.@. BTW2023
= DRESDEN

To Iterate is Human, To Recurse is Divine
Mapping Iterative Python to Recursive SQL

Tim Fischer

& tim.fischerQuni-tuebingen.de

EBERHARD KARLS

UNIVERSITAT
TUBINGEN



tim.fischer@uni-tuebingen.de

What's the Problem?

@ def march(current: Point) -> list[Point]:

goal : Point | None = None

track: bool = False

march: list[Point] = []
______ while not track or curremt != goal: .
S square: Squares = SQL(

"SELECT s FROM squares AS s WHERE s.xy = $1",

[current] ,

I —
s dir: Directions = SQL(

SELECT d

FROM directions AS d

WHERE (($1).11, ($1).1r, ($1).ul, ($1).ur)

= ( d.11, @lo e, d.ul, d.ur)

[square] ,
"@  if not track and dir.track: track, goal - Irue, current

if track: march.append (current)

current += dir.dir

return march



Too Many Round Trips!

inline
into SQL

invoke
from Python

t-—-—a

)
_————t "

v

3/9



Compiler Stages

Type Checking Desugaring Lowering~SSA

Python @ —@)—» AST, ——2)—» AST, ——(3)—» SSA+S0L —————- - > SOLS

source code fully typed simplified

Lowering~ANF Trampolining Code Generation

Python @ - - - - - - > SSA —@W)—> MWF —B—> AWF+22 —(6)—> 0. =

iterative GOTO recursive single loop WITH RECURSIVE



Types of Control Flow

def virtual_machine(source) :

ip: int = 0
regs: list[int] =

(]

]

while True:

inst = load_inst(ip)

match inst.op:
"lod":
"mov" :
"add":
"sub":
l|j eqll .
"hlt":

case
case
case
case
case
case

5/9



Non-Branching Linear Control Flow in SQL

SELECT ...

FROM (JLATERAL (SELECT 1 :: int ) AS let_1(ip),
LATERAL (SELECT ARRAY[] :: int[]) AS let_2(regs

)

6/9



Non-Linear Control Flow in SQL

WITH RECURSIVE
loop("done?", ...) AS (
@[SELECT False, ... )
UNION
SELECT ...
FROM  loop AS state
WHERE NOT state.'"done?"
)
SELECT ...

FROM loop
WHERE "done?"




Branching Linear Control Flow in SQL

SELECT next_state
FROM  loop AS st

X%
ate,

LATERAL (SELECT load_inst(ip)) AS let_3(imst),

LATERAL (
SELECT ... WHERE inst.op 'lod'
UNION ALL
SELECT ... WHERE inst.op 'mov'
UNION ALL
SELECT ... WHERE inst.op 'add'
UNION ALL
SELECT ... WHERE inst.op 'sub'
UNION ALL
SELECT ... WHERE inst.op 'jeq'
UNION ALL
SELECT ... WHERE inst.op 'hlt’
) AS next_state

WHERE NOT "done?



Join us in our effort to
marry complex computations with SOL!

Fully-Funded PhD or Postdoc Position

Database Systems Group @ Uni Ttibingen

Approach Torsten Grust, who is around this week.

=
M
Wl
=

:;..—l
O A

':. ;"
Trsiar

.
&



https://db.cs.uni-tuebingen.de/news/2023-03-01-phd-position/

