External Sorting

Torsten Grust

Chapter 7
External Sorting

Sorting Tables Larger Than Main Memory

Query Processing

Sorting

Architecture and Implementation of Database Systems o
Summer 2016 ——

Replacement Sort

B-trees for Sorting

Torsten Grust
Wilhelm-Schickard-Institut fiir Informatik

Universitat Tiibingen

Query Processing

Challenges lurking behind a SQL query [=lefe[geleERileli]

SELECT C.CUST_ID, C.NAME, SUM (0.TOTAL) AS REVENUE
FROM CUSTOMERS AS C, ORDERS AS O

E C.ZIPCODE BETWEEN 8000 AND 8999@
wND C.CUST_ID = 0.CUST_ID
GROUP BY C.CUST_ID w

ORDER BY C.CUST_ID, C.NAME <—m

A DBMS query processor needs to perform a number of tasks
® with limited memory resources,
® over large amounts of data,
® vyet as fast as possible.

External Sorting

Torsten Grust

Query Processing

Sorting
Two-Way Merge Sort
External Merge Sort
Comparisons
Replacement Sort
B-trees for Sorting

Query Processing

External Sorting

Torsten Grust

[Web Forms] [Applications] [SQL Interface }
SQL Coinmands

’ Executor ‘ ’ Parser ‘)
Sorting
. . Two-Way Merge So
| Operator Evaluator | ’ Optimizer ‘ Extw,yMe,g:So:
Comparisons
l Replacement Sort
Transaction %ﬁ Files and Access Methods }<—> B rees for Sorena
Manager
Recover
%){ Buffer Manager }<—> Mana e}r/
Lock i 9
Manager %){ Disk Space Manager }<—>
&

DBMS

data files, indices, ...

Database

Query Plans and Operators

Query plans and operators

® DBMS does not execute a query as a large monolithic block
but rather provides a number of specialized routines, the
query operators.

® Operators are “plugged together” to form a network of

operators, a plan, that is capable of evaluating a given query.

® Each operator is carefully implemented to perform a specific
task well (i.e., time- and space-efficient).

® Now: Zoom in on the details of the implementation of one
of the most basic and important operators: sort.

External Sorting

Torsten Grust

&

Query Processing

Sorting

Two-Way Merge Sort
External Merge Sort
Comparisons
Replacement Sort

B-trees for Sorting

Query Processing: Sorting

® Sorting stands out as a useful operation, explicit or implicit:

Explicit sorting via the SQL ORDER BY clause

1 SELECT A,B,C
2 FROM R
3 ORDER BY A

Implicit sorting, e.g., for duplicate elimination

1 SELECT DISTINCT A,B,C
2 FROM R

Implicit sorting, e.g., to prepare equi-join

1 SELECT R.A,S.Y

2 FROM R,S

3 WHERE R.B = S.X
® Further:

Grouping via GROUP BY, BT-tree bulk loading, sorted rid
scans after access to unclustered indexes, . ..

External Sorting

Torsten Grust

Query Processing

Sorting

Two-Way Merge Sort
External Merge Sort
Comparisons
Replacement Sort

B-trees for Sorting

Sorting

Sorting

® A file is sorted with respect to sort key k and ordering 6, if
for any two records r; » with r; preceding r» in the file, we
have that their correspoding keys are in 8-order:

nén & n.k6nmnk .

® A key may be a single attribute as well as an ordered list of
attributes. In the latter case, order is defined
lexciographically. Consider: k = (4,B), 6 = <:

rn<nr = n.A<r.AV
(rl.A= rh. AN r.B< r2.B) .

External Sorting

Torsten Grust

Query Processing

Sorting

Two-Way Merge Sort
External Merge Sort
Comparisons
Replacement Sort

B-trees for Sorting

Sorting

External Sorting

Torsten Grust

® As it is a principal goal not to restrict the file sizes a DBMS
can handle, we face a fundamental problem:
How can we sort a file of records whose size

exceeds the available main memory space (let
alone the available buffer manager space) by far?

Query Processing

Sorting
Two-Way Merge Sort
External Merge Sort

Comparisons
Replacement Sort
® Approach the task in a two-phase fashion:

B*-trees for Sorting

@ Sorting a file of arbitrary size is possible even if three
pages of buffer space is all that is available.

® Refine this algorithm to make effective use of larger and
thus more realistic buffer sizes.

® As we go along, consider a number of further optimizations

in order to reduce the overall number of required page
1/0 operations.

External Sorting
Two-Way Merge Sort e et

Torsten Grust

We start with two-way merge sort, which can sort files of
arbitrary size with only three pages of buffer space.

Two-way merge sort

Query Processing

Two-way merge sort sorts a file with N = 2% pages in multiple

Sorting

passes, each of them producing a certain number of sorted v
sub-files called runs. i
Replacement Sort
0 0 .. . B*-trees for Sortin
® Pass 0 sorts each of the 2% input pages individually and in ’

main memory, resulting in 2 sorted runs.

® Subsequent passes merge pairs of runs into larger runs.
Pass n produces 25" runs.

® Pass k leaves only one run: the sorted overall result.

During each pass, we consult every page in the file. Hence, k- N
page reads and k - N page writes are required to sort the file.

Basic Two-Way Merge Sort Idea

Pass 0 (Input: N = 2K unsorted pages; Output: 2 sorted runs)

1. Read N pages, one page at a time
2. Sort records, page-wise, in main memory.
3. Write sorted pages to disk (each page results in a run).

This pass requires one page of buffer space.

Pass 1 (Input: N = 2¥ sorted runs; Qutput: 27! sorted runs)

1. Open two runs r1 and r, from Pass 0 for reading.

2. Merge records from r1 and r», reading input page-by-page.
3. Write new two-page run to disk (page-by-page).

This pass requires three pages of buffer space.

Pass n (Input: 25="*1 sorted runs; Output: 2" sorted runs)
1. Open two runs 1 and r» from Pass n — 1 for reading.
2. Merge records from r; and r», reading input page-by-page.
3. Write new 2"-page run to disk (page-by-page).
This pass requires three pages of buffer space.

External Sorting

Torsten Grust

&

Query Processing

Sorting
Two-Way Merge Sort
External Merge Sort
Comparisons
Replacement Sort

B-trees for Sorting

Example (7-page file, two records per page, keys k shown, 6 = <) e
input file E H H |89| |52| H |8u|

1-page runs E ﬂ H |89| |25| E |8u|
\L l/ \/ \/ \, / L‘ Two-Way Merge Sort

34 47 12 8 S
2-page runs - | u| e S
56 m 35 / B -trees for Sorting
\ / \

v VA LA

34 12

4 45 815

-page runs 57 8L

89\ //

7-page run [12|33|44|55]67[88[9.]

-

N

Two-Way Merge Sort: Algorithm

Two-way merge sort, N = 2*
Function: two_way_merge_sort (file, N)

/* Pass 0: create N sorted single-page runs
(in-memory sort) x/

foreach page p in file do

L read p into memory, sort it, write it out into a new run;

/* next k passes merge pairs of runs, until only one
run is left */
for ninl...kdo
for rin0...2<"—1do
merge runs 2 - r and 2 - r + 1 from previous pass into a
new run, reading the input runs one page at a time;
delete input runs 2-rand 2-r+1 ;

result < last output run;

Each merge requires three buffer frames (two to read the two
input files and one to construct output pages).

External Sorting

Torsten Grust

&

Query Processing

Sorting

Two-Way Merge Sort
External Merge Sort
Comparisons
Replacement Sort

B*-trees for Sorting

Two-Way Merge Sort: 1/0 Behavior

® To sort a file of N pages, in each pass we read N pages,
sort/merge, and write N pages out again:

2-N 1/O operations per pass

® Number of passes:

1 + [logs N
~ =

Pass0 Passes 1,..., k

® Total number of 1/0 operations:

2N - (1+ [log, NT)

A How many 1/0s does it take to sort an 8 GB file?
Assume a page size of 8 KB (with 1000 records each).

External Sorting

Torsten Grust

Query Processing

Sorting

Two-Way Merge Sort
External Merge Sort
Comparisons
Replacement Sort

B-trees for Sorting

External Sorting
External Merge Sort e S

Torsten Grust

® So far we have “voluntarily” used only three pages of buffer
space.

How could we make effective use of a

Sorting
significantly larger buffer page pool (of, say, B
frames)?

Query Processing

Two-Way Merge Sort
External Merge Sort
Comparisons
Replacement Sort
B-trees for Sorting

® Basically, there are two knobs we can turn and tune:

® Reduce the number of initial runs by using the full
buffer space during the in-memory sort.

® Reduce the number of passes by merging more than
two runs at a time.

Reducing the Number of Initial Runs

With B frames available in the buffer pool, we can read B pages
at a time during Pass 0 and sort them in memory (slide 9):

Pass 0 (Input: N unsorted pages; Output: [N/B] sorted runs)
1. Read N pages, B pages at a time
2. Sort records in main memory.
3. Write sorted pages to disk (resulting in [N/8] runs).
This pass uses B pages of buffer space.

The number of initial runs determines the number of passes
we need to make (7 slide 12):

= Total number of 1/0 operations:

2-N- (14 [logs [N/B]]) .

% How many 1/0s does it take to sort an 8 GB file now?

Again, assume 8 KB pages. Available buffer space is B = 1,000.

External Sorting

Torsten Grust

&

Query Processing

Sorting
Two-Way Merge Sort
External Merge Sort
Comparisons
Replacement Sort

B-trees for Sorting

Reducing the Number of Passes

With B frames available in the buffer pool, we can merge B — 1
pages at a time (leaving one frame as a write buffer).

Pass n (Input: % sorted runs; Output: % sorted
runs)

1. Open B—1runsr...rg from Pass n—1 for reading.
2. Merge records from r ... rg_1, reading page-by-page.
3. Write new B - (B — 1)"-page run to disk (page-by-page).

This pass requires B pages of buffer space.

With B pages of buffer space, we can do a (B — 1)-way merge.

= Total number of 1/0O operations:

2-N-(1+[logg_y [V/8]])

& How many I/0s does it take to sort an 8 GB file now?

Again, assume 8 KB pages. Available buffer space is B = 1,000.

External Sorting

Torsten Grust

&

Query Processing

Sorting

Two-Way Merge Sort
External Merge Sort
Comparisons
Replacement Sort

B-trees for Sorting

External Sorting

Reducing the Number of Passes

Torsten Grust

-

(B — 1)-way merge using a buffer of B pages }
Query Processing
Sorting

Two-Way Merge Sort
External Merge Sort

|
|
|
|
| ,—l Comparisons
|
|
|
|

‘
: R Sort
| — B*-trees for Sarting
| o |——
I ! -
! |
! i | —
| I
: :
‘ :
disk ; | disk
‘ :
I

External Sorting: 1/0 Behavior

® The I/O savings in comparison to two-way merge sort

(B = 3) can be substantial:

of Passes

of passes for buffers of size B = 3,5,...,257
30 B=3 (two-way) —
B=5 X
B=9 X i
25 B =17 o
B =129 L] T
20 B = 257 o)
15
10
| ¥
X o
5 ¥ o il T T % T
N . . A
100 1000 10000 100000 1e+06 1e+07 1e+08 1le+09

N [pages]

External Sorting

Torsten Grust

&

Query Processing

Sorting
Two-Way Merge Sort
External Merge Sort
Comparisons
Replacement Sort
B-trees for Sorting

External Sorting: 1/0 Behavior
® Sorting N pages with B buffer frames requires

2-N-(1+[logg_y [V/&]])
|/O operations.

& What is the access pattern of these 1/0s?

External Sorting

Torsten Grust

-
r/

Query Processing

Sorting

Two-Way Merge Sort
External Merge Sort
Comparisons
Replacement Sort

B-trees for Sorting

Blocked 1/0

We could improve the |/O pattern by reading blocks of, say, b
pages at once during the merge phases.

® Allocate b pages for each input (instead of just one).

® Reduces per-page 1/0 cost by a factor of = b.

® The price we pay is a decreased fan-in (resulting in an
increased number of passes and more |/O operations).

® |n practice, main memory sizes are typically large enough to
sort files with just one merge pass, even with blocked 1/0O.

D How long does it take to sort 8 GB (counting only 1/0 cost)?

Assume 1,000 buffer pages of 8 KB each, 8.5 ms average seek
time.

® Without blocked 1/O: ~ 4 - 10° disk seeks (9.9h) + transfer
of ~ 6 -10° disk pages (14.1 min)

® With blocked I/O (b = 32 page blocks): ~ 6 - 32,800 disk
seeks (28.1 min) + transfer of ~ 8-10° disk pages (18.8 min)

External Sorting

Torsten Grust

&

Query Processing

Sorting

Two-Way Merge Sort
External Merge Sort
Comparisons
Replacement Sort

B-trees for Sorting

External Merge Sort: CPU Load and Comparisons

® External merge sort reduces the |/O load, but is
considerably CPU intensive.

® Consider the (B — 1)-way merge during passes 1,2, ...:
To pick the next record to be moved to the output buffer,
we need to perform B — 2 comparisons.

Example (Comparisons for B — 1 = 4,0 = <)

087 503 504 . .. 503 504 ... 503 504 ...
170 908 994 ... 170 908 994 ... 170 908 994 ...
154 426 653 ... ~ 087 154 426 653 ... 087154 426 653 ...
612 613 700 ... 612 613 700 . .. 612 613 700 . ..

503 504 ... 503 504 ...
008 094 ... 008 994 ...
087 154 170 i o3 | ~» 087154170 426 el

612 613 700 ... 612 613 700 ...

External Sorting

Torsten Grust

Query Processing

Sorting

Two-Way Merge Sort
External Merge Sort
Comparisons
Replacement Sort

B-trees for Sorting

Selection Trees

Choosing the next record from B — 1 (or B/» — 1) input runs can
be quite CPU intensive (B — 2 comparisons).

® Use a selection tree to reduce this cost.

® E.g., “tree of losers” (, D. Knuth, TAoCP, vol. 3):

Example (Selection tree, read bottom-up)

23
: 795\
///79\ = 142 ~_
917, 605 132 278
AN N

985 ,’ 670 850 873

A AN A

1 5 3

190 412 390 901
M v ™ ™ ™ ™

® This cuts the number of comparisons down to log, (B — 1).

External Sorting

Torsten Grust

Query Processing

Sorting

Two-Way Merge Sort
External Merge Sort
Comparisons
Replacement Sort

B-trees for Sorting

Further Reducing the Number of Initial Runs

® Replacement sort can help to further cut down the number
of initial runs [N/B]: try to produce initial runs with more
than B pages.

Replacement sort

® Assume a buffer of B pages. Two pages are dedicated input
and output buffers. The remaining B — 2 pages are called
the current set:

3 :
! 8 !
: 10] 3 |
3 G 5|
! input output 1
| buffer buffer i

External Sorting

Torsten Grust

Query Processing

Sorting

Two-Way Merge Sort
External Merge Sort
Comparisons
Replacement Sort
B-trees for Sorting

External Sorting
Replacement Sort e e

Torsten Grust

Replacement sort 9
@ Open an empty run file for writing. 4

® Load next page of file to be sorted into input buffer.

. o o Query Processin,
If input file is exhausted, go to @. . (_y ’
e
® While there is space in the current set, move a record from o e
input buffer to current set (if the input buffer is empty, Comparisons
. Replacement Sort
reload it at @). B-trees for Sorting

® In current set, pick record r with smallest key value k such
that k > kour where kot is the maximum key value in output
buffer.! Move r to output buffer. If output buffer is full,
append it to current run.

O If all k in current set are < ko, append output buffer to

current run, close current run. Open new empty run file for
writing.

® If input file is exhausted, stop. Otherwise go to ©.

LIf output buffer is empty, define kot = —oo.

External Sorting

Replacement Sort

Torsten Grust

Example (Record with key k = 8 will be the next to be moved into
the output buffer; current ko,: = 5)

Query Processing

l i Sorting

i ’L» i Two-Way Merge Sort
| M External Merge Sort
! B 0 Comparisons

i

P12] Co]| @ 3]

| 1 ~trees for Sorting
N =] 5|

i . !

! Input output i

i buffer buffer i

| I

i I

i I

® The record with key kK = 2 remains in the current set and
will be written to the subsequent run.

Replacement Sort

R Tracing replacement sort

Assume B = 6, i.e., a current set size of 4. The input file
contains records with INTEGER key values:

503 087 512 061 908 170 897 275 426 154 509 612 .

Write a trace of replacement sort by filling out the table below,

mark the end of the current run by (EOR) (the current set has
already been populated at step @):

current set

output
503 087 512 061

External Sorting

Torsten Grust

&

Query Processing

Sorting

Two-Way Merge Sort
External Merge Sort
Comparisons
Replacement Sort

B-trees for Sorting

External Sorti
Replacement Sort e e

Torsten Grust

&

® Step @ of replacement sort will benefit from techniques like

selection tree, esp. if B — 2 is large. Ay ATt
Sorting
® The replacement sort trace suggests that the length of the Two-Way Merge Sort
initial runs indeed increases. In the example: first run e e
length 7 ~ twice the size of the current set. Replacement Sort

B-trees for Sorting
X Length of initial runs?

Implement replacement sort to empricially determine initial run

length or check the proper analysis (,* D. Knuth, TAoCP, vol. 3,
p. 254).

External Sort: Remarks

® External sorting follows a divide and conquer principle.

® This results in a number of indepdendent (sub-)tasks.
® Execute tasks in parallel in a distributed DBMS or
exploit multi-core parallelism on modern CPUs.

® To keep the CPU busy while the input buffer is reloaded (or
the output buffer appended to the current run), use double
buffering:

Create shadow buffers for the input and output buffers. Let
the CPU switch to the “double” input buffer as soon as the
input buffer is empty and asynchronously initiate an 1/0
operation to reload the original input buffer.

Treat the output buffer similarly.

External Sorting

Torsten Grust

&

Query Processing

Sorting
Two-Way Merge Sort
External Merge Sort
Comparisons
Replacement Sort

B-trees for Sorting

(Not) Using B*-trees for Sorting

® |f a B*-tree matches a sorting task (i.e., B*-tree organized
over key k with ordering 6), we may be better off to access
the index and abandon external sorting.
@ If the B™-tree is clustered, then
® the data file itself is already 6-sorted,

> simply sequentially read the sequence set (or the
pages of the data file).

® If the B™-tree is unclustered, then

® in the worst case, we have to initiate one |/O
operation per record (not per page)!
= do not consider the index.

+
B tree

m ﬁ o
data
ﬁ%%%‘m - data fle
records

index file

External Sorting

Torsten Grust

&

Query Processing

Sorting

Two-Way Merge Sort
External Merge Sort
Comparisons
Replacement Sort

B*-trees for Sorting

(Not) Using B*-tree for Sorting

® |et p denote the number of records per page (typically,
p=10,...,1000. Expected of I/O operations to sort via an

unclustered B*-tree will thus be p - N:

Expected sort 1/0 operations (assume B = 257)

1/O operations

1e+09 g1
1e+08 O
1e+07 i n
1e+06 e []
100000 i]
10000 B]
1000 T
100 B+ tree clustered =
External Merge Sort X
10 B+ tree unclustered, p=10 ©
1 _B+tree unclustered. p=100 O
100 1000 10000 100000 1e+06 1e+07

N [pages]

External Sorting

Torsten Grust

Query Processing

Sorting
Two-Way Merge Sort
External Merge Sort
Comparisons
Replacement Sort

B*-trees for Sorting

	Query Processing
	Sorting
	Two-Way Merge Sort
	External Merge Sort
	Comparisons
	Replacement Sort
	B+-trees for Sorting

