
An Inflationary Fixed Point Operator in XQuery
Loredana Afanasiev #1†, Torsten Grust ∗2, Maarten Marx #3, Jan Rittinger ∗4‡, Jens Teubner ◦5

#University of Amsterdam ∗Technische Universität München ◦IBM T.J. Watson Research Center
Amsterdam, The Netherlands Munich, Germany Hawthorne, NY, USA
1lafanasi@science.uva.nl 2grust@in.tum.de 5teubner@us.ibm.com

3marx@science.uva.nl 4rittinge@in.tum.de

Abstract— We introduce a controlled form of recursion in
XQuery, an inflationary fixed point operator, familiar from the
context of relational databases. This operator imposes restrictions
on the expressible types of recursion, but we show that it is
sufficiently versatile to capture a wide range of interesting use
cases, including Regular XPath and its core transitive closure
operator.

While the optimization of general user-defined recursive func-
tions in XQuery appears elusive, we describe how inflationary
fixed points can be efficiently evaluated, provided that the
recursive XQuery expressions are distributive. We test distribu-
tivity syntactically and algebraically, and provide experimental
evidence that XQuery processors can benefit substantially from
this mode of evaluation.

I. INTRODUCTION

The backbone of the XML data model, namely ordered,
unranked trees, is inherently recursive and it is natural to
equip the associated languages with constructs that can recur-
sively query such structures. In XQuery [1], recursion can be
achieved only via recursive user-defined functions (RUDFs)—
a construct that admits arbitrary types of recursion and largely
evades optimization approaches beyond “procedural” improve-
ments like tail-recursion elimination or unfolding.

In this paper, we explore a controlled form of recursion in
XQuery, the inflationary fixed point operator (IFP), familiar in
the context of relational databases [2]. While less expressive
than RUDFs, IFP embraces a family of widespread use cases
of recursion, including forms of horizontal and vertical struc-
tural recursion and the pervasive transitive closure operator (in
particular, IFP captures Regular XPath [3]). Let us consider an
example of recursive data and query need.

Example 1.1: The DTD of Figure 1 (taken from [4]) de-
scribes recursive curriculum data, including courses, their lists
of prerequisite courses, the prerequisites of the latter, and so
on. The XQuery expression of Figure 2 recursively computes
all prerequisite courses, direct or indirect, of the course coded
with "c1", on an instance document "curriculum.xml".
The compilation is seeded by the course element node
with code "c1". For a given sequence $x of course nodes,
function fix(·) calls rec_body(·) on $x to find their direct
prerequisites. While new nodes are encountered, fix(·) calls
itself on the accumulated course node sequence. (This query
is not expressible in XPath 2.0.) C

†Supported by Netherlands Organization for Scientific Research (NWO),
Grant 017.001.190.
‡Supported by German Research Foundation (DFG), Grant GR 2036/2-1.

<!ELEMENT curriculum (course)*>
<!ELEMENT course prerequisites>
<!ATTLIST course code ID #REQUIRED>
<!ELEMENT prerequisites (pre_code)*>
<!ELEMENT pre_code #PCDATA>

Fig. 1. Curriculum data (simplified DTD).

1 declare function rec_body ($cs) as node()*
2 { $cs/id (./prerequisites/pre_code) };
3
4 declare function fix ($x) as node()*
5 { let $res := rec_body ($x)
6 return if (empty ($x except $res))
7 then $res
8 else fix ($res union $x)
9 };

10
11 let $seed := doc ("curriculum.xml")
12 //course[@code="c1"]
13 return fix (rec_body ($seed))

Fig. 2. Prerequisites for course "c1" (marks the fixed point computation).

Note that fix(·) implements a generic inflationary fixed point
computation: only the seed ($seed := · · ·) and the body
(rec_body(·)) are specific to the curriculum problem. This
motivates the introduction of a syntactic form for this pattern
of computation (Section II). Unlike in the case of RUDFs,
this account of recursion puts the query processor in control
in choosing the evaluation strategy.

Provided that the body of the recursion exhibits a dis-
tributivity property, the computation of IFP is susceptible to
systematic optimization. Distributivity may be tested on a
syntactical level—a non-invasive approach that can easily be
realized on top of existing XQuery processors. Further, if we
adopt a relational view of the XQuery semantics (as in [5]),
distributivity can be elegantly and uniformly tested on the
familiar algebraic level (Section III).

Compliance with the restriction that distributivity imposes
on IFP expressions is rewarded by significant query runtime
savings. We illustrate the effect for the XQuery processors
MonetDB/XQuery [6] and Saxon [7] (Section IV).

Discussion of related work, further details and proofs are
provided in [8].

II. DEFINING IFP IN XQUERY

In this section we define an IFP operator in XQuery. We
regard an XQuery expression e1 containing a free variable
$x as a function of $x, denoted by e1($x). We write e1(e2)

to denote e1[e2/$x], i.e., the uniform replacement of all free
occurrences of $x in e1 by e2, assuming that the free variables
of e2 are not bound in e1. Finally, e1(X) denotes the result
of e1($x) when $x is bound to the sequence of items X .

Further, we introduce set-equality (s=), a relaxed notion of
equality for XQuery item sequences that disregards duplicate
items and order, e.g., (1,"a")

s= ("a",1,1). For X1, X2

sequences of type node()*, we have1

X1
s=X2 ⇔ fs:ddo(X1) = fs:ddo(X2) . (Seq)

In this paper, we only consider XQuery expressions and
sequences of type node()*.2

Definition 2.1: (Inflationary Fixed Point) Let eseed and
ebody($x) be XQuery expressions. The inflationary fixed point
(IFP) of ebody($x) seeded by eseed is the XQuery expression

with $x seeded by eseed recurse ebody($x) . (1)

The expressions ebody , eseed , and $x are called, respectively,
the recursion body, seed, and variable of the IFP operator.

The semantics of (1) is the sequence Resk, if it exists,
obtained in the following manner:

Res0 ← ebody(eseed)
Resi+1 ← ebody(Resi) union Resi , i > 0

where k > 1 is the minimum number for which Resk
s=

Resk−1. Otherwise, the semantics of (1) is undefined. C
Note that if expression ebody does not invoke node con-

structors (e.g., element {·} {·} or text {·}), expression (1)
operates over a finite domain of nodes and its semantics is
always defined.

Example 2.2: Using the new operator we can express the
query from Example 1.1 in a concise and elegant fashion:

with $x seeded by doc ("curriculum.xml")
//course[@code="c1"]

recurse $x/id (./prerequisites/pre_code)
(Q1)

C

Obviously, (1) is mere syntactic sugar as it can be equiv-
alently expressed via the recursive user-defined function
fix(·) (shown by in Figure 2). Since (1) is a second-
order operator taking XQuery expressions as arguments,
fix(·) has to be interpreted as a template in which
rec_body($x) is replaced with ebody($x) (XQuery does not
support higher-order functions). Then (1) is equivalent to
let $x := eseed return fix (ebody($x)).

Example 2.3: Like in the relational context, transitive clo-
sure is an archetype of recursive computation over XML
instances. Regular XPath [3], for example, defines the tran-
sitive closure of XPath location paths and thus can express
forms of horizontal and vertical structural recursion. Let e be
a Regular XPath expression and e+ its transitive closure as
defined in [3]. Then e+ can be expressed using the new IFP
operator: with $x seeded by . recurse $x/e. Here ‘.’
denotes the context node. C

1fs:ddo(·) abbreviates the function fs:distinct-doc-order(·) of the
XQuery Formal Semantics [9].

2An extension to general sequences of type item()* is possible but requires
the replacement of XQuery’s node set operations (union, except) with
appropriate variants.

res ← ebody(eseed);

do

res ← ebody(res) union res;
while res grows ;

(a) Algorithm Naı̈ve

res ← ebody(eseed);
∆← res;
do

∆← ebody(∆) except res;
res ← ∆ union res;

while res grows ;

(b) Algorithm Delta

Fig. 3. Algorithms to evaluate the IFP of ebody given eseed . Result is res .

declare function delta ($x,$res) as node()*
{ let $delta := rec_body ($x) except $res
return if (empty ($delta))

then $res
else delta ($delta,$delta union $res)

};

Fig. 4. An XQuery formulation of Delta.

III. IMPLEMENTING IFP IN XQUERY

A. Algorithms for IFP

The semantics of the IFP operator (1) given in Definition 2.1
can be implemented straightforwardly. Figure 3(a) shows the
resulting procedure, commonly referred to as Naı̈ve [10]. At
each iteration of the while loop, ebody is executed on the
intermediate result sequence res until no new nodes are added
to it. Note that the old nodes in res are fed into ebody(·) over
and over again. Depending on the nature of ebody(·), Naı̈ve
may involve a substantial amount of redundant computation.

A now folklore variation of Naı̈ve is the Delta algo-
rithm [11] of Figure 3(b). In this variant, ebody(·) is invoked
only for those nodes that have not been encountered in
earlier iterations: node sequence ∆ is the difference between
ebody(·)’s last answer and the current result res . In general,
ebody(·) will thus process fewer nodes. Delta introduces a sig-
nificant potential for performance improvement, especially for
large intermediate results and computationally expensive re-
cursive bodies (Section IV). Figure 4 shows the corresponding
RUDF delta(·,·), which can serve as a drop-in replacement
for function fix(·) in Figure 2—line 13 then needs to be
replaced by return delta (rec_body ($d),()).

Unfortunately, Delta is not always a valid optimization for
the IFP operator in XQuery.

Example 3.1: Consider the following expression:

let $seed := (<a/>,<c><d/></c>)
return with $x seeded by $seed

recurse if (count ($x/self::a))
then $x/* else ()

(Q2)

While Naı̈ve computes (a,b,c,d), Delta computes (a,b,c),
where a, b, c, and d denote the elements constructed by the
respective subexpressions of the seed. C
When can Naı̈ve be safely traded for Delta?

B. Trading Naı̈ve for Delta

Delta correctly computes the IFP operator if it produces the
same results as Naı̈ve on the same inputs. The algorithms are
equivalent, in particular, if both yield the same intermediate
res sequences in each iteration of their while loops.

In its first loop iteration, Naı̈ve yields ebody(ebody(eseed))
union ebody(eseed) which is equivalent to Delta’s first in-
termediate result (ebody(ebody(eseed)) except ebody(eseed))
union ebody(eseed). For the second and further iterations, an
inductive proof can show the equivalence of all subsequent
intermediate res sequences, if for all sequences X1, X2,

ebody(X1 unionX2) s= ebody(X1) union ebody(X2) . (2)

Note how (2) resembles the distributivity property of functions
defined on sets. It suggests a divide-and-conquer evaluation in
which ebody is applied to (singleton) subsets of the input. We
define a similar distributivity property for XQuery.

Definition 3.2: Distributivity property for XQuery. Let
e($x) be an XQuery expression. Then e is distributive for
$x if, for any sequence X 6= (),

e′(X) s= e(X) , (3)

where e′($x) = for $y in $x return e($y) and $y is a
fresh variable. C
Equalities (3) and (2) are equivalent, thus we arrive at the
following sufficient condition for the applicability of Delta:

Theorem 3.3: Let ebody($x) and eseed be XQuery expres-
sions. If ebody is distributive for $x, then the algorithm Delta
computes the IFP of ebody($x) seeded by eseed .

Path expressions are a prevalent example of distributive
expressions in XQuery. Any expression of the form $x/e
is distributive for $x if e contains neither (i) calls to
fn:position() and fn:last() that refer to the context
sequence bound to $x, nor (ii) free occurrences of $x, nor
(iii) node constructors. Note that the body of (Q1) from
Example 2.2 satisfies these conditions, thus Delta can be
applied for its evaluation.

In contrast, expression $x[1] is not distributive for $x. Let
$x bound to the result of (<a/>,<c/>) and let a, b,
and c denote the respective elements. Then $x[1] evaluates
to a, while for $y in $x return $y[1] yields (a,b).
Effectively, this invalidates Equation (3). Another example is
the body of (Q2) from Example 3.1. For the same binding of
$x, we obtain c and the empty sequence, respectively.

C. Testing distributivity

If an XQuery engine can determine whether the body of an
IFP expression is distributive it can automatically apply Delta.
Unfortunately, distributivity is an undecidable property. Still,
we can safely approximate the answer. We provide a syntactic
fragment of XQuery who’s membership can be efficiently
checked. The syntactic rules describing the fragment are quite
verbose, though.

Distributivity can be checked more efficiently if the XQuery
processor is equipped with an algebraic rewrite engine.
Pathfinder, the query compiler behind the MonetDB/XQuery
system [6], e.g., uses a purely relational query formulation
to analyze and optimize XQuery [5]. In [8], we extended
the algebra of Pathfinder with the IFP operator µ. A set
of rewrite rules repeatedly applies the algebraic equivalent
of Equation 2 to propagate the relational union operator ∪

TABLE I
EVALUATION TIMES FOR QUERY FROM EXAMPLE 1.1.

Data size MonetDB/XQuery Saxon-SA 8.9
Naı̈ve Delta Naı̈ve Delta

medium 183 ms 135 ms 1,308 ms 1,040 ms
large 1,466 ms 646 ms 3,485 ms 2,176 ms

upwards in the recursion body of µ. Once ∪ reaches µ,
distributivity is detected and we can use Algorithm Delta to
implement the fixed point operation. With only a small number
of modifications to the original query optimizer, this algebraic
approach turns out to cover a larger distributive fragment than
the syntactic fragment.

IV. PRACTICAL IMPACT OF DISTRIBUTIVITY AND Delta
We implemented the IFP operator in MonetDB/XQuery 0.18

and enhanced its algebraic compiler front-end Pathfinder (i) to
process the IFP operator (Definition 2.1), and (ii) to implement
the algebraic distributivity test. Whenever the distributivity test
succeeds, Delta is applied, otherwise Naı̈ve.

To quantify the performance advantage that can be realized
by using Delta, we ran a number of real-world queries over
documents of various sizes. Table I lists the execution times
we observed for Expression (Q1) from Example 2.2 over XML
instances that contained about 800 (“medium”) and 4,000
(“large”) course elements. Thanks to the Delta algorithm,
MonetDB/XQuery scales linearly with document sizes for this
query.

To demonstrate that any XQuery processor can benefit from
the techniques we explored here, we also expressed both
evaluation alternatives using XQuery (cf. Figures 2 and 4) and
ran them on Saxon-SA 8.9 [7]. As shown in Table I, Saxon
too can benefit from optimized IFP evaluation.

REFERENCES

[1] S. Boag, D. Chamberlin, M. F. Fernández, D. Florescu, J. Robie, and
J. Siméon, “XQuery 1.0: An XML query language,” W3C Recommen-
dation, 2007.

[2] S. Abiteboul, R. Hull, and V. Vianu, Foundations of Databases. Addison
Wesley, 1995.

[3] B. ten Cate, “Expressivity of XPath with Transitive Closure,” in Proc.
PODS, 2006, pp. 328–337.

[4] C. Nentwich, L. Capra, W. Emmerich, and A. Finkelstein, “xlinkit:
A Consistency Checking and Smart Link Generation Service,” ACM
Transactions on Internet Technology, vol. 2, no. 2, 2002.

[5] T. Grust, S. Sakr, and J. Teubner, “XQuery on SQL Hosts,” in Proc.
VLDB, 2004.

[6] P. Boncz, T. Grust, M. van Keulen, S. Manegold, J. Rittinger, and
J. Teubner, “MonetDB/XQuery: A Fast XQuery Processor Powered by
a Relational Engine,” in Proc. SIGMOD, 2006.

[7] M. Kay, “The Saxon XSLT and XQuery Processor.” [Online]. Available:
http://saxon.sf.net/

[8] L. Afanasiev, T. Grust, M. Marx, J. Rittinger, and J. Teubner, “An
Inflationary Fixed Point Operator in XQuery,” Nov. 2007. [Online].
Available: http://arxiv.org/abs/0711.3375v1

[9] D. Draper, P. Fankhauser, M. F. Fernández, A. Malhotra, K. Rose,
M. Rys, J. Siméon, and P. Wadler, “XQuery 1.0 and XPath 2.0 Formal
Semantics,” W3C Recommendation, 2007.

[10] F. Bancilhon and R. Ramakrishnan, “An Amateur’s Introduction to
Recursive Query Processing Strategies,” in Proc. SIGMOD, 1986.

[11] U. Güntzer, W. Kieling, and R. Bayer, “On the Evaluation of Recursion
in (Deductive) Database Systems by Efficient Differential Fixpoint
Iteration,” in Proc. ICDE, 1987.

