
External Sorting

Torsten Grust

Query Processing

Sorting
Two-Way Merge Sort

External Merge Sort

Comparisons

Replacement Sort

B+-trees for Sorting

1

Chapter 7
External Sorting
Sorting Tables Larger Than Main Memory

Architecture and Implementation of Database Systems
Summer 2016

Torsten Grust
Wilhelm-Schickard-Institut für Informatik

Universität Tübingen

External Sorting

Torsten Grust

Query Processing

Sorting
Two-Way Merge Sort

External Merge Sort

Comparisons

Replacement Sort

B+-trees for Sorting

2

Query Processing

Challenges lurking behind a SQL query

SELECT C.CUST_ID, C.NAME, SUM (O.TOTAL) AS REVENUE

FROM CUSTOMERS AS C, ORDERS AS O

WHERE C.ZIPCODE BETWEEN 8000 AND 8999

AND C.CUST_ID = O.CUST_ID

GROUP BY C.CUST_ID

ORDER BY C.CUST_ID, C.NAME

aggregation

selection

join

sorting

grouping

A DBMS query processor needs to perform a number of tasks

• with limited memory resources,
• over large amounts of data,
• yet as fast as possible.

External Sorting

Torsten Grust

Query Processing

Sorting
Two-Way Merge Sort

External Merge Sort

Comparisons

Replacement Sort

B+-trees for Sorting

3

Query Processing

data files, indices, . . .

Disk Space Manager

Buffer Manager

Files and Access Methods

Optimizer

Executor Parser

Operator Evaluator

Lock
Manager

Transaction
Manager Recovery

Manager

DBMS

Database

SQL Commands

Web Forms Applications SQL Interface

External Sorting

Torsten Grust

Query Processing

Sorting
Two-Way Merge Sort

External Merge Sort

Comparisons

Replacement Sort

B+-trees for Sorting

4

Query Plans and Operators

Query plans and operators

• DBMS does not execute a query as a large monolithic block
but rather provides a number of specialized routines, the
query operators.

• Operators are “plugged together” to form a network of
operators, a plan, that is capable of evaluating a given query.

• Each operator is carefully implemented to perform a specific
task well (i.e., time- and space-efficient).

• Now: Zoom in on the details of the implementation of one
of the most basic and important operators: sort.

External Sorting

Torsten Grust

Query Processing

Sorting
Two-Way Merge Sort

External Merge Sort

Comparisons

Replacement Sort

B+-trees for Sorting

5

Query Processing: Sorting

• Sorting stands out as a useful operation, explicit or implicit:

Explicit sorting via the SQL ORDER BY clause
1 SELECT A,B,C

2 FROM R

3 ORDER BY A

Implicit sorting, e.g., for duplicate elimination
1 SELECT DISTINCT A,B,C

2 FROM R

Implicit sorting, e.g., to prepare equi-join
1 SELECT R.A,S.Y

2 FROM R,S

3 WHERE R.B = S.X

• Further:
Grouping via GROUP BY, B+-tree bulk loading, sorted rid
scans after access to unclustered indexes, . . .

External Sorting

Torsten Grust

Query Processing

Sorting
Two-Way Merge Sort

External Merge Sort

Comparisons

Replacement Sort

B+-trees for Sorting

6

Sorting

Sorting

• A file is sorted with respect to sort key k and ordering θ, if
for any two records r1,2 with r1 preceding r2 in the file, we
have that their correspoding keys are in θ-order:

r1 θ r2 ⇔ r1.k θ r2.k .

• A key may be a single attribute as well as an ordered list of
attributes. In the latter case, order is defined
lexciographically. Consider: k = (A, B), θ = <:

r1 < r2 ⇔ r1.A < r2.A ∨
(r1.A = r2.A ∧ r1.B < r2.B) .

External Sorting

Torsten Grust

Query Processing

Sorting
Two-Way Merge Sort

External Merge Sort

Comparisons

Replacement Sort

B+-trees for Sorting

7

Sorting

• As it is a principal goal not to restrict the file sizes a DBMS
can handle, we face a fundamental problem:

How can we sort a file of records whose size
exceeds the available main memory space (let
alone the available buffer manager space) by far?

• Approach the task in a two-phase fashion:

1 Sorting a file of arbitrary size is possible even if three
pages of buffer space is all that is available.

2 Refine this algorithm to make effective use of larger and
thus more realistic buffer sizes.

• As we go along, consider a number of further optimizations
in order to reduce the overall number of required page
I/O operations.

External Sorting

Torsten Grust

Query Processing

Sorting
Two-Way Merge Sort

External Merge Sort

Comparisons

Replacement Sort

B+-trees for Sorting

8

Two-Way Merge Sort

We start with two-way merge sort, which can sort files of
arbitrary size with only three pages of buffer space.

Two-way merge sort

Two-way merge sort sorts a file with N = 2k pages in multiple
passes, each of them producing a certain number of sorted
sub-files called runs.

• Pass 0 sorts each of the 2k input pages individually and in
main memory, resulting in 2k sorted runs.

• Subsequent passes merge pairs of runs into larger runs.
Pass n produces 2k−n runs.

• Pass k leaves only one run: the sorted overall result.

During each pass, we consult every page in the file. Hence, k · N
page reads and k · N page writes are required to sort the file.

External Sorting

Torsten Grust

Query Processing

Sorting
Two-Way Merge Sort

External Merge Sort

Comparisons

Replacement Sort

B+-trees for Sorting

9

Basic Two-Way Merge Sort Idea

Pass 0 (Input: N = 2k unsorted pages; Output: 2k sorted runs)
1. Read N pages, one page at a time
2. Sort records, page-wise, in main memory.
3. Write sorted pages to disk (each page results in a run).
This pass requires one page of buffer space.

Pass 1 (Input: N = 2k sorted runs; Output: 2k−1 sorted runs)
1. Open two runs r1 and r2 from Pass 0 for reading.
2. Merge records from r1 and r2, reading input page-by-page.
3. Write new two-page run to disk (page-by-page).
This pass requires three pages of buffer space.

...

Pass n (Input: 2k−n+1 sorted runs; Output: 2k−n sorted runs)
1. Open two runs r1 and r2 from Pass n − 1 for reading.
2. Merge records from r1 and r2, reading input page-by-page.
3. Write new 2n-page run to disk (page-by-page).
This pass requires three pages of buffer space.

...

External Sorting

Torsten Grust

Query Processing

Sorting
Two-Way Merge Sort

External Merge Sort

Comparisons

Replacement Sort

B+-trees for Sorting

10

Two-way Merge Sort: Example

Example (7-page file, two records per page, keys k shown, θ = <)

6 5 4 3 4 7 8 9 5 2 1 3 8

5 6 3 4 4 7 8 9 2 5 1 3 8

3 4

5 6

4 7

8 9

1 2

3 5

8

3 4

4 5

6 7

8 9

1 2

3 5

8

1 2 3 3 4 4 5 5 6 7 8 8 9

Pass 0

Pass 1

Pass 2

Pass 3

input file

1-page runs

2-page runs

4-page runs

7-page run

External Sorting

Torsten Grust

Query Processing

Sorting
Two-Way Merge Sort

External Merge Sort

Comparisons

Replacement Sort

B+-trees for Sorting

11

Two-Way Merge Sort: Algorithm

Two-way merge sort, N = 2k

1 Function: two_way_merge_sort (file,N)

/* Pass 0: create N sorted single-page runs

(in-memory sort) */

2 foreach page p in file do
3 read p into memory, sort it, write it out into a new run;

/* next k passes merge pairs of runs, until only one

run is left */

4 for n in 1 . . . k do
5 for r in 0 . . . 2k−n − 1 do
6 merge runs 2 · r and 2 · r + 1 from previous pass into a

new run, reading the input runs one page at a time;
7 delete input runs 2 · r and 2 · r + 1 ;

8 result ← last output run;

Each merge requires three buffer frames (two to read the two
input files and one to construct output pages).

External Sorting

Torsten Grust

Query Processing

Sorting
Two-Way Merge Sort

External Merge Sort

Comparisons

Replacement Sort

B+-trees for Sorting

12

Two-Way Merge Sort: I/O Behavior

• To sort a file of N pages, in each pass we read N pages,
sort/merge, and write N pages out again:

2 · N I/O operations per pass

• Number of passes:

1︸︷︷︸
Pass 0

+ dlog2 Ne︸ ︷︷ ︸
Passes 1, . . . , k

• Total number of I/O operations:

2 · N · (1+ dlog2 Ne)

� How many I/Os does it take to sort an 8GB file?

Assume a page size of 8 KB (with 1000 records each).

External Sorting

Torsten Grust

Query Processing

Sorting
Two-Way Merge Sort

External Merge Sort

Comparisons

Replacement Sort

B+-trees for Sorting

13

External Merge Sort

• So far we have “voluntarily” used only three pages of buffer
space.

How could we make effective use of a
significantly larger buffer page pool (of, say, B
frames)?

• Basically, there are two knobs we can turn and tune:

1 Reduce the number of initial runs by using the full
buffer space during the in-memory sort.

2 Reduce the number of passes by merging more than
two runs at a time.

External Sorting

Torsten Grust

Query Processing

Sorting
Two-Way Merge Sort

External Merge Sort

Comparisons

Replacement Sort

B+-trees for Sorting

14

Reducing the Number of Initial Runs

With B frames available in the buffer pool, we can read B pages
at a time during Pass 0 and sort them in memory (↗ slide 9):

Pass 0 (Input: N unsorted pages; Output:
:::::::::::::::
dN/Be sorted runs)

1. Read N pages,
::::::::::::::::
B pages at a time

2. Sort records in main memory.
3. Write sorted pages to disk (resulting in

::::::::::
dN/Be runs).

This pass uses
:::::::
B pages of buffer space.

The number of initial runs determines the number of passes
we need to make (↗ slide 12):

⇒ Total number of I/O operations:

2 · N · (1+ dlog2 dN/Bee) .

� How many I/Os does it take to sort an 8GB file now?

Again, assume 8KB pages. Available buffer space is B = 1,000.

External Sorting

Torsten Grust

Query Processing

Sorting
Two-Way Merge Sort

External Merge Sort

Comparisons

Replacement Sort

B+-trees for Sorting

15

Reducing the Number of Passes
With B frames available in the buffer pool, we can merge B − 1
pages at a time (leaving one frame as a write buffer).

Pass n (Input: dN/Be
(B−1)n−1 sorted runs; Output: dN/Be

(B−1)n sorted
runs)
1. Open

:::::::::::::::::::
B − 1 runs r1 . . . rB−1 from Pass n − 1 for reading.

2. Merge records from
::::::::
r1 . . . rB−1, reading page-by-page.

3. Write new
:::::::::::::::
B · (B − 1)n-page run to disk (page-by-page).

This pass requires B pages of buffer space.

With B pages of buffer space, we can do a (B − 1)-way merge.

⇒ Total number of I/O operations:

2 · N · (1+ dlogB−1 dN/Bee) .

� How many I/Os does it take to sort an 8GB file now?

Again, assume 8KB pages. Available buffer space is B = 1,000.

External Sorting

Torsten Grust

Query Processing

Sorting
Two-Way Merge Sort

External Merge Sort

Comparisons

Replacement Sort

B+-trees for Sorting

16

Reducing the Number of Passes

(B − 1)-way merge using a buffer of B pages

...... ...

B

1

2

B-1

output

disk disk
input

input

input

main memory buffers

External Sorting

Torsten Grust

Query Processing

Sorting
Two-Way Merge Sort

External Merge Sort

Comparisons

Replacement Sort

B+-trees for Sorting

17

External Sorting: I/O Behavior
• The I/O savings in comparison to two-way merge sort

(B = 3) can be substantial:

of passes for buffers of size B = 3, 5, . . . , 257

0

5

10

15

20

25

30

100 1000 10000 100000 1e+06 1e+07 1e+08 1e+09

of

 P
as

se
s

N [pages]

B = 3 (two-way)
B = 5
B = 9
B = 17
B = 129
B = 257

External Sorting

Torsten Grust

Query Processing

Sorting
Two-Way Merge Sort

External Merge Sort

Comparisons

Replacement Sort

B+-trees for Sorting

18

External Sorting: I/O Behavior

• Sorting N pages with B buffer frames requires

2 · N · (1+ dlogB−1 dN/Bee)

I/O operations.

� What is the access pattern of these I/Os?

• In Pass 0, we read chunks of size B sequentially.
• Everything else is random access due to the B − 1 way

merge.
(Which of the B − 1 runs will contribute the next
record. . . ?)

External Sorting

Torsten Grust

Query Processing

Sorting
Two-Way Merge Sort

External Merge Sort

Comparisons

Replacement Sort

B+-trees for Sorting

19

Blocked I/O
We could improve the I/O pattern by reading blocks of, say, b
pages at once during the merge phases.

• Allocate b pages for each input (instead of just one).
• Reduces per-page I/O cost by a factor of ≈ b.
• The price we pay is a decreased fan-in (resulting in an

increased number of passes and more I/O operations).
• In practice, main memory sizes are typically large enough to

sort files with just one merge pass, even with blocked I/O.

� How long does it take to sort 8 GB (counting only I/O cost)?

Assume 1,000 buffer pages of 8KB each, 8.5ms average seek
time.

• Without blocked I/O: ≈ 4 · 106 disk seeks (9.9 h) + transfer
of ≈ 6 · 106 disk pages (14.1min)

• With blocked I/O (b = 32 page blocks): ≈ 6 · 32, 800 disk
seeks (28.1min) + transfer of ≈ 8 ·106 disk pages (18.8min)

External Sorting

Torsten Grust

Query Processing

Sorting
Two-Way Merge Sort

External Merge Sort

Comparisons

Replacement Sort

B+-trees for Sorting

20

External Merge Sort: CPU Load and Comparisons

• External merge sort reduces the I/O load, but is
considerably CPU intensive.

• Consider the (B − 1)-way merge during passes 1, 2, . . . :
To pick the next record to be moved to the output buffer,
we need to perform B − 2 comparisons.

Example (Comparisons for B − 1 = 4, θ = <)

087 503 504 . . .
170 908 994 . . .
154 426 653 . . .
612 613 700 . . .

 087

503 504 . . .
170 908 994 . . .
154 426 653 . . .
612 613 700 . . .

 087 154

503 504 . . .
170 908 994 . . .
426 653 . . .
612 613 700 . . .

087 154 170

503 504 . . .
908 994 . . .
426 653 . . .
612 613 700 . . .

 087 154 170 426

503 504 . . .
908 994 . . .
653 . . .
612 613 700 . . .

. . .

External Sorting

Torsten Grust

Query Processing

Sorting
Two-Way Merge Sort

External Merge Sort

Comparisons

Replacement Sort

B+-trees for Sorting

21

Selection Trees

Choosing the next record from B − 1 (or B/b − 1) input runs can
be quite CPU intensive (B − 2 comparisons).

• Use a selection tree to reduce this cost.

• E.g., “tree of losers” (↗ D. Knuth, TAoCP, vol. 3):

Example (Selection tree, read bottom-up)
23

95

79

91

985

985

.

.

.

23

.

.

.

670

91

.

.

.

670

.

.

.

605

850

605

.

.

.

850

.

.

.

873

873

.

.

.

79

.

.

.

142

132

190

190

.

.

.

132

.

.

.

412

95

.

.

.

412

.

.

.

278

390

142

.

.

.

390

.

.

.

901

278

.

.

.

901

.

.

.

• This cuts the number of comparisons down to log2 (B − 1).

External Sorting

Torsten Grust

Query Processing

Sorting
Two-Way Merge Sort

External Merge Sort

Comparisons

Replacement Sort

B+-trees for Sorting

22

Further Reducing the Number of Initial Runs

• Replacement sort can help to further cut down the number
of initial runs dN/Be: try to produce initial runs with more
than B pages.

Replacement sort

• Assume a buffer of B pages. Two pages are dedicated input
and output buffers. The remaining B − 2 pages are called
the current set:

... ...
...input

buffer
output
buffer

current set

12

4

2

8

10

16

3

5

External Sorting

Torsten Grust

Query Processing

Sorting
Two-Way Merge Sort

External Merge Sort

Comparisons

Replacement Sort

B+-trees for Sorting

23

Replacement Sort

Replacement sort

1 Open an empty run file for writing.

2 Load next page of file to be sorted into input buffer.
If input file is exhausted, go to 4 .

3 While there is space in the current set, move a record from
input buffer to current set (if the input buffer is empty,
reload it at 2).

4 In current set, pick record r with smallest key value k such
that k > kout where kout is the maximum key value in output
buffer.1 Move r to output buffer. If output buffer is full,
append it to current run.

5 If all k in current set are < kout , append output buffer to
current run, close current run. Open new empty run file for
writing.

6 If input file is exhausted, stop. Otherwise go to 3 .

1If output buffer is empty, define kout = −∞.

External Sorting

Torsten Grust

Query Processing

Sorting
Two-Way Merge Sort

External Merge Sort

Comparisons

Replacement Sort

B+-trees for Sorting

24

Replacement Sort

Example (Record with key k = 8 will be the next to be moved into
the output buffer; current kout = 5)

... ...
...input

buffer
output
buffer

current set

12

4

2

8

10

16

3

5

3

4

• The record with key k = 2 remains in the current set and
will be written to the subsequent run.

External Sorting

Torsten Grust

Query Processing

Sorting
Two-Way Merge Sort

External Merge Sort

Comparisons

Replacement Sort

B+-trees for Sorting

25

Replacement Sort

� Tracing replacement sort

Assume B = 6, i.e., a current set size of 4. The input file
contains records with INTEGER key values:

503 087 512 061 908 170 897 275 426 154 509 612 .

Write a trace of replacement sort by filling out the table below,
mark the end of the current run by 〈EOR〉 (the current set has
already been populated at step 3):

current set output
503 087 512 061

External Sorting

Torsten Grust

Query Processing

Sorting
Two-Way Merge Sort

External Merge Sort

Comparisons

Replacement Sort

B+-trees for Sorting

26

Replacement Sort

• Step 4 of replacement sort will benefit from techniques like
selection tree, esp. if B − 2 is large.

• The replacement sort trace suggests that the length of the
initial runs indeed increases. In the example: first run
length 7 ≈ twice the size of the current set.

� Length of initial runs?

Implement replacement sort to empricially determine initial run
length or check the proper analysis (↗ D. Knuth, TAoCP, vol. 3,
p. 254).

External Sorting

Torsten Grust

Query Processing

Sorting
Two-Way Merge Sort

External Merge Sort

Comparisons

Replacement Sort

B+-trees for Sorting

27

External Sort: Remarks

• External sorting follows a divide and conquer principle.
• This results in a number of indepdendent (sub-)tasks.
• Execute tasks in parallel in a distributed DBMS or

exploit multi-core parallelism on modern CPUs.

• To keep the CPU busy while the input buffer is reloaded (or
the output buffer appended to the current run), use double
buffering:

Create shadow buffers for the input and output buffers. Let
the CPU switch to the “double” input buffer as soon as the
input buffer is empty and asynchronously initiate an I/O
operation to reload the original input buffer.
Treat the output buffer similarly.

External Sorting

Torsten Grust

Query Processing

Sorting
Two-Way Merge Sort

External Merge Sort

Comparisons

Replacement Sort

B+-trees for Sorting

28

(Not) Using B+-trees for Sorting

• If a B+-tree matches a sorting task (i.e., B+-tree organized
over key k with ordering θ), we may be better off to access
the index and abandon external sorting.

1 If the B+-tree is clustered, then
• the data file itself is already θ-sorted,
⇒ simply sequentially read the sequence set (or the

pages of the data file).
2 If the B+-tree is unclustered, then

• in the worst case, we have to initiate one I/O
operation per record (not per page)!

⇒ do not consider the index.

(k*)

B tree
+

index entries

index file

data

records
data file

External Sorting

Torsten Grust

Query Processing

Sorting
Two-Way Merge Sort

External Merge Sort

Comparisons

Replacement Sort

B+-trees for Sorting

29

(Not) Using B+-tree for Sorting

• Let p denote the number of records per page (typically,
p = 10, . . . , 1000. Expected of I/O operations to sort via an
unclustered B+-tree will thus be p · N:

Expected sort I/O operations (assume B = 257)

1

10

100

1000

10000

100000

1e+06

1e+07

1e+08

1e+09

100 1000 10000 100000 1e+06 1e+07

I/O
 o

pe
ra

tio
ns

N [pages]

B+ tree clustered
External Merge Sort

B+ tree unclustered, p = 10
B+ tree unclustered, p = 100

	Query Processing
	Sorting
	Two-Way Merge Sort
	External Merge Sort
	Comparisons
	Replacement Sort
	B+-trees for Sorting

