# The $31^{\text {st }}$ Annual ACM International Collegiate Programming Contest ASIA Regional - Seoul 



2ใ円 $\begin{aligned} & \text { International Collegiate } \\ & \text { Programming Contest }\end{aligned}$

## 드흘 sponsor

## Problem G

## Tree

You have $n$ points $P=\left\{p_{1}, p_{2}, \cdots, p_{n}\right\}$ in the plane. The points should be connected to form a tree. But you know only the degree information of points of the tree (not the tree itself). Each point $p_{i}$ has degree $d_{i}$, which means that $p_{i}$ is connected to $d_{i}$ other points of $P$. Figure 1(a) shows an example in which each point is associated with its degree. Figure 1(b) shows a tree for the point set in Figure 1(a) such that a node of the tree corresponds to a point $p_{i}$ in one-to-one manner and its degree is $d_{i}$. Tree edges must be drawn as straight-line segments and they do not cross each other.


Figure 1
The formal definition of the problem is as follows. You are given a point set $P=\left\{p_{1}, p_{2}, \cdots, p_{n}\right\}$ in the plane where each $p_{i}$ has a positive integral value $d_{i}$ as its degree; the degrees satisfy

$$
\sum_{i=1}^{n} d_{i}=2 n-2
$$

It is known that it is always possible to draw a tree such that each tree node of degree $d_{i}$ corresponds to a point $p_{i}$ and each edge is drawn as a straight-line segment without edge crossings. Your program should find the tree for a given input.

## Input

Your program is to read the input from standard input. The input consists of $T$ test cases. The number of test cases $T$ is given in the first line of the input. Each test case starts with a line containing an integer $n$, the number of input points, $4 \leq n \leq 1,000$. The next $n$ lines contain $x$-coordinates, $y$-coordinates, degrees of the $n$ points; the $i$-th line represents the $i$-th point $p_{i}$ and contains three positive integers $x_{i}, y_{i}$, and $d_{i}$ The values $x_{i}, y_{i}, d_{i}$ are separated by a single space, and $x_{i}, y_{i}$ are between 1 and 10,000 , both inclusive.

## The 31 ${ }^{\text {st }}$ Annual ACM Programming Contest ASIA Regional - Seoul

The input points are such that no three or more points lie on the same line, all $x$-coordinates are distinct, and all $y$-coordinates are distinct.

## Output

Your program is to write to standard output. Print edges of the tree in $n-1$ lines for each test case. Note that the solution for each test case is not unique. Each line contains an edge of the tree - if the edge connects two points $p_{i}$ and $p_{j}$, then just print $i$ and $j$, separated by a single space.

The following shows sample input and output for three test cases.

## Sample Input

## Output for the Sample Input

| 3 | 32 |
| :---: | :---: |
| 4 | 31 |
| 151 | 34 |
| 211 | 34 |
| 333 | 35 |
| 521 | 52 |
| 6 | 26 |
| 661 | 21 |
| 543 | 12 |
| 112 | 24 |
| 271 | 45 |
| 322 | 46 |
| 481 | 53 |
| 8 | 58 |
| 111 | 76 |
| 262 |  |
| 381 |  |
| 443 |  |
| 673 |  |
| 722 |  |
| 831 |  |
| 1091 |  |

