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Query Processing

Challenges lurking behind a SQL query

SELECT C.CUST_ID, C.NAME, SUM (O.TOTAL) AS REVENUE

FROM CUSTOMERS AS C, ORDERS AS O

WHERE C.ZIPCODE BETWEEN 8000 AND 8999

AND C.CUST_ID = O.CUST_ID

GROUP BY C.CUST_ID

ORDER BY C.CUST_ID, C.NAME

aggregation

selection

join

sorting

grouping

A DBMS query processor needs to perform a number of tasks

• with limited memory resources,
• over large amounts of data,
• yet as fast as possible.
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Query Processing

data files, indices, . . .

Disk Space Manager

Buffer Manager

Files and Access Methods

Optimizer

Executor Parser

Operator Evaluator

Lock
Manager

Transaction
Manager Recovery

Manager

DBMS

Database

SQL Commands

Web Forms Applications SQL Interface
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Query Plans and Operators

Query plans and operators

• DBMS does not execute a query as a large monolithic block
but rather provides a number of specialized routines, the
query operators.

• Operators are “plugged together” to form a network of
operators, a plan, that is capable of evaluating a given query.

• Each operator is carefully implemented to perform a specific
task well (i.e., time- and space-efficient).

• Now: Zoom in on the details of the implementation of one
of the most basic and important operators: sort.
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Query Processing: Sorting

• Sorting stands out as a useful operation, explicit or implicit:

Explicit sorting via the SQL ORDER BY clause
1 SELECT A,B,C

2 FROM R

3 ORDER BY A

Implicit sorting, e.g., for duplicate elimination
1 SELECT DISTINCT A,B,C

2 FROM R

Implicit sorting, e.g., to prepare equi-join
1 SELECT R.A,S.Y

2 FROM R,S

3 WHERE R.B = S.X

• Further:
Grouping via GROUP BY, B+-tree bulk loading, sorted rid
scans after access to unclustered indexes, . . .
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Sorting

Sorting

• A file is sorted with respect to sort key k and ordering θ, if
for any two records r1,2 with r1 preceding r2 in the file, we
have that their correspoding keys are in θ-order:

r1 θ r2 ⇔ r1.k θ r2.k .

• A key may be a single attribute as well as an ordered list of
attributes. In the latter case, order is defined
lexciographically. Consider: k = (A, B), θ = <:

r1 < r2 ⇔ r1.A < r2.A ∨
(r1.A = r2.A ∧ r1.B < r2.B) .
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Sorting

• As it is a principal goal not to restrict the file sizes a DBMS
can handle, we face a fundamental problem:

How can we sort a file of records whose size
exceeds the available main memory space (let
alone the available buffer manager space) by far?

• Approach the task in a two-phase fashion:

1 Sorting a file of arbitrary size is possible even if three
pages of buffer space is all that is available.

2 Refine this algorithm to make effective use of larger and
thus more realistic buffer sizes.

• As we go along, consider a number of further optimizations
in order to reduce the overall number of required page
I/O operations.
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Two-Way Merge Sort

We start with two-way merge sort, which can sort files of
arbitrary size with only three pages of buffer space.

Two-way merge sort

Two-way merge sort sorts a file with N = 2k pages in multiple
passes, each of them producing a certain number of sorted
sub-files called runs.

• Pass 0 sorts each of the 2k input pages individually and in
main memory, resulting in 2k sorted runs.

• Subsequent passes merge pairs of runs into larger runs.
Pass n produces 2k−n runs.

• Pass k leaves only one run: the sorted overall result.

During each pass, we consult every page in the file. Hence, k · N
page reads and k · N page writes are required to sort the file.
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Basic Two-Way Merge Sort Idea

Pass 0 (Input: N = 2k unsorted pages; Output: 2k sorted runs)
1. Read N pages, one page at a time
2. Sort records, page-wise, in main memory.
3. Write sorted pages to disk (each page results in a run).
This pass requires one page of buffer space.

Pass 1 (Input: N = 2k sorted runs; Output: 2k−1 sorted runs)
1. Open two runs r1 and r2 from Pass 0 for reading.
2. Merge records from r1 and r2, reading input page-by-page.
3. Write new two-page run to disk (page-by-page).
This pass requires three pages of buffer space.

...

Pass n (Input: 2k−n+1 sorted runs; Output: 2k−n sorted runs)
1. Open two runs r1 and r2 from Pass n − 1 for reading.
2. Merge records from r1 and r2, reading input page-by-page.
3. Write new 2n-page run to disk (page-by-page).
This pass requires three pages of buffer space.

...
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Two-way Merge Sort: Example

Example (7-page file, two records per page, keys k shown, θ = <)

6 5 4 3 4 7 8 9 5 2 1 3 8  

5 6 3 4 4 7 8 9 2 5 1 3 8  

3 4

5 6

4 7

8 9

1 2

3 5

8  

3 4

4 5

6 7

8 9

1 2

3 5

8  

1 2 3 3 4 4 5 5 6 7 8 8 9  

Pass 0

Pass 1

Pass 2

Pass 3

input file

1-page runs

2-page runs

4-page runs

7-page run
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Two-Way Merge Sort: Algorithm

Two-way merge sort, N = 2k

1 Function: two_way_merge_sort (file,N)

/* Pass 0: create N sorted single-page runs

(in-memory sort) */

2 foreach page p in file do
3 read p into memory, sort it, write it out into a new run;

/* next k passes merge pairs of runs, until only one

run is left */

4 for n in 1 . . . k do
5 for r in 0 . . . 2k−n − 1 do
6 merge runs 2 · r and 2 · r + 1 from previous pass into a

new run, reading the input runs one page at a time;
7 delete input runs 2 · r and 2 · r + 1 ;

8 result ← last output run;

Each merge requires three buffer frames (two to read the two
input files and one to construct output pages).
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Two-Way Merge Sort: I/O Behavior

• To sort a file of N pages, in each pass we read N pages,
sort/merge, and write N pages out again:

2 · N I/O operations per pass

• Number of passes:

1︸︷︷︸
Pass 0

+ dlog2 Ne︸ ︷︷ ︸
Passes 1, . . . , k

• Total number of I/O operations:

2 · N · (1+ dlog2 Ne)

� How many I/Os does it take to sort an 8GB file?

Assume a page size of 8 KB (with 1000 records each).
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External Merge Sort

• So far we have “voluntarily” used only three pages of buffer
space.

How could we make effective use of a
significantly larger buffer page pool (of, say, B
frames)?

• Basically, there are two knobs we can turn and tune:

1 Reduce the number of initial runs by using the full
buffer space during the in-memory sort.

2 Reduce the number of passes by merging more than
two runs at a time.
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Reducing the Number of Initial Runs

With B frames available in the buffer pool, we can read B pages
at a time during Pass 0 and sort them in memory (↗ slide 9):

Pass 0 (Input: N unsorted pages; Output:
:::::::::::::::
dN/Be sorted runs)

1. Read N pages,
::::::::::::::::
B pages at a time

2. Sort records in main memory.
3. Write sorted pages to disk (resulting in

::::::::::
dN/Be runs).

This pass uses
:::::::
B pages of buffer space.

The number of initial runs determines the number of passes
we need to make (↗ slide 12):

⇒ Total number of I/O operations:

2 · N · (1+ dlog2 dN/Bee) .

� How many I/Os does it take to sort an 8GB file now?

Again, assume 8KB pages. Available buffer space is B = 1,000.
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Reducing the Number of Passes
With B frames available in the buffer pool, we can merge B − 1
pages at a time (leaving one frame as a write buffer).

Pass n (Input: dN/Be
(B−1)n−1 sorted runs; Output: dN/Be

(B−1)n sorted
runs)
1. Open

:::::::::::::::::::
B − 1 runs r1 . . . rB−1 from Pass n − 1 for reading.

2. Merge records from
::::::::
r1 . . . rB−1, reading page-by-page.

3. Write new
:::::::::::::::
B · (B − 1)n-page run to disk (page-by-page).

This pass requires B pages of buffer space.

With B pages of buffer space, we can do a (B − 1)-way merge.

⇒ Total number of I/O operations:

2 · N · (1+ dlogB−1 dN/Bee) .

� How many I/Os does it take to sort an 8GB file now?

Again, assume 8KB pages. Available buffer space is B = 1,000.
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Reducing the Number of Passes

(B − 1)-way merge using a buffer of B pages

...... ...

B

1

2

B-1

output

disk disk
input

input

input

main memory buffers
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External Sorting: I/O Behavior
• The I/O savings in comparison to two-way merge sort

(B = 3) can be substantial:

# of passes for buffers of size B = 3, 5, . . . , 257

0
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100 1000 10000 100000 1e+06 1e+07 1e+08 1e+09

# 
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 P
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N [pages]

B = 3 (two-way)
B = 5
B = 9
B = 17
B = 129
B = 257
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External Sorting: I/O Behavior

• Sorting N pages with B buffer frames requires

2 · N · (1+ dlogB−1 dN/Bee)

I/O operations.

� What is the access pattern of these I/Os?

• In Pass 0, we read chunks of size B sequentially.
• Everything else is random access due to the B − 1 way

merge.
(Which of the B − 1 runs will contribute the next
record. . . ?)
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Blocked I/O
We could improve the I/O pattern by reading blocks of, say, b
pages at once during the merge phases.

• Allocate b pages for each input (instead of just one).
• Reduces per-page I/O cost by a factor of ≈ b.
• The price we pay is a decreased fan-in (resulting in an

increased number of passes and more I/O operations).
• In practice, main memory sizes are typically large enough to

sort files with just one merge pass, even with blocked I/O.

� How long does it take to sort 8 GB (counting only I/O cost)?

Assume 1,000 buffer pages of 8KB each, 8.5ms average seek
time.

• Without blocked I/O: ≈ 4 · 106 disk seeks (9.9 h) + transfer
of ≈ 6 · 106 disk pages (14.1min)

• With blocked I/O (b = 32 page blocks): ≈ 6 · 32, 800 disk
seeks (28.1min) + transfer of ≈ 8 ·106 disk pages (18.8min)
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External Merge Sort: CPU Load and Comparisons

• External merge sort reduces the I/O load, but is
considerably CPU intensive.

• Consider the (B − 1)-way merge during passes 1, 2, . . . :
To pick the next record to be moved to the output buffer,
we need to perform B − 2 comparisons.

Example (Comparisons for B − 1 = 4, θ = <)


087 503 504 . . .
170 908 994 . . .
154 426 653 . . .
612 613 700 . . .

 087


503 504 . . .
170 908 994 . . .
154 426 653 . . .
612 613 700 . . .

 087 154


503 504 . . .
170 908 994 . . .
426 653 . . .
612 613 700 . . .

 

087 154 170


503 504 . . .
908 994 . . .
426 653 . . .
612 613 700 . . .

 087 154 170 426


503 504 . . .
908 994 . . .
653 . . .
612 613 700 . . .

. . .
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Selection Trees

Choosing the next record from B − 1 (or B/b − 1) input runs can
be quite CPU intensive (B − 2 comparisons).

• Use a selection tree to reduce this cost.

• E.g., “tree of losers” (↗ D. Knuth, TAoCP, vol. 3):

Example (Selection tree, read bottom-up)
23
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• This cuts the number of comparisons down to log2 (B − 1).
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Further Reducing the Number of Initial Runs

• Replacement sort can help to further cut down the number
of initial runs dN/Be: try to produce initial runs with more
than B pages.

Replacement sort

• Assume a buffer of B pages. Two pages are dedicated input
and output buffers. The remaining B − 2 pages are called
the current set:

... ...
...input

buffer
output
buffer

current set

12

4

2

8

10

16

3

5
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Replacement Sort

Replacement sort

1 Open an empty run file for writing.

2 Load next page of file to be sorted into input buffer.
If input file is exhausted, go to 4 .

3 While there is space in the current set, move a record from
input buffer to current set (if the input buffer is empty,
reload it at 2 ).

4 In current set, pick record r with smallest key value k such
that k > kout where kout is the maximum key value in output
buffer.1 Move r to output buffer. If output buffer is full,
append it to current run.

5 If all k in current set are < kout , append output buffer to
current run, close current run. Open new empty run file for
writing.

6 If input file is exhausted, stop. Otherwise go to 3 .

1If output buffer is empty, define kout = −∞.
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Replacement Sort

Example (Record with key k = 8 will be the next to be moved into
the output buffer; current kout = 5)

... ...
...input

buffer
output
buffer

current set

12

4

2

8

10

16

3

5

3

4

• The record with key k = 2 remains in the current set and
will be written to the subsequent run.
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Replacement Sort

� Tracing replacement sort

Assume B = 6, i.e., a current set size of 4. The input file
contains records with INTEGER key values:

503 087 512 061 908 170 897 275 426 154 509 612 .

Write a trace of replacement sort by filling out the table below,
mark the end of the current run by 〈EOR〉 (the current set has
already been populated at step 3 ):

current set output
503 087 512 061
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Replacement Sort

• Step 4 of replacement sort will benefit from techniques like
selection tree, esp. if B − 2 is large.

• The replacement sort trace suggests that the length of the
initial runs indeed increases. In the example: first run
length 7 ≈ twice the size of the current set.

� Length of initial runs?

Implement replacement sort to empricially determine initial run
length or check the proper analysis (↗ D. Knuth, TAoCP, vol. 3,
p. 254).
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External Sort: Remarks

• External sorting follows a divide and conquer principle.
• This results in a number of indepdendent (sub-)tasks.
• Execute tasks in parallel in a distributed DBMS or

exploit multi-core parallelism on modern CPUs.

• To keep the CPU busy while the input buffer is reloaded (or
the output buffer appended to the current run), use double
buffering:

Create shadow buffers for the input and output buffers. Let
the CPU switch to the “double” input buffer as soon as the
input buffer is empty and asynchronously initiate an I/O
operation to reload the original input buffer.
Treat the output buffer similarly.
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(Not) Using B+-trees for Sorting

• If a B+-tree matches a sorting task (i.e., B+-tree organized
over key k with ordering θ), we may be better off to access
the index and abandon external sorting.

1 If the B+-tree is clustered, then
• the data file itself is already θ-sorted,
⇒ simply sequentially read the sequence set (or the

pages of the data file).
2 If the B+-tree is unclustered, then

• in the worst case, we have to initiate one I/O
operation per record (not per page)!

⇒ do not consider the index.

(k*)

B tree
+

index entries

index file

data

records
data file
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(Not) Using B+-tree for Sorting

• Let p denote the number of records per page (typically,
p = 10, . . . , 1000. Expected of I/O operations to sort via an
unclustered B+-tree will thus be p · N:

Expected sort I/O operations (assume B = 257)

1
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1e+07
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100 1000 10000 100000 1e+06 1e+07

I/O
 o
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B+ tree clustered
External Merge Sort

B+ tree unclustered, p = 10
B+ tree unclustered, p = 100
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