

You have *n* points $P = \{p_1, p_2, \dots, p_n\}$ in the plane. The points should be connected to form a tree. But you know only the degree information of points of the tree (not the tree itself). Each point p_i has degree d_i , which means that p_i is connected to d_i other points of *P*. Figure 1(a) shows an example in which each point is associated with its degree. Figure 1(b) shows a tree for the point set in Figure 1(a) such that a node of the tree corresponds to a point p_i in one-to-one manner and its degree is d_i . Tree edges must be drawn as straight-line segments and they do not cross each other.

The formal definition of the problem is as follows. You are given a point set $P = \{p_1, p_2, \dots, p_n\}$ in the plane where each p_i has a positive integral value d_i as its degree; the degrees satisfy

$$\sum_{i=1}^n d_i = 2n - 2.$$

It is known that it is always possible to draw a tree such that each tree node of degree d_i corresponds to a point p_i and each edge is drawn as a straight-line segment without edge crossings. Your program should find the tree for a given input.

Input

Your program is to read the input from standard input. The input consists of *T* test cases. The number of test cases *T* is given in the first line of the input. Each test case starts with a line containing an integer *n*, the number of input points, $4 \le n \le 1,000$. The next *n* lines contain *x*-coordinates, *y*-coordinates, degrees of the *n* points; the *i*-th line represents the *i*-th point p_i and contains three positive integers x_i, y_i , and d_i . The values x_i, y_i, d_i are separated by a single space, and x_i, y_i are between 1 and 10,000, both inclusive.

The input points are such that no three or more points lie on the same line, all x-coordinates are distinct, and all y-coordinates are distinct.

Output

Your program is to write to standard output. Print edges of the tree in n-1 lines for each test case. Note that the solution for each test case is not unique. Each line contains an edge of the tree – if the edge connects two points p_i and p_j , then just print *i* and *j*, separated by a single space.

The following shows sample input and output for three test cases.

Sample Input	Output for the Sample Input
3	3 2
4	3 1
1 5 1	3 4
2 1 1	3 4
3 3 3	3 5
5 2 1	5 2
6	2 6
6 6 1	2 1
5 4 3	1 2
1 1 2	2 4
2 7 1	4 5
3 2 2	4 6
4 8 1	5 3
8	5 8
1 1 1	7 6
2 6 2	
3 8 1	
4 4 3	
6 7 3	
7 2 2	
8 3 1	
10 9 1	