
Part III

Well-Formed XML

Torsten Grust (WSI) Database-Supported XML Processors Winter 2012/13 25

Outline of this part

1 Formalization of XML

Elements

Attributes

Entities

2 Well-Formedness

Context-free Properties

Context-dependent Properties

3 XML Text Declarations

XML Documents and Character Encoding

Unicode

XML and Unicode

4 The XML Processing Model

The XML Information Set

More XML Node Types

Torsten Grust (WSI) Database-Supported XML Processors Winter 2012/13 26

Formalization of XML

Formalization of XML

We will now try to approach XML in a slightly more formal way. The

nuts and bolts of XML are pleasingly easy to grasp.

This discussion will be based on the central XML technical
specification:

Extensible Markup Language (XML) 1.0 (Second Edition)

W3C Recommendation 6 October 2000

(http://www.w3.org/TR/REC-xml)

� Visit the W3C site

This lecture does not try to be a “guided tour” through the XML-related

W3C technical documents (boring!).

Instead we will cover the basic principles and most interesting ideas. Visit

the W3C site and use the original W3C documents to get a full grasp of

their contents.

Torsten Grust (WSI) Database-Supported XML Processors Winter 2012/13 27

Formalization of XML Elements

Elements

The element is the main markup construct provided by XML.
Marked up document region (element content) enclosed in matching
start end closing (end) tags:

start tag: ¡t¿ (t is the tag name),

matching closing tag: ¡/t¿

Well-formed XML (fragments)
1 ¡foo¿ okay ¡/foo¿

2 ¡This-is-a-well-formed-XML-tag.¿ okay

3 ¡/This-is-a-well-formed-XML-tag.¿

4 ¡foo¿okay¡/foo¿

Non-well-formed XML
1 ¡foo¿ oops ¡/bar¿

2 ¡foo¿ oops ¡/Foo¿

3 ¡foo¿ oops ... 〈EOT〉

Torsten Grust (WSI) Database-Supported XML Processors Winter 2012/13 28

Formalization of XML Elements

Elements

The element is the main markup construct provided by XML.
Marked up document region (element content) enclosed in matching
start end closing (end) tags:

start tag: ¡t¿ (t is the tag name),

matching closing tag: ¡/t¿

Well-formed XML (fragments)
1 ¡foo¿ okay ¡/foo¿

2 ¡This-is-a-well-formed-XML-tag.¿ okay

3 ¡/This-is-a-well-formed-XML-tag.¿

4 ¡foo¿okay¡/foo¿

Non-well-formed XML
1 ¡foo¿ oops ¡/bar¿

2 ¡foo¿ oops ¡/Foo¿

3 ¡foo¿ oops ... 〈EOT〉

Torsten Grust (WSI) Database-Supported XML Processors Winter 2012/13 28

Formalization of XML Elements

Element content may contain document characters as well as

properly nested elements, so-called mixed content):

Well-formed XML
1 ¡foo¿¡bar¿

2 ¡baz¿ okay ¡/baz¿

3 ¡/bar¿

4 ¡ok¿ okay ¡/ok¿ still okay

5 ¡/foo¿

Non-well-formed XML
1 ¡foo¿¡bar¿ oops ¡/foo¿¡/bar¿

2 ¡foo¿¡bar¿ oops ¡/bar¿¡bar¿ oops ¡/foo¿¡/bar¿

. Check for proper nesting

Which data structure would you use to straightforwardly implement the

check for proper nesting in an XML parser?

Torsten Grust (WSI) Database-Supported XML Processors Winter 2012/13 29

Formalization of XML Elements

Element content may be empty:

The fragments ¡t¿ ¡/t¿ and ¡t/¿ are well-formed XML and

considered equivalent.

Element nesting establishes a parent–child relationship between
elements:

In the XML fragment ¡p¿ ¡c¿ . . . ¡/c¿. . . ¡c ′¿ . . . ¡/c ′¿ ¡/p¿,
element p is the parent of elements c, c ′,
elements c, c ′ are children of element p,

elements c, c ′ are siblings.

There is exactly one element that encloses the whole XML content:

the root element.

Non-well-formed XML
1 ¡one¿

2 one eins un

3 ¡/one¿

4 ¡two¿ two zwei deux ¡/two¿

Torsten Grust (WSI) Database-Supported XML Processors Winter 2012/13 30

Formalization of XML Attributes

Attributes

Elements may further be classified using attributes:

(It is common practice to denote an attribute named a by @a in

written text (attribute a).)

¡t a=”. . . ” b=’. . . ’ . . . ¿ . . . ¡/t¿

An attribute value is restricted to character data

(attributes may not be nested),

attributes are not considered to be children of the containing element

(instead they are owned by the containing element).

Well-formed XML (fragment)
1 ¡price currency=”US$” multiplier=’1’¿

2 23.45

3 ¡/price¿

4 ¡price¿

5 ¡currency¿US$¡/currency¿

6 ¡multiplier¿1¡/multiplier¿

7 23.45

8 ¡/price¿

Torsten Grust (WSI) Database-Supported XML Processors Winter 2012/13 31

Formalization of XML Entities

Entities

In XML, document content and markup are specificed using a single

set of characters.

The characters { ¡, ¿, &, ”, ’ } form pieces of XML markup and

may instead be denoted by predefined entities if they actually

represent content:

Character Entity

¡ <
¿ >
& &
” "
’ '

Well-formed XML
1 ¡operators¿Valid comparison operators

2 are <, =, & >.¡/operators¿

The XML entity facility is actually a versatile recursive macro

expansion machinery (more on that later).

Torsten Grust (WSI) Database-Supported XML Processors Winter 2012/13 32

Well-Formedness

Well-Formedness

The W3C XML recommendation is actually more formal and rigid in

defining the syntactical structure of XML:

“A textual object is well-formed XML if,
1 Taken as a whole, it matches the production labeled

document.
2 It meets all the well-formedness constraints given in this

[the W3C XML Recommendation] specification. . . . ”

Torsten Grust (WSI) Database-Supported XML Processors Winter 2012/13 33

Well-Formedness Context-free Properties

Well-formedness #1: Context-free Properties

1 All context-free properties of well-formed XML documents are

concisely captured by a grammar (using an EBNF-style notation).

Grammar: system of production (rule)s of the form

lhs ::= rhs

Torsten Grust (WSI) Database-Supported XML Processors Winter 2012/13 34

Well-Formedness Context-free Properties

Excerpt of the XML grammar

[1] document ::= prolog element Misc∗

[2] Char ::= 〈a Unicode character〉
[3] S ::= (’ ’ | ’\t’ | ’\n’ | ’\r’)+
[4] NameChar ::= Letter | Digit | ’.’ | ’-’ | ’ ’ | ’:’
[5] Name ::= (Letter | ’ ’ | ’:’) (NameChar)∗
[10] AttValue ::= ’”’ ([ˆ¡&”] | Reference)∗ ’”’

| ’’’ ([ˆ¡&’] | Reference)∗ ’’’
[14] CharData ::= [ˆ¡&]∗

[22] prolog ::= XMLDecl? Misc∗
[23] XMLDecl ::= ’¡?xml’ VersionInfo EncodingDecl? S? ’?¿’
[24] VersionInfo ::= S ’version’ Eq (’’’ VersionNum ’’’ | ’”’ VersionNum ’”’)
[25] Eq ::= S? ’=’ S?
[26] VersionNum ::= ([a-zA-Z0-9˙.:] | ’-’)+

[27] Misc ::= S

[39] element ::= EmptyElemTag
| STag content ETag

[40] STag ::= ’¡’ Name (S Attribute)∗ S? ’¿’
[41] Attribute ::= Name Eq AttValue
[42] ETag ::= ’¡/’ Name S? ’¿’
[43] content ::= (element | CharData | Reference)∗
[44] EmptyElemTag ::= ’¡’ Name (S Attribute)∗ S? ’/¿’

[67] Reference ::= EntityRef
[68] EntityRef ::= ’&’ Name ’;’
[84] Letter ::= [a-zA-Z]
[88] Digit ::= [0-9]

Torsten Grust (WSI) Database-Supported XML Processors Winter 2012/13 35

Well-Formedness Context-free Properties

N.B.

The numbers in [·] refer to the correspondig productions in the W3C

XML Recommendation.

Expression. denotes

r ∗ ε, r, r r, r r r, . . . zero or more repetions of r

r+ r r ∗ one or more repetions of r

r? r | ε optional r

[abc] a | b | c character class

[ˆabc] inverted character class

Torsten Grust (WSI) Database-Supported XML Processors Winter 2012/13 36

Well-Formedness Context-free Properties

Remarks

Rule. implements this characteristic of XML:

[1] an XML document contains exactly one root element

[10] attribute values are enclosed in ” or ’

[22] XML documents may include an optional declaration prolog

[14] characters ¡ and & may not appear literally in element content

[43] element content may contain character data and entity references as

well as nested elements

[68] entity references may contain arbitrary entity names (other than lt,

amp, . . .)
...

...

As usual, the XML grammar may systematically be transformed into

a program, an XML parser, to be used to check the syntax of XML

input.

Torsten Grust (WSI) Database-Supported XML Processors Winter 2012/13 37

Well-Formedness Context-free Properties

Parsing XML

1 Starting with the symbol document, the parser uses the lhs ::= rhs

rules to expand symbols, constructing a parse tree.

2 The leaves of the parse tree are characters which have no further

expansion.

3 The XML input is parsed successfully if it perfectly matches the

parse tree’s front (concatenate the parse tree leaves from left to

right1).

1N.B.: xεy = xy.
Torsten Grust (WSI) Database-Supported XML Processors Winter 2012/13 38

Well-Formedness Context-free Properties

Example 1

Parse tree for XML input

¡bubble speaker=”phb”¿Um... No.¡/bubble¿ :

document

prolog

XMLDecl?

ε

Misc∗

ε

element

STag

¡ Name

bubble

S Attribute

Name

speaker

Eq

S?

ε

= S?

ε

AttValue

”phb”

S?

ε

¿

content

CharData

Um... No.

ETag

¡/ Name

bubble

S?

ε

¿

Misc∗

ε

Torsten Grust (WSI) Database-Supported XML Processors Winter 2012/13 39

Well-Formedness Context-free Properties

Example 2

Parse tree for the “minimal” XML document

¡?xml version=”1.0”?¿¡foo/¿

document

prolog

XMLDecl?

¡?xml VersionInfo

S version Eq

S?

ε

= S?

ε

”VersionNum

1.0

”

EncodingDecl?

ε

S?

ε

?¿

Misc∗

ε

element

EmptyElemTag

¡ Name

foo

(S Attribute)∗

ε

S?

ε

/¿

Misc∗

S S

Torsten Grust (WSI) Database-Supported XML Processors Winter 2012/13 40

Well-Formedness Context-dependent Properties

Well-formedness #2: Context-dependent Properties

The XML grammar cannot enforce all XML well-formedness

constraints (WFCs).

Some XML WFCs depend on
1 what the XML parser has seen before in its input, or
2 on a global state, e.g., the definitions of user-declared entities.

These WFCs cannot be checked by simply comparing the parse tree

front against the XML input (context-dependent WFCs).

Torsten Grust (WSI) Database-Supported XML Processors Winter 2012/13 41

Well-Formedness Context-dependent Properties

Sample WFCs

WFC Comment

(2) Element Type Match The Name in an element’s end tag must match the

element name in the start tag.

(3) Unique Att Spec No attribute name may appear more than once in the

same start tag or empty element tag.

(5) No ¡ in Attribute Val-

ues

The replacement text of any entity referred to di-

rectly or indirectly in an attribute value (other than

<) must not contain a ¡.

(9) No Recursion A parsed entity must not contain a recursive refer-

ence to itself, either directly or indirectly.

All 10 XML WFCs are given in http://www.w3.org/TR/REC-xml.

. How to implement the XML WFC checks?

Devise methods—besides parse tree construction—that an XML parser

could use to check the XML WFCs listed above.

Specify when during the parsing process you would apply each method.

Torsten Grust (WSI) Database-Supported XML Processors Winter 2012/13 42

XML Text Declarations

The XML Text Declaration ¡?xml. . . ?¿

Remember that a well-formed XML document may start off with an
optional header, the text declaration (grammar rule [23]).

N.B. Rule [23] says, if the declaration is actually there, no character

(whitespace, etc.) may preceed the leading ¡?xml.

. The leading ¡?xml

Can you imagine why the XML standard is so rigid with respect to the

placement of the ¡?xml leader of the text declaration?

An XML document whose text declaration carries a VersionInfo of

version=”1.0” is required to conform to W3C’s XML

Recommendation posted on October 6, 2000 (see

http://www.w3.org/TR/REC-xml).

Torsten Grust (WSI) Database-Supported XML Processors Winter 2012/13 43

XML Text Declarations XML and Character Encoding

XML Documents and Character Encoding

For a computer, a character like X is nothing but an 8 (16/32) bit

number whose value is interpreted as the character X when needed

(e.g., to drive a display).

Trouble is, a large number of such number → character mapping

tables, the so-called encodings, are in parallel use today.

Due to the huge amount of characters needed by the global

computing community today (Latin, Hebrew, Arabic, Greek,

Japanese, Chinese . . . languages), conflicting intersections between

encodings are common.

Example:

0xa4 0xcb 0xe4 0xd3 iso-8859-7 � ,2 ?
e
,Λ δΣ

0xa4 0xcb 0xe4 0xd3 iso-8859-15 � ,2 ¤ Ë ä Ó

Torsten Grust (WSI) Database-Supported XML Processors Winter 2012/13 44

XML Text Declarations XML and Character Encoding

XML Documents and Character Encoding

For a computer, a character like X is nothing but an 8 (16/32) bit

number whose value is interpreted as the character X when needed

(e.g., to drive a display).

Trouble is, a large number of such number → character mapping

tables, the so-called encodings, are in parallel use today.

Due to the huge amount of characters needed by the global

computing community today (Latin, Hebrew, Arabic, Greek,

Japanese, Chinese . . . languages), conflicting intersections between

encodings are common.

Example:

0xa4 0xcb 0xe4 0xd3 iso-8859-7 � ,2 ?
e
,Λ δΣ

0xa4 0xcb 0xe4 0xd3 iso-8859-15 � ,2 ¤ Ë ä Ó

Torsten Grust (WSI) Database-Supported XML Processors Winter 2012/13 44

XML Text Declarations XML and Character Encoding

XML Documents and Character Encoding

For a computer, a character like X is nothing but an 8 (16/32) bit

number whose value is interpreted as the character X when needed

(e.g., to drive a display).

Trouble is, a large number of such number → character mapping

tables, the so-called encodings, are in parallel use today.

Due to the huge amount of characters needed by the global

computing community today (Latin, Hebrew, Arabic, Greek,

Japanese, Chinese . . . languages), conflicting intersections between

encodings are common.

Example:

0xa4 0xcb 0xe4 0xd3 iso-8859-7 � ,2 ?
e
,Λ δΣ

0xa4 0xcb 0xe4 0xd3 iso-8859-15 � ,2 ¤ Ë ä Ó

Torsten Grust (WSI) Database-Supported XML Processors Winter 2012/13 44

XML Text Declarations Unicode

Unicode

The Unicode (http://www.unicode.org/) Initiative aims to define

a new encoding that tries to embrace all character needs.

The Unicode encoding contains characters of “all” languages of the

world, plus scientific, mathematical, technical, box drawing,

. . . symbols (see http://www.unicode.org/charts/).

Range of the Unicode encoding: 0x0000–0x10FFFF (16× 65536
characters).

Codes that fit into the first 16 bits (denoted U+0000–U+FFFF) have

been assigned to encode the most widely used languages and their

characters (Basic Multilingual Plane, BMP).

Codes U+0000–U+007F have been assigned to match the 7-bit ASCII

encoding which is pervasive today.

Torsten Grust (WSI) Database-Supported XML Processors Winter 2012/13 45

XML Text Declarations Unicode

UTF-32

Current CPUs operate most efficiently on 32-bit words (16-bit

words, 8-bit bytes).

Unicode thus developed Unicode Transformation Formats (UTF)

which define how a Unicode character code between

U+0000–U+10FFFF is to be mapped into a 32-bit word (16-bit words,

8-bit bytes).

UTF-32 (map a Unicode character into a 32-bit word)

1 Map any Unicode character in the range U+0000–U+10FFFF to the

corresponding 32-bit value 0x00000000–0x0010FFFF.

2 N.B. For each Unicode character encoded in UTF-32 we waste at

least 11 zero bits.

Torsten Grust (WSI) Database-Supported XML Processors Winter 2012/13 46

XML Text Declarations Unicode

UTF-16
. . . map a Unicode character into one or two 16-bit words

1 Apply the following mapping scheme:

Unicode range Word sequence

U+000000–U+00FFFF @@@@@@@@@@@@@@@@
U+010000–U+10FFFF 110110@@@@@@@@@@ 110111@@@@@@@@@@

2 For the range U+000000–U+00FFFF, simply fill the @ positions with

the 16 bit of the character code.

(Code ranges U+D800–U+DBFF and U+DC00–U+DFFF are unassigned!)
3 For the U+010000–U+10FFFF range, subtract 0x010000 from the

character code and fill the @ positions using the resulting 20-bit

value.

Example

Unicode character U+012345 (0x012345 − 0x010000 = 0x02345):

UTF-16: 1101100000001000 1101111101000101

Torsten Grust (WSI) Database-Supported XML Processors Winter 2012/13 47

XML Text Declarations Unicode

UTF-8

N.B. UTF-16 is designed to facilitate efficient and robust decoding:

If we see a leading 11011 bit pattern in a 16-bit word, we know it is

the first or second word in a UTF-16 multi-word sequence.

The sixth bit of the word then tells us if we actually look at the first

or second word.

UTF-8 (map a Unicode character into a sequence of 8-bit bytes)

UTF-8 is of special importance because

(a) a stream of 8 bit bytes (octets) is what flows over an IP network

connection,

(b) text-processing software today is built to deal with 8 bit character

encodings (iso-8859-x, ASCII, etc.).

Torsten Grust (WSI) Database-Supported XML Processors Winter 2012/13 48

XML Text Declarations Unicode

UTF-8 encoding

1 Apply the following mapping scheme:

Unicode range Byte sequence

U+000000–U+00007F 0@@@@@@@
U+000080–U+0007FF 110@@@@@ 10@@@@@@
U+000800–U+00FFFF 1110@@@@ 10@@@@@@ 10@@@@@@
U+010000–U+10FFFF 11110@@@ 10@@@@@@ 10@@@@@@ 10@@@@@@

2 The spare bits (@) are filled with the bits of the character code to

be represented (rightmost @ is least significant bit, pad to the left

with 0-bits).
Examples:

Unicode character U+00A9 (c© sign):

UTF-8: 11000010 10101001 (0xC2 0xA9)

Unicode character U+2260 (math relation symbol 6=):

UTF-8: 11100010 10001001 10100000 (0xE2 0x89 0xA0)

Torsten Grust (WSI) Database-Supported XML Processors Winter 2012/13 49

XML Text Declarations Unicode

Advantages of UTF-8 encoding
N.B. UTF-8 enjoys a number of highly desirable properties:

For a UTF-8 multi-byte sequence, the length of the sequence is

equal to the number of leading 1-bits (in the first byte), e.g.:

11100010 10001001 10100000

(Only single-byte UTF-8 encodings have a leading 0-bit.)

Character boundaries are simple to detect (even when placed at

some arbitrary position in a UTF-8 byte stream).

UTF-8 encoding does not affect (binary) sort order.

Text processing software which was originally developed to work with

the pervasive 7-bit ASCII encoding remains functional.

This is especially true for the C programming language and its string

(char[]) representation.

. C and UTF-8

Can you explain the last points made?

Torsten Grust (WSI) Database-Supported XML Processors Winter 2012/13 50

XML Text Declarations Unicode

Advantages of UTF-8 encoding
N.B. UTF-8 enjoys a number of highly desirable properties:

For a UTF-8 multi-byte sequence, the length of the sequence is

equal to the number of leading 1-bits (in the first byte), e.g.:

11100010 10001001 10100000

(Only single-byte UTF-8 encodings have a leading 0-bit.)

Character boundaries are simple to detect (even when placed at

some arbitrary position in a UTF-8 byte stream).

UTF-8 encoding does not affect (binary) sort order.

Text processing software which was originally developed to work with

the pervasive 7-bit ASCII encoding remains functional.

This is especially true for the C programming language and its string

(char[]) representation.

. C and UTF-8

Can you explain the last points made?

Torsten Grust (WSI) Database-Supported XML Processors Winter 2012/13 50

XML Text Declarations Unicode

Advantages of UTF-8 encoding
N.B. UTF-8 enjoys a number of highly desirable properties:

For a UTF-8 multi-byte sequence, the length of the sequence is

equal to the number of leading 1-bits (in the first byte), e.g.:

11100010 10001001 10100000

(Only single-byte UTF-8 encodings have a leading 0-bit.)

Character boundaries are simple to detect (even when placed at

some arbitrary position in a UTF-8 byte stream).

UTF-8 encoding does not affect (binary) sort order.

Text processing software which was originally developed to work with

the pervasive 7-bit ASCII encoding remains functional.

This is especially true for the C programming language and its string

(char[]) representation.

. C and UTF-8

Can you explain the last points made?

Torsten Grust (WSI) Database-Supported XML Processors Winter 2012/13 50

XML Text Declarations Unicode

Advantages of UTF-8 encoding
N.B. UTF-8 enjoys a number of highly desirable properties:

For a UTF-8 multi-byte sequence, the length of the sequence is

equal to the number of leading 1-bits (in the first byte), e.g.:

11100010 10001001 10100000

(Only single-byte UTF-8 encodings have a leading 0-bit.)

Character boundaries are simple to detect (even when placed at

some arbitrary position in a UTF-8 byte stream).

UTF-8 encoding does not affect (binary) sort order.

Text processing software which was originally developed to work with

the pervasive 7-bit ASCII encoding remains functional.

This is especially true for the C programming language and its string

(char[]) representation.

. C and UTF-8

Can you explain the last points made?

Torsten Grust (WSI) Database-Supported XML Processors Winter 2012/13 50

XML Text Declarations Unicode

Advantages of UTF-8 encoding
N.B. UTF-8 enjoys a number of highly desirable properties:

For a UTF-8 multi-byte sequence, the length of the sequence is

equal to the number of leading 1-bits (in the first byte), e.g.:

11100010 10001001 10100000

(Only single-byte UTF-8 encodings have a leading 0-bit.)

Character boundaries are simple to detect (even when placed at

some arbitrary position in a UTF-8 byte stream).

UTF-8 encoding does not affect (binary) sort order.

Text processing software which was originally developed to work with

the pervasive 7-bit ASCII encoding remains functional.

This is especially true for the C programming language and its string

(char[]) representation.

. C and UTF-8

Can you explain the last points made?

Torsten Grust (WSI) Database-Supported XML Processors Winter 2012/13 50

XML Text Declarations XML and Unicode

XML and Unicode

A conforming XML parser is required to correctly process UTF-8 and

UTF-16 encoded documents (The W3C XML Recommendation

predates the UTF-32 definition).

Documents that use a different encoding must announce so using

the XML text declaration, e.g.

¡?xml version=”1.0” encoding=”iso-8859-15”?¿

or ¡?xml version=”1.0” encoding=”utf-32”?¿

Otherwise, an XML parser is encouraged to guess the encoding

while reading the very first bytes of the input XML document:

Head of doc (bytes) Encoding guess

0x00 0x3C 0x00 0x3F UTF-16 (big-endian)

0x3C 0x00 0x3F 0x00 UTF-16 (little-endian)

0x3C 0x3F 0x78 0x6D UTF-8 (or ASCII, iso-8859-*: erroneous)

(Notice: ¡ = U+003C, ? = U+003F, x = U+0078, m = U+006D)

Torsten Grust (WSI) Database-Supported XML Processors Winter 2012/13 51

XML Processing Model

The XML Processing Model

On the physical side, XML defines nothing but a flat text format,

i.e., defines a set of (UTF-8/16) character sequences being

well-formed XML.

Applications that want to analyse and transform XML data in any

meaningful manner will find processing flat character sequences hard

and inefficient.

The nesting of XML elements and attributes, however, defines a

logical tree-like structure.

Torsten Grust (WSI) Database-Supported XML Processors Winter 2012/13 52

XML Processing Model

XML Processors

Virtually all XML applications operate on the logical tree view

which is provided to them through an XML Processor (i.e., the

XML parser):

¡~ ?~ x~ m~ l~~ . . .
XML

Processor

¡~...

''
XML

Application

◦
◦ ◦
◦ ◦

''

XML processors are widely available (e.g., Apache’s Xerces see

http://xml.apache.org/).

How is the XML processor supposed to communicate the XML

tree structure to the application . . . ?

Torsten Grust (WSI) Database-Supported XML Processors Winter 2012/13 53

XML Processing Model XML Information Set

The XML Information Set

Once an XML processor has checked its XML input document to be

well-formed, it offers its application a set of document properties

(functions).

The application calls property functions and thus explores the input

XML tree as needed.

An XML document tree is built of different types of node objects:

Node

Doc

::

Elem

GG

Attr

WW

Char

is−a

dd

The set of properties of all document nodes is the document’s

Information Set (see http://www.w3.org/TR/xml-infoset/).

Torsten Grust (WSI) Database-Supported XML Processors Winter 2012/13 54

XML Processing Model XML Information Set

Node properties

Node Object Type Property Comment

Doc children :: Doc → Elem root element

base-uri :: Doc → String
version :: Doc → String ¡?xml version=”1.0”?¿

Elem localname :: Elem → String
children :: Elem → (Node) ∗1
attributes :: Elem → (Attr)

parent :: Elem → Node ∗2

Attr localname :: Attr → String
value :: Attr → String
owner :: Attr → Elem

Char code :: Char → Unicode a single character

parent :: Char → Elem

Read symbol :: as “has type”.

For any node type τ , (τ) denotes an ordered sequence of type τ .

. Make sense of the types of the Elem properties children (∗1) and parent (∗2)!

Torsten Grust (WSI) Database-Supported XML Processors Winter 2012/13 55

XML Processing Model XML Information Set

Information set of a sample document
Document δ0 (weather forecast)

1 ¡?xml version=”1.0”?¿

2 ¡forecast date=”Thu, Oct 30”¿

3 ¡condition¿foggy¡/condition¿

4 ¡temperature unit=”Celsius”¿-1¡/temperature¿

5 ¡/forecast¿

children (δ0) = ε1 code (γ4) = U+0066 ’f’

base-uri (δ0) = ”file:/...” parent (γ4) = ε3

version (δ0) = ”1.0”
.
.
.

localname (ε1) = ”forecast” code (γ8) = U+0079 ’y’

children (ε1) = (ε3, ε9) parent (γ8) = ε3
attributes (ε1) = (α2) localname (ε9) = ”temperature”

parent (ε1) = δ0 children (ε9) = (γ11, γ12)

localname (α2) = ”date” attributes (ε9) = (α10)

value (α2) = ”Thu, Oct 30” parent (ε9) = ε1

localname (ε3) = ”condition”
.
.
.

children (ε3) = (γ4, γ5, γ6, γ7, γ8)

attributes (ε3) = ()

parent (ε3) = ε1
N.B. Node objects of type Doc, Elem, Attr , Char are denoted by δi , εi , αi , γi ,

respectively (subscript i makes object identifiers unique).

Torsten Grust (WSI) Database-Supported XML Processors Winter 2012/13 56

XML Processing Model XML Information Set

Working with the Information Set

The W3C has introduced the XML Information Set to aid the

specification of further XML standards.

We can nevertheless use it to write simple “programs” that explore

the XML tree structure. The resulting code looks fairly similar to

code we would program using the DOM (Document Object Model,

see next chapter).

Example: Compute the list of sibling Elem nodes of given Elem ε

(including ε):

siblings (ε) :: Elem → (Elem)
Node ν;

ν ← parent (ε);
if ν = δ@ then

// ν is the Doc node, i.e., ε is the root element

return (ε);

else

return children (ν);

Torsten Grust (WSI) Database-Supported XML Processors Winter 2012/13 57

XML Processing Model XML Information Set

Another Example

Return the text content of a given Doc δ (the sequence of all Unicode

characters δ contains):

content (δ) :: Doc → (Unicode)
return collect

(
(children (δ))

)
;

collect (νs) :: (Node)→ (Unicode)
Node ν;

(Unicode) γs;

γs ← ();
foreach ν ∈ νs do

if ν = γ@ then
// we have found a Char node . . .

γs ← γs + (code (ν));

else

// otherwise ν must be an Elem node

γs ← γs + collect (children (ν));

return γs;

Example run: content (δ0) = (’f’,’o’,’g’,’g’,’y’,’-’,’1’).

Torsten Grust (WSI) Database-Supported XML Processors Winter 2012/13 58

XML Processing Model XML Information Set

“Querying” using the Information Set

Having the XML Information Set in hand, we can analyse a given
XML document in arbitrary ways, e.g.
1 In a given document (comic strip), find all Elem nodes with local

name bubble owning an Attr node with local name speaker and

value ”Dilbert”.
2 List all scene Elem nodes containing a bubble spoken by

”Dogbert” (Attr speaker).
3 Starting in panel number 2 (no Attr), find all bubbles following

those spoken by ”Alice” (Attr speaker).

Queries like these are quite common in XML applications. An XML
standard exists (XPath) which allows to specify such document
path traversals in a declarative manner:
1 //bubble[./@speaker = ”Dilbert”]
2 //bubble[@speaker = ”Dogbert”]/../..
3 //panel[@no = ”2”]//bubble[@speaker = ”Alice”]/following::bubble

Torsten Grust (WSI) Database-Supported XML Processors Winter 2012/13 59

XML Processing Model More XML Node Types

More XML node types . . .

The XML standard defines a number of additional node types that

may occur in well-formed documents (and thus in their XML

Information Set).

CDATA nodes (embed unparsed non-binary character data)

CDATA
1 ¡source¿

2 ¡![CDATA[May use ¡, ¿, and & and

3 anything else freely here]]¿

4 ¡/source¿

Comment nodes (place comments in XML documents)

Comment
1 ¡proof¿

2 ¡!-- Beware! This has not been properly

3 checked yet... --¿

4 . . .

5 ¡/proof¿

Torsten Grust (WSI) Database-Supported XML Processors Winter 2012/13 60

XML Processing Model More XML Node Types

More XML node types . . .

The XML standard defines a number of additional node types that

may occur in well-formed documents (and thus in their XML

Information Set).

CDATA nodes (embed unparsed non-binary character data)

CDATA
1 ¡source¿

2 ¡![CDATA[May use ¡, ¿, and & and

3 anything else freely here]]¿

4 ¡/source¿

Comment nodes (place comments in XML documents)

Comment
1 ¡proof¿

2 ¡!-- Beware! This has not been properly

3 checked yet... --¿

4 . . .

5 ¡/proof¿

Torsten Grust (WSI) Database-Supported XML Processors Winter 2012/13 60

XML Processing Model More XML Node Types

More XML node types . . .

The XML standard defines a number of additional node types that

may occur in well-formed documents (and thus in their XML

Information Set).

CDATA nodes (embed unparsed non-binary character data)

CDATA
1 ¡source¿

2 ¡![CDATA[May use ¡, ¿, and & and

3 anything else freely here]]¿

4 ¡/source¿

Comment nodes (place comments in XML documents)

Comment
1 ¡proof¿

2 ¡!-- Beware! This has not been properly

3 checked yet... --¿

4 . . .

5 ¡/proof¿

Torsten Grust (WSI) Database-Supported XML Processors Winter 2012/13 60

XML Processing Model More XML Node Types

. . . more XML node types

PI nodes (embed processing instructions in XML documents)

PI
1 ¡em¿

2 ¡b¿Result:¡/b¿

3 ¡?php sql (”SELECT * FROM ...”) ...?¿

4 ¡/em¿

For a complete list of node types see the W3C XML

Recommendation (http://www.w3.org/TR/REC-xml).

Torsten Grust (WSI) Database-Supported XML Processors Winter 2012/13 61

XML Processing Model More XML Node Types

. . . more XML node types

PI nodes (embed processing instructions in XML documents)

PI
1 ¡em¿

2 ¡b¿Result:¡/b¿

3 ¡?php sql (”SELECT * FROM ...”) ...?¿

4 ¡/em¿

For a complete list of node types see the W3C XML

Recommendation (http://www.w3.org/TR/REC-xml).

Torsten Grust (WSI) Database-Supported XML Processors Winter 2012/13 61

