to
their counterparts in the explanation manager, so we concentrate
our discussion on the modification generator.

The modification generator produces one ore more query modi-
fications that consist of an SQL rewrite, as we already illustrated in
Figure 3.

ConQueR [18] is an algorithm that returns modification-based
explanations in form of rewritten SQL queries. Obviously, these
can trivially be transformed into query modifications defined above.
ConQueR applies when tuples are missing from a monotonic query,
a limitation we plan to overcome by exploiting the output produced
by Conseil. Furthermore, the set of possible query transformations
is limited to changing the set of selection predicates, the set of join
predicates, or the set of joined tables. That is, ConQueR can pro-
duce the query modification shown in Figure 3(a), but it cannot de-
termine the query modification depicted in Figure 3(b). Also, Con-
QueR assumes the source data to be fixed, so if the data necessary
to produce the missing tuple t does not exist, no modification-based
explanation or, equivalently, no query modification is returned.

Based on Conseil’s computation of hybrid explanations, we are
investigating how to determine corresponding query modifications,
again using the idea of edit scripts between logical query trees. Un-
like for explanation generation, where we are given a source tree t

and a target tree of a tuple similar to t (cf. Section 4.2), we are
facing the problem that there is no available target tree when com-
puting query modifications (as the target tree will correspond to the
query modification). We thus have to explore and prune the search
space of all possible target trees and the result should correspond
to the target tree that has a minimal distance to the source tree. In
summary, we solve a search problem to determine the cheapest tree
transformation, given a set of possible tree edit operations and a
cost model. Clearly, efficiency is a major concern.

4.3 Development Cycle Manager
The development cycle manager serves two purposes: (i) it man-

ages the test phase of the AFT cycle using the modification impact
analyzer and the modification impact annotator, and (ii) it main-
tains information necessary across the explanation manager and the
query modification manager. More specifically, it processes anno-
tations and the current debugging state using the AFT-inference
engine to determine possible implications of these to the whole
debugging process. It also maintains the debugging scenario it-
self. We briefly describe details of each component in the remain-
der of this section, except for the modification impact annotator,
as it is analogous to the explanation annotator discussed in Sec-
tion 4.1. Note that the development cycle manager does not incor-
porate an impact ranker. The reason for this is that the descriptions
of changes in the result data are classified into different categories
(error, warning, irrelevant) by the modification impact analyzer and
do not require sophisticated and adaptive ranking functions.

Modification impact analyzer. This component tracks and reports
the impact of a query modification, once a developer has reached a
modification decision. More specifically, given an original query Q

that has been modified to query Q
�, the impact consists of all differ-

ences between Q(D) and Q
�(D). Essentially, it comprises the side-

effects that affect the changed query’s result. Note that this kind of
side-effect is different from side-effects from view update [8] as,
in the case we consider, a side-effect is caused by changes to the
query, not by changes to the data.

Both ConQueR [18] and Artemis [11] consider side-effects dur-
ing explanation generation and aim at minimizing these for mono-
tonic queries, i.e., they minimize |Q�(D)\Q(D)|. The modification
impact analyzer does not pursue the minimization goal but reports

changes between query results based on heuristics. These heuris-
tics build on various statistics (e.g., the number of new tuples, per-
centage of new values, number of distinct values, as illustrated in
Section 3) that the modification impact analyzer collects, updates
(when possible, incrementally), and interprets. More specifically,
it first identifies which tables, attributes, or sets of tuples are poten-
tially affected and how they may be affected. For instance, when
performing query modification 2 on Q1, we know that all additional
values for column D are null values. This knowledge allows us to
limit the computations in the second step, where we update relevant
statistics only, e.g., the frequency of null values in column D have
changed, whereas the average value of D is not affected. Finally,
the updated statistics are interpreted by the modification impact an-
alyzer, which decides what changes are significant. For instance, a
change in attribute A may be translated into x new values in A rang-
ing from y to z, whereas the presence of new null values in D is not
signaled to the user. The distinction between relevant and irrelevant
impact is determined by heuristics that can be configured by a user.
Essentially, these heuristics allow to classify updated statistics as
impact that should be reviewed by the developer (error), notifica-
tions that may be interesting (warning), and irrelevant updates.

AFT inference engine. The AFT inference engine gathers annota-
tions and considers the processing state of each component to infer
implications of these on the subsequent debugging process. It then
dispatches these inferred actions across the different components.
Currently, we envision a rule-based inference engine. To better ap-
preciate the role of the AFT inference engine, consider the three
examples below.
• Adaptive debugging scenario. The AFT inference engine

adapts the debugging scenario S based on annotations. For in-
stance, impact annotations that mark some changes to the query
result as unacceptable are processed by the AFT inference en-
gine that decides that forbidding these should be part of S.

• Adaptive ranking. Based on explanation annotations that des-
ignate explanations as relevant, the AFT inference engine deter-
mines what query modifications become more likely, based on
these explanations. This translates to real-valued relevant anno-
tations for query modifications.

• Computation pruning. When a user annotates query modifi-
cations as irrelevant, the inference engine determines which ex-
planations will produce equivalent modifications, when possible.
Clearly, these explanations need not be computed. This informa-
tion is propagated to the explanation annotation analyzer in form
of new Boolean-valued irrelevant annotations.
Derived information is used both to improve the overall effi-

ciency of the debugging process as well as the user experience.
Opposed to the respective annotation analyzers and rankers of the
explanation manager and the query modification manager, the ac-
tions inferred by the AFT inference engine are not local to a com-
ponent, but focus on cross-component relationships.

5. BENCHMARK
In the previous sections, we discussed how to use Nautilus and

how the system is built. To study its usability for practical debug-
ging scenarios, we propose to benchmark Nautilus (and further sys-
tems with similar capabilities) along three dimensions, namely the
efficiency, the effectiveness, and the user friendliness on a standard-
ized set of debugging scenarios using predefined tasks and evalua-
tion metrics.
What the benchmark provides. First, debugging scenarios need
to be defined. TPC-H data and queries may serve as source data



Task Description
Task 1
Input

support

Given a set of debugging scenarios S = {S1, . . . ,Sn}, compute a set of expla-
nations/query modifications Oi for the i-the debugging scenario. For unsup-
ported debugging scenarios, let Oi = null.

Task 2
Output

computation

Given a single debugging scenario, compute the complete set of explana-
tions/modifications possible (i.e., no pruning). Sort these according to the
ranking function.

Task 3
Impact

classification

Given a single debugging scenario, compute the impact of the query modi-
fication that corresponds to the final query (as defined by the gold-standard)
and classify changes as errors, warnings, and irrelevant changes.

Task 4
User

interaction

Given a debugging scenario of the benchmark and the output of an algorithm
(explanation, query modification, or impact), let a set of expert users navigate
through and annotate produced results until the correct result, as specified by
the benchmark is identified.

Task 5
AFT

processing

Given a debugging scenario of the benchmark, let a set of expert users it-
eratively perform the analyze, fix, and test phases until the correct result as
specified by the benchmark is obtained.

Task 6
Installation

Let non-expert users install and configure the system so that all applicable
debugging scenarios of the benchmark can be applied. Let the user fill out
the standardized installation form provided by the benchmark.

Task 7
System

mastering

Given a working installation of the system, let non-expert users learn how to
use the system. A user reaches the level of an expert user when he proves
to be able to process at least three randomly selected debugging scenarios of
the benchmark that can be applied to the system. Let the new expert user fill
out the standardized initiation form provided by the benchmark.

Task 8
User

satisfaction

Let expert users fill out the standardized user satisfaction form provided by
the benchmark.

Table 1: Benchmark tasks

and correct queries. The queries are then modified to obtain a
faulty version (this procedure has already been used in [11, 18]).
In designing debugging scenarios for the benchmark, we need to
take special care in covering all interesting cases. In addition to
generated data, the benchmark should provide real-world data and
queries. Obtaining both is not trivial but first steps in this direction
have already been undertaken [18].

Additionally, the benchmark needs to provide a gold-standard
for the results of different algorithms, given the debugging scenar-
ios. When proceeding as described above for the TPC-H data, the
correct query is known, and the gold-standard for explanation gen-
eration, query modification, and impact can be derived accordingly.
When no queries are available, which is often the case for real-word
data, the correct query needs to be defined in addition to the query
being debugged, before proceeding with the creation of explana-
tions, modification, and impact results.

Finally, to study user satisfaction and usability, we envision the
creation of dedicated surveys to be added to the benchmark.
Benchmark tasks. Table 1 summarizes the tasks we define in
our benchmark. We distinguish three dimensions for the evalua-
tion of systems like Nautilus: effectiveness (Tasks 1–3), efficiency
(Tasks 2–5), and user friendliness (Tasks 6–8). Whereas the first
two dimensions can be measured by adequate metrics, the third di-
mension is more subjective and requires user studies.
Evaluation metrics. Given the output of Task 1 we compute the
coverage of supported debugging scenarios over a given set of de-
bugging scenarios D as coverage(D) = |{Oi|Oi �=null}|

|D| . Given the
output of Task 2, we compute the recall, precision, and f-measure
over the sets of ranked explanations/query modifications. To eval-
uate the output of Task 3, we compute the same measures for each
individual class as well as over all classes. The latter gives us a
measure of what changes have been successfully detected during
impact analysis and abstracts from the heuristics used for classifi-
cation.

To measure efficiency, we propose the three metrics time, click
count, and annotation count. Note that these are also employed
when evaluating user friendliness. In this case, the measurements
complement the survey-based results.

6. CONCLUSION
This paper introduced Nautilus, a system to semi-automatically

support developers in designing, understanding, refining, and de-
bugging data transformations, in particular SQL queries. Nautilus
supports the three phases of the currently manual development pro-
cess, i.e., the analysis, fix, and test phases through adequate algo-
rithms and tools. Using Nautilus, the data quality of data entering
a database through a data transformation (e.g., an ETL process to
obtain data to be stored in a data warehouse) can potentially be
significantly improved by recognizing errors in the transformations
that yield data errors. Thus, transformation lifecycle management
is a technique allowing error avoidance, as opposed to techniques
for error correction such as entity resolution.

We described the general workflow when using Nautilus and dis-
cussed its architecture. For various components of the architec-
ture, we presented (preliminary) solutions to implement the desired
functionality. We also presented a possible benchmark to evaluate
algorithms relevant to different steps of the AFT cycle.

The research on Nautilus is ongoing work, and in the future, we
plan to live up to the vision of Nautilus given in this paper. To do
so, next steps include extending algorithms for the analysis phase,
refining existing algorithms and devising new algorithms for the
remaining phases, and a proper comparative evaluation using our
benchmark.
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