
A SQL Debugger Built from Spare Parts

Turning a SQL:1999 Database System into Its Own Debugger

Benjamin Dietrich Torsten Grust
Universität Tübingen
Tübingen, Germany

[b.dietrich, torsten.grust]@uni-tuebingen.de

ABSTRACT
We demonstrate a new incarnation of Habitat, an observa-
tional debugger for SQL. In observational debugging, users
highlight parts of a—presumably faulty—query to observe
the evaluation of SQL subexpressions and learn about the
query’s actual runtime behavior. The present version of
Habitat has been redesigned from scratch and employs a
query instrumentation technique that exclusively relies on
the SQL facilities of the underlying RDBMS. We particu-
larly shed light on new features like (1) the debugging of
recursive SQL queries and (2) the observation of row groups
(before and after aggregation). Habitat can turn any reason-
ably modern SQL:1999 RDBMS into its own language-level
SQL debugger.
Categories and Subject Descriptors: H.2.3 [Database Man-
agement]: Languages—Query languages; D.2.5 [Software En-
gineering]: Testing and Debugging—Debugging aids
General Terms: Algorithms, Languages
Keywords: SQL; debuggers; observational debugging

1. AN OBSERVATIONAL SQL DEBUGGER
We demonstrate a completely rethought and redesigned

version of Habitat, an observational debugger for SQL. Given
the text of a—presumably buggy—SQL query, users mark
subexpressions of arbitrary size and position for runtime ob-
servation. Much like the judicious placement of printf()
calls in the debugging of procedural code, Habitat’s observa-
tions help to gain detailed insight into the query evaluation
process. Habitat uses the user’s markings to transform and
re-evaluate the instrumented query, collects the desired ob-
servations on the way, and finally prepares a tabular display
of these observations and the context in which they occurred.
The logic and functional programming language commu-

nities pioneered this observational style of debugging [7, 9]
which proves to be a good fit for the declarative SQL lan-
guage as well. With Habitat, the debugging of logical (not:
performance) SQL bugs happens on the level of the user-
Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
SIGMOD’15, May 31–June 4, 2015, Melbourne, Victoria, Australia.
Copyright is held by the owner/author(s). Publication rights licensed to ACM.
ACM 978-1-4503-2758-9/15/05 ...$15.00.
http://dx.doi.org/10.1145/2723372.2735358.

facing query language and its tabular data model. Users
are not exposed to engine internals or query plans (they do
not need to: the plans are okay—it is the query logic that
needs fixing). The RDBMS host itself produces and collects
the observations while it evaluates the instrumented query
against the original database instance, i.e., in the presence
of built-in or user-defined functions, views, and types (the
query is observed in “its own habitat”.) Habitat’s debug-
ging model is orthogonal to those of existing SQL stored
procedure debuggers [6] in which the evaluation of a query
constitutes a monolithic and opaque action.

A new Habitat, assembled from the spare parts around you.
Earlier, we have described an implementation of the Habi-
tat idea that relied on a rather complex and non-standard
translation of SQL into an intermediate table algebra [3, 4].
With it came the requirement of an external code generator
that would turn instrumented algebraic queries back into ex-
ecutable SQL text. Users were constrained in what kind of
subexpressions could be observed and where markings could
be placed.
The present work demonstrates a new incarnation of Habi-

tat that has been exclusively built using the host DBMS’s
own SQL facilities. We focus on PostgreSQL [8] for this
demonstration but the design immediately applies to other
SQL:1999 database systems. The new Habitat debugger
• admits the free placement of markings and can observe
subexpressions including atomic values, arithmetic and
Boolean expressions, groups of rows before and after ag-
gregation, (correlated) subqueries as well as recursive SQL
queries,
• places a set of observations into a common context to
illustrate the runtime interplay of individual query pieces,
• supports “what if?”–style debugging that allows to tinker
with (sub)query results before a final fix is committed to,
• collects observations in relational tables as a side-effect
during regular query evaluation, and
• comes with a visual browser-based frontend that supports
subexpression marking, an interactive observation display,
and allows to establish and keep focus on key observations.

The demonstration will feature a fully functional and live
version of the new Habitat debugger running atop a Post-
greSQL 9.3 backend. Here, we continue to briefly explore
two SQL debugging scenarios. Our aim is to provide a fla-
vor of the methodology of observational SQL debugging and
to give an impression of what the demo audience can expe-
rience on-site.

Arvin

Biggs

Chico

Dixon

70

60

10
580

40

x 50 000

x 320 000

x 80 000

x 550 000

(a) Road network with travel distances between cities,
locations of fueling stations () and population size (x).

cities
city population fuel

c1 Arvin 50 000 1
c2 Biggs 320 000 0
c3 Chico 80 000 0
c4 Dixon 550 000 1

roads
here dist there

r1 Arvin 70 Biggs
r2 Arvin 60 Dixon
r3 Biggs 40 Chico
r4 Dixon 80 Biggs
r5 Dixon 105 Biggs

(b) Tables cities and roads.

Figure 1: Simplified relational model of cities and their connecting road network.

1 WITH RECURSIVE hops(city, gauge) AS (
2 VALUES (’Arvin’, 0)
3 UNION ALL
4 SELECT r.there AS city,
5 h.gauge + c.fuel * 100 - r.dist AS gauge
6 FROM cities AS c, roads AS r, hops AS h
7 WHERE h.city = c.city
8 AND h.city = r.here
9 AND h.gauge + c.fuel * 100 >= r.dist

10)
11 SELECT *
12 FROM hops;

Figure 2: Which cities can be reached from Arvin? (Buggy.)

2. UNRAVELING AND FIXING SQL BUGS
Let us focus on two debugging showcases that go beyond

the capabilities of the initial Habitat version: (1) a recursive
(or iterative) road network exploration, formulated using
SQL’s WITH RECURSIVE construct, and (2) a SQL query that
revolves around the grouping and subsequent aggregation of
rows. In both cases we obtain unexpected (read: incorrect)
results and we will use Habitat to unravel the queries and
then fix their SQL bugs.
The simple two-table database of Figure 1 serves as the

scenario for both showcases. We model an acyclic network
of unidirectional roads that connects four cities. In selected
cities, marked with a symbol in Figure 1(a), drivers have
the opportunity to refuel their cars (tank volume: 100 `).
Traveling along a road d costs d liters of fuel. Fig-
ure 1(b) shows how this road network is represented in terms
of relational tables. Table roads encodes the network itself
while table cities holds city details: the presence of a gas sta-
tion (0/1 in column fuel) as well as the current population
size. (Ignore the ci and rj row identifiers for now.)

2.1 Recursion in SQL
Road network exploration. Start in Arvin with an empty
tank, refill, then travel along any road requiring no more
than 100 ` of fuel. Upon arrival, take note of the destination
reached (city) as well as the fuel that remains (gauge). Re-
fill at the destination if possible, then continue the journey.
Which cities can we reach from Arvin?
The recursive SQL query reproduced in Figure 2 computes

table hops(city, gauge) to answer this question. The base
case starts us off in Arvin with an empty tank (line 2). In
the recursive case, the hop(s) we reached last are available
in row variable h. We join with tables cities and roads to
learn about the destination city c and the roads r that leave

1

2

34

1 WITH RECURSIVE hops(city, gauge) AS (
2 VALUES (’Arvin’, 0)
3 UNION ALL
4 SELECT r.there AS city,
5 h.gauge + c.fuel * 100 - r.dist AS gauge
6 FROM cities AS c, roads AS r, hops AS h
7 WHERE h.city = c.city
8 AND h.city = r.here
9 AND h.gauge + c.fuel * 100 >= r.dist

10)
11 SELECT *
12 FROM hops;

Figure 4: Habitat allows the placement of markings ()
to observe the evaluation of selected SQL subexpressions.

from c (lines 6 to 8). Should the remaining fuel h.gauge
plus a possible refill in c—if there is no gas station in c,
c.fuel * 100 = 0—bridge the distance r.dist (line 9), we
have established r.there as a possible next hop. To com-
plete this step of the recursion, we enter r.there along with
the then remaining fuel into the hops table (lines 4 and 5).

city gauge
Arvin 0
Biggs 30
Dixon 40
Biggs 35
Biggs 60
Chico 20

Figure 3: Final hops
table. (Incorrect.)

Evaluating this recursive query
against the database of Figure 1(b)
yields the hops table of Figure 3.
The result looks suspicious. Row
〈Chico, 20〉, in particular, is unex-
pected: there is no option to reach
Biggs—where we cannot refill—
with the residual 40 ` of fuel
needed to bridge the distance to
Chico. Row 〈Biggs, 60〉 thus is
questionable as well.

Debugging a recursive query. Since we are not sure where
the problem with the query might lie, we start by marking
the entire body of the WITH RECURSIVE clause. For refer-
ence, Figure 4 depicts the markings that we place during
this debugging session (we have just placed Marking 1 ;
Markings 2 to 4 will be added in the process). Habitat
instruments the SQL query according to Marking 1 , runs
the modified query, and responds with a tabular display of
observations made at runtime (Figure 5).
Each cell in a Habitat observation reflects one evalua-

tion (of many, in general) of a marked SQL subexpression.
The observation of Figure 5 shows that the base case of
the WITH RECURSIVE clause ran once while the recursive part
was evaluated an additional three times (cf. the rows num-
bered 0 to 3). A cell marked indicates that an observed

1 1
VALUES(· · ·) SELECT · · ·
city gauge city gauge

base case
{

0 Arvin 0

recursion
step

{
1 Biggs 30

Dixon 40

2 Biggs 35
Biggs 60

3 Chico 20

Figure 5: Observation for Marking 1 . Left column relates to
the VALUES(· · ·) expression, right column shows the evalua-
tions of the recursive SELECT clause (after UNION ALL).

1 2 1
VALUES(· · ·) hops AS h SELECT · · ·
city gauge city gauge city gauge

0 Arvin 0

1 Arvin 0
Arvin 0

Biggs 30
Dixon 40

2
Biggs 30
Dixon 40
Dixon 40

Biggs 35
Biggs 60

3 Biggs 35
Biggs 60 Chico 20

4 Chico 20

Figure 6: Observations for Markings 1 and 2 in context.

expression has not been evaluated in that particular recur-
sive step (or iteration). Note that both, the VALUES expres-
sion as well as the recursive SELECT, yield tables of rows on
each evaluation—Habitat renders such tabular values inside
boxes for clarity. We see that Chico has been reached
in the third (final) step of the recursion—as is expected since
the city is located at the fringe of the road network.
To understand how we (erroneously) got to Chico, we

place Marking 2 which brings the hops themselves into con-
text. Habitat now prepares the merged display of Figure 6
which relates the observations for Markings 1 and 2 . In re-
cursion step 1 we reach both Biggs and Dixon coming from
Arvin. In step 2, we do not get anywhere from Biggs with
a tank of 30 `. However, we can refill in Dixon to reach
Biggs on two different roads. The remaining fuel levels in
Biggs of 35 ` and 60 ` look suspiciously high, though. In
fact, the residual 60 ` allows us to reach Chico in step 3.
(Note that step 4 indicates that we get nowhere from Chico:
row 〈Chico, 20〉 does not find any join partner such that
the SELECT clause of Marking 1 is never evaluated; this in-
dicates the end of the recursion according to the semantics
of WITH RECURSIVE [1].)
Do we take the proper travel distances into account? We

place Marking 3 to observe the atomic subexpression r.dist.
Habitat grows the display once more (refer to the column
labeled 3 in Figure 7). Checking with table roads, the dis-
tances look as expected. Does the fuel level calculation work
correctly? We highlight expression h.gauge + c.fuel * 100
to obtain Marking 4 and its associated observation (Fig-
ure 7). Here is the bug! Apparently, a refill may exceed the
tank volume of 100 ` (in Dixon we fill up from 40 to 140 `).

1 2 1 3 4
) hops AS h SELECT · · · r.dist h.gauge · · ·
ge city gauge city gauge

0 0

1 Arvin 0
Arvin 0

Biggs 30
Dixon 40

70
60

100
100

2
Biggs 30
Dixon 40
Dixon 40

Biggs 35
Biggs 60

105
80

140
140

3 Biggs 35
Biggs 60 Chico 20 40 60

4 Chico 20

Figure 7: Display of observations for Markings 1 to 4 .

1 WITH RECURSIVE hops(city, gauge) AS (
2 VALUES (’Arvin’, 0)
3 UNION ALL
4 SELECT r.there AS city,
5 LEAST(100, h.gauge + c.fuel * 100) - r.dist AS gauge
6 FROM cities AS c, roads AS r, hops AS h
7 WHERE h.city = c.city
8 AND h.city = r.here
9 AND LEAST(100, h.gauge + c.fuel * 100) >= r.dist

10)
11 SELECT *
12 FROM hops;

Figure 8: Repaired road network exploration query (fixes).

city gauge
Arvin 0
Dixon 40
Biggs 30
Biggs 20

Figure 9: Table hops.
(Corrected.)

One obvious fix is to prop-
erly cap the fuel level on a re-
fill. The SQL query of Fig-
ure 8 uses LEAST(·,·) to imple-
ment this. (Section 3 illustrates
how Habitat allows to experiment
with a capped fuel level before
such a concrete query fix is ap-
plied.) Table hops of Figure 9 holds the correct result of the
road network exploration.

2.2 Observing Groups Before Aggregation
The GROUP BY construct and the groups of rows it pro-

duces are, in a sense, second-class concepts in SQL: queries
can compute aggregates of a group but may not return the
group itself (a restriction due to the flat 1NF nature of the
relational data model). Nevertheless, a look at such groups
of rows can be insightful during the debugging of queries fea-
turing GROUP BY.1 It can also help learners to understand
the otherwise opaque behavior of GROUP BY. This second
debugging session illustrates how the new Habitat treats
groups as being first-class.

1Queries can be rewritten to reveal group contents but this
manual process is error-prone [2, 5] and does not preserve
the original query intent.

1 SELECT r.there AS city, SUM(c.population) AS belt
2 FROM cities AS c, roads AS r
3 WHERE c.city = r.here
4 GROUP BY r.there;

Figure 10: Computing commuter belt sizes. (Buggy.)

5

6

7
1 SELECT r.there AS city, SUM(c.population) AS belt
2 FROM cities AS c, roads AS r
3 WHERE c.city = r.here
4 GROUP BY r.there;

Figure 12: Markings placed to debug the query of Figure 10.

5 6
SELECT · · · c.population

city belt

1 Biggs 1 150 000
50 000

550 000
550 000

2 Chico 320 000 320 000

3 Dixon 50 000 50 000

Figure 13: Observations made for Markings 5 and 6 . Nested
boxes in column 6 represent groups.

Commuter belt size. For each city with incoming roads,
compute the sum of the population sizes of the city’s direct
neighbors. The result serves as a measure for the expected
commuter traffic (useful input in road planning).
The query of Figure 10 uses tables cities and roads (Fig-

ure 1(b)) to implement this commuter belt computation in

city belt
Biggs 1 150 000
Chico 320 000
Dixon 50 000

Figure 11: Commuter
belts. (Incorrect.)

SQL. For each city with in-
coming roads—found in col-
umn there in table roads—we
find all neighboring cities c
(lines 2 and 3), collect them in
a common group (line 4), and fi-
nally sum the neighbors’ popu-
lations (line 1) to find the belt

size (belt). The resulting two-column table is shown in Fig-
ure 11 but its contents look dubious: the commuter belt size
of Biggs alone exceeds the overall population (1 000 000) of
the entire region.

Debugging with first-class groups. Once more we start the
session by highlighting the entire SQL query text (Mark-
ing 5 in Figure 12). The resulting observation merely mir-
rors the query’s result. It would be more insightful to know
which cities’ population sizes contribute to the obviously in-
correct belt size aggregates. We thus place the Marking 6 .
Note that we highlight the subexpression c.population but
omit the enclosing SUM aggregate function. Habitat instru-
ments and re-runs the SQL query, then renders the ob-
servation display of Figure 13. In each of the three it-
erations of the query’s SELECT clause, marked subexpres-
sion c.population evaluates to a group of rows: column 6
thus uses nested boxes to visualize the group contents.
The group associated with Biggs (iteration 1) indicates

incoming traffic of 550 000 twice. Is that okay? Marking 7

city belt
Biggs 600 000
Chico 320 000
Dixon 50 000

Figure 16: Corrected
commuter belts.

on roads as r lets us observe
the associated roads r that carry
the traffic. The augmented dis-
play of Figure 14 indicates that
we counted the population of
Dixon twice when we explored
the neighborhood of Biggs (two
roads lead from Dixon to Biggs).
The DISTINCT fix of Figure 15 makes the SQL query disre-

gard such multi-road connections between cities and estab-

5 6 7
SELECT · · · c.population roads AS r

city belt here dist there

1 Biggs 1 150 000
50 000

550 000
550 000

Arvin 70 Biggs
Dixon 80 Biggs
Dixon 105 Biggs

2 Chico 320 000 320 000 Biggs 40 Chico

3 Dixon 50 000 50 000 Arvin 60 Dixon

Figure 14: Complete display of observations for Markings 5
to 7 . The double Dixon in iteration 1 hints at the bug.

1 SELECT r.there AS city, SUM(c.population) AS belt
2 FROM cities AS c,
3 (SELECT DISTINCT here, there FROM roads) AS r
4 WHERE c.city = r.here
5 GROUP BY r.there;

Figure 15: Patched commuter belt query (fix).

lishes the intended notion of neighborhood. Figure 16 shows
the corrected commuter belt sizes.

3. BEHIND THE SCENES
Instrumentation. Habitat’s operation is based on the in-
strumentation of the SQL query under debugging. In a nut-
shell, a marked subexpression e is replaced by a function
call hi(. . . , e). SQL function hi inserts the value of e into
Habitat–created table obsi and otherwise acts as the iden-
tity by returning e, allowing the evaluation of the instru-
mented query to proceed normally.
Figure 17 shows the fully instrumented variant of the re-

cursive road exploration query. The four markings of Fig-
ure 4 turn into calls to functions h1,...,8 (if e is table-valued,
the columns of e are instrumented separately). Function h6
and its associated observation table obs6 are shown in Fig-
ures 18 and 19, respectively (in these obsi tables, the ob-
served value of e is found in column observation). Note
that hi is declared as a VOLATILE SQL function to announce
its side effect on the obsi table, forcing the RDBMS to re-
evaluate hi on every invocation.

Observations in context. Once the evaluation of the instru-
mented query is complete, Habitat’s frontend reads from
the observation tables obsi to prepare the displays discussed
in Section 2. Recall that these displays relate multiple ob-
servations by merging them into a coherent whole—a re-
quirement of the observational debugging paradigm in which
markings are added over time to establish a chain of cause
and effects, eventually leading to the detection of the bug [7].
Along with the observed value of e, Habitat thus collects
information that identifies the context in which e was eval-
uated. A display relates observations that share the same
context.

Habitat derives context information from three sources (as
required and applicable):
• for any SQL row variable v in scope, the identifier tid(v)
of the row v is currently bound to,
• the values of the criteria c1, . . . , cn (n > 1) that uniquely
identify each group built by a GROUP BY c1,. . . ,cn clause
(e.g., c1 ≡ r.there in the query of Figure 12), and
• the depth depth() of the current recursion (depth() ∈
{0, . . . , 4} for the example of Figures 6 and 7).

1

1
3

2

4

1 WITH RECURSIVE hops(city, gauge) AS (
2 SELECT hops.city, hops.gauge
3 FROM (VALUES (depth())) AS _(rec),
4 LATERAL (SELECT h1(rec, tid(v), v.city) AS city, h2(rec, tid(v), v.gauge) AS gauge
5 FROM (VALUES (’Arvin’, 0)) AS v(city, gauge)
6) AS hops
7 UNION ALL
8 SELECT hops.city, hops.gauge
9 FROM (VALUES (depth())) AS _(rec),

10 LATERAL (SELECT h7(rec, tid(c), tid(r), h.id, r.there) AS city,
11 h8(rec, tid(c), tid(r), h.id,
12 h6(rec, tid(c), tid(r), h.id, h.gauge + c.fuel * 100) - h5(rec, tid(c), tid(r), h.id, r.dist)) AS gauge,
13 FROM cities AS c, roads AS r,
14 (SELECT tid(h) AS id, h3(rec, tid(h), h.city) AS city, h4(rec, tid(h), h.gauge) AS gauge
15 FROM hops AS h) AS h
16 WHERE h.city = c.city
17 AND h.city = r.here
18 AND h.gauge + c.fuel * 100 >= r.dist
19) AS hops
20)
21 SELECT hops.*
22 FROM hops;

Figure 17: Full instrumentation of the recursive SQL query of Figure 4.

1 CREATE FUNCTION h6(rec BIGINT, c TID, r TID, h BIGINT,
2 observation INT) RETURNS INT AS
3 $$
4 INSERT INTO obs6 VALUES (rec, c, r, h, observation);
5 SELECT observation; -- return value of e (act as identity)
6 $$
7 LANGUAGE SQL VOLATILE;

Figure 18: Function h6 implements Marking 4 , observing
expression e ≡ h.gauge + c.fuel * 100 of type INT.

obs6
rec tid(c) tid(r) tid(h) observation
1 c1 r1 1 100
1 c1 r2 1 100
2 c4 r4 1 140
2 c4 r5 1 140
3 c2 r3 2 60

Figure 19: Observation table obs6. Populated by function h6
when the instrumented query of Figure 17 is evaluated.

Contemporary SQL RDBMSs provide a variety of options to
obtain these bits of context:
tid(v): If v ranges over a base table, identify rows by their

system-provided row ids2 (with PostgreSQL tid(v) ≡
v.ctid and Oracle tid(v) ≡ v.rowid, for example).
Otherwise (v ranges over an intermediate subquery re-
sult), generate surrogate row ids via a SQL:1999 row
number generator: tid(v) ≡ ROW_NUMBER() OVER ().

depth(): Create a temporary SQL sequence generator s and
draw successive numbers 0, 1, . . . from s: depth() ≡
NEXT VALUE FOR s (for PostgreSQL: nextval(’s’)).

To illustrate, function h6 receives the current recursion depth
as well as the identifiers of the rows bound to variables c, r,
and h as context. Observation table obs6 holds the recorded
context along with the result of the observed expression:
value 60 was observed in the third recursion step when vari-
ables c, r, and h were bound to the rows with ids c2, r3,
and 2, respectively (the row ids ci, rj are found in Fig-
ure 1(b); h ranges over hops, an intermediate result table—
Habitat implements tid(h) (line 14 in Figure 17) in terms
of surrogate row identifiers of type BIGINT).
2It suffices that these row ids are stable while the instru-
mented query is evaluated.

5 SELECT CASE WHEN (rec, c, r, h) IN ((2,c4,r4,1), (2,c4,r5,1))
THEN 100
ELSE observation

END;

Figure 20: “What if?” debugging: replacement for line 5 in
function h6 (Figure 18).

Instrumentation and (non-)interference. Instrumentation in-
volves the risk of interfering with the evaluation of the de-
bugged subject query. Habitat’s query instrumentation dili-
gently avoids such interference:
• If possible, context information is generated inside sepa-
rate LATERAL subqueries: in FROM . . . ec, LATERAL e, ex-
pression ec can compute context information which Habi-
tat may use to instrument expressions in subquery e (see
lines 3 and 9 in Figure 17 where the current recursion
depth is made available in column rec).
• If Habitat needs to introduce additional columns to hold
context information (cf. column id in line 14), care is
taken to not interfere with query evaluation: this relates
to the expansion of SELECT *, duplicate elimination via
DISTINCT, or the semantics of set operations (e.g., UNION),
for example.

“What if?” debugging. The presence of evaluation context
information enables Habitat to offer a “what if?”–approach
to debugging in which users can tentatively alter the be-
havior of the subject query before a corresponding fix needs
to be implemented. Reconsider the road exploration query
where we have found the fuel gauge expression marked 4
to erroneously exceed the tank volume. Would the query
work if these values had not exceeded 100 `? To explore this
hypothesis, users select the two values 140 in the display
of Figure 7 and instead provide the desired value of 100.
When the subject query is re-evaluated, the marked subex-
pression will yield 100 for the two highlighted instances (but
otherwise evaluate as before).
Under the hood, the frontend passes the context informa-

tion associated with the selected occurrences of 140 to Habi-
tat which then alters the definition of h6 (see Figure 20).
Based on the evaluation context, the new (non-identity)
function h6 will return 100 instead of the original observation
made, effectively creating the desired “what if?” scenario.

(a) Markings 1 () and 2 () placed in
the road exploration query (refer to Figure 4).

(b) Debugger display with observations 1 and 2 . Dashes
(---) indicate non-evaluated expressions (in Figure 6).

Figure 21: Screenshots of the interactive browser-based (HTML5, JavaScript) frontend to Habitat.

Figure 22: Debugger display with all non-Biggs rows filtered.
Interesting rows () remain in focus.

4. DEMONSTRATION SETUP
The on-site demo is based on a full-featured implemen-

tation of the new Habitat SQL debugger, talking to a Post-
greSQL (version 9.3) backend. Habitat comes with a browser-
based frontend that comprises a syntax-highlighting SQL ed-
itor as well as tabular displays that grow or shrink as debug-
ging sessions progress. Markings can be placed and observa-
tion displays manipulated with minimal user interaction to
encourage an exploratory (or playful) style of debugging: a
single mouse drag suffices to place a marking and instantly
update the display, for example. Figure 21 provides impres-
sions of the debugger’s new frontend. Not shown is Habitat’s
scenario archive which collects earlier debugging sessions.

Some markings may yield a potentially large number of
rows. The debugger thus aims to help users to gain and
retain focus during a session. Column filters may be used
to hide all observations that fail to contain a given value.
(Again, to promote rapid interaction, drop-down menus al-
ready provide the values in the column’s active domain.)
In addition, specific observations (i.e., rows or groups of
rows in a display) may be highlighted as interesting. Filters
and highlights persist even if the debugger display changes
dynamically—to implement this behavior, the frontend uses
the observation contexts discussed in Section 3.
Figure 22 shows a snapshot of our first debugging session

in which we have (1) identified the observation of Chico
as interesting (how did we get there?) and, subsequently,
(2) filtered all non-Biggs rows once we found that city was
the last hop before we reached Chico.

Debugging scenarios. Based on audience interest and avail-
able time, we can offer a variety of scenarios that showcase
the debugger and its implementation:

• Quick demo: uses a variant of the road network scenario
in the present paper—simple queries and compact data
set that still allow to explore interesting bugs.
• Query understanding: propose your own queries, then ob-
serve how (selected clauses of) these queries are evaluated—
much like in a possible classroom use of Habitat.
• SQL bug puzzle: use Habitat to guide your hunt for par-
ticularly tricky bugs in SQL queries—based on canned
queries held in Habitat’s scenario archive.

The demonstration will be live: ad hoc SQL queries can be
formulated and debugged at will. A log of instrumented
queries along with their supporting functions hi provides a
peek under Habitat’s hood.

Acknowledgments. Philipp Moers implemented the browser-
based frontend for the new Habitat debugger.

5. REFERENCES
[1] ANSI/ISO. Database Language SQL—Part 2:

Foundation (SQL/Foundation). IEC 9075.
[2] R. Ganski and H. Wong. Optimization of Nested SQL

Queries Revisited. SIGMOD Record, 16(3), 1987.
[3] T. Grust, F. Kliebhan, J. Rittinger, and T. Schreiber.

True Language-Level SQL Debugging. In Proceedings of
the 14th International Conference on Extending
Database Technology (EDBT), Uppsala, Sweden, 2011.

[4] T. Grust and J. Rittinger. Observing SQL Queries in
their Natural Habitat. ACM TODS, 38(1), 2013.

[5] W. Kim. On Optimizing an SQL-like Nested Query.
ACM TODS, 7(3), 1982.

[6] Microsoft Corporation. Transact-SQL (T-SQL)
Debugger in Microsoft SQL Server 2008. http://msdn.
microsoft.com/en-us/library/cc645997.aspx.

[7] B. Pope and L. Naish. Practical Aspects of Declarative
Debugging in Haskell 98. In Proceedings of the 5th
ACM SIGPLAN International Conference on
Principles and Practice of Declarative Programming
(PPDP), Uppsala, Sweden, 2003.

[8] The PostgreSQL Relational Database System.
postgresql.org.

[9] E. Shapiro. Algorithmic Program Debugging. MIT
Press, Cambridge, MA, USA, 1983.

