
Tim Fischer
Denis Hirn
Torsten Grust

[tim.fischer,denis.hirn,torsten.grust]@uni-tuebingen.de

Python Subset Understood by ByePy

• looping and iteration
(while, for 𝘷 in range/array)

• flow control statements
(continue, break, return),

• conditional statements (if, elif, else) as well as
expressions (𝑒1 if 𝑒2 else 𝑒3),

• variable assignment (𝑣 = 𝑒, 𝑣 += 𝑒, 𝑣[𝑒1] = 𝑒2) and
reference,

• lists ([𝑒1,…,𝑒𝑛]), indexed access and slicing
(𝑒1[𝑒2], 𝑒1[𝑒2:𝑒3]), stateful list methods (𝑒.pop,
𝑒.append, 𝑒.extend),

• a large range of builtin operators and functions
(+, %, **, &, ~, <<, <=, ==, and, ..., len, max, ceil,
sqrt, coalesce, ...),

• embedded read-only queries
(SQL(𝑞,[𝑒1,…,𝑒𝑛]))

Interplay of the Python Interpreter
and SQL Engine

Python SQL

Psycopg2PL/Python

f plan+instantiate
Q1teardown

f plan+instantiate
Q2teardown

f plan+instantiate
Q3teardown

f instantiate
Q3teardown

f

⋮

time

Python SQL

Psycopg2

plan+instantiate

Qf

teardown

invoke
from Python

Snakes on a Plan — ByePy

Bye, Python!  — How we compile
UDFs with complex control flow
into one recursive SQL CTE.

Add... More More information

! " Save/Load + Add new... ! Vim

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

76

77

78

79

80

81

82

83

84

85

86

87

88

89

35

36

90

91

92

93

 WHERE l.l_orderkey = $1

 AND l.l_partkey = p.p_partkey

 """,

 [orderkey],

)

):

 return []

 # initialize empty pack of packs

 packs: list[list[int]] = []

 # create full set of linenumbers {1,2,...,n}

 items: int = (1 << n) - 1

 # as long as there are still lineitems to pack...

 while items != 0:

 max_size = 0

 max_subset = 0 # ∅

 subset = items & -items

 # # of lineitems in order

 n: int = SQL(

 """

 SELECT COUNT(*) :: int4

 FROM lineitem AS l

 WHERE l.l_orderkey = $1

 """,

 [orderkey],

)

 if (

 # order key not found?

 n == 0

 # container capacity sufficient to hold largest part?

 or capacity

 < SQL(

 """

 SELECT MAX(p.p_size)

 FROM lineitem AS l, part AS p

 while True:

 # find size of current lineitem subset o

 size: int = SQL(

 """

 SELECT SUM(p.p_size) :: int4

 FROM lineitem AS l, part AS p

 WHERE l.l_orderkey = $1

 AND $2 & (1 << l.l_linenumber - 1) <> 0

 AND l.l_partkey = p.p_partkey

 """,

 [orderkey, subset],

)

 if size <= capacity and size > max_size:

@to_compile

def pack(orderkey: int, capacity: int) -> list[list[int]]:

 max_size = size

 max_subset = subset

 # exit if iterated through all lineitem subsets ...
/usr/local/bin/ByePy-exe # - 1600ms (14339B) $

Compiler options...

! + Add new... % Add tool...

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

35

36

37

38

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

56

 LATERAL (SELECT "query0_1" AS "n_1") AS "let34"("n_1"),

 LATERAL

 (SELECT (SELECT max("p"."p_size") AS "max"

 FROM lineitem AS "l", part AS "p"

 WHERE ("l"."l_orderkey" = "orderkey"

 AND

 "l"."l_partkey" = "p"."p_partkey")) AS "query1_1"

) AS "let35"("query1_1"),

 LATERAL

 (SELECT ("n_1" = 0 OR "capacity" < "query1_1") AS "q5_1"

) AS "let36"("q5_1"),

 LATERAL

 ((SELECT False,

 NULL :: text,

 ARRAY[] :: int4[][] AS "result",

 NULL :: int4,

 NULL :: int4,

 (SELECT (SELECT (count(*)) :: int4 AS "count"

 FROM lineitem AS "l"

 WHERE "l"."l_orderkey" = "orderkey") AS "query0_1"

) AS "let33"("query0_1"),

 (

 (SELECT "ifresult37".*

 FROM LATERAL (SELECT NULL :: int4 AS "n_3") AS "let24"("n_3"),

 LATERAL

 (SELECT NULL :: int4[][] AS "packs_13") AS "let25"("packs_13"),

 LATERAL (SELECT NULL :: int4 AS "items_13") AS "let26"("items_13"),

 LATERAL

 (SELECT NULL :: int4 AS "max_size_8") AS "let27"("max_size_8"),

 LATERAL

 (SELECT NULL :: int4 AS "max_subset_8") AS "let28"("max_subset_8"),

 LATERAL (SELECT NULL :: int4 AS "subset_9") AS "let29"("subset_9"),

 LATERAL (SELECT NULL :: int4 AS "size_8") AS "let30"("size_8"),

 LATERAL (SELECT NULL :: int4[] AS "pack_13") AS "let31"("pack_13"),

 LATERAL

 (SELECT NULL :: int4 AS "linenumber_13") AS "let32"("linenumber_13"),

 LATERAL

CREATE OR REPLACE FUNCTION pack_start(orderkey int4,

 capacity int4) RETURNS int4[][]

AS

$$

 WITH RECURSIVE run("rec?",

 "label",

 "res",

 "orderkey",

 "capacity",

 "n",

 "packs",

 "items",

 "max_size",

 "max_subset",

 "subset",

 "size",

 "pack",

 "linenumber") AS

 NULL :: int4,
& Output (3766/0)

for18_body:

[pack ≡ $16 ←
 [SELECT $16
 ||
 (CASE WHEN ($10 & (1 << $19)) <> 0 THEN $19 + 1
 ELSE 0
 END) AS "pack"]
 (10 ↦ max_subset ≡ $10
 ,16 ↦ pack ≡ $16
 ,19 ↦ linenumber ≡ $19);
linenumber ≡ $19 ←
 [SELECT $19 + 1 AS "linenumber"]
 (19 ↦ linenumber ≡ $19);
goto for18_head;]

for18_head:

[q20 ≡ $17 ←
 [SELECT $2 AS "q20"]
 (2 ↦ n ≡ $2);
pred19 ≡ $18 ←
 [SELECT $19 <= $17 AS "pred19"]
 (17 ↦ q20 ≡ $17,19 ↦ linenumber ≡ $19);
if pred19 ≡ $18 then
 goto for18_body;
else
 goto for18_end;]

for18_end:

[packs ≡ $6 ←
 [SELECT $6 || (ARRAY[$16] :: int4[][]) AS "packs"]
 (6 ↦ packs ≡ $6,16 ↦ pack ≡ $16);
items ≡ $7 ←
 [SELECT $7 & (~ $10) AS "items"]
 (7 ↦ items ≡ $7,10 ↦ max_subset ≡ $10);
goto while6_head;]

while6_head:

[pred7 ≡ $8 ←
 [SELECT $7 <> 0 AS "pred7"]
 (7 ↦ items ≡ $7);
if pred7 ≡ $8 then
 goto while6_body;
else
 ret packs ≡ $6;]

[pack ≡ $16 ← [SELECT ARRAY[] :: int4[] AS "pack"];
linenumber ≡ $19 ← [SELECT 0 AS "linenumber"];
goto for18_head;]

ifmerge4:

[packs ≡ $6 ← [SELECT ARRAY[] :: int4[][] AS "packs"];
items ≡ $7 ←
 [SELECT (1 << $2) - 1 AS "items"]
 (2 ↦ n ≡ $2);
goto while6_head;]

start:

[query0 ≡ $3 ←
 [SELECT (count(*)) :: int4 AS "count"
FROM lineitem AS "l"
WHERE "l"."l_orderkey" = $0]
 (0 ↦ orderkey ≡ $0);
n ≡ $2 ←
 [SELECT $3 AS "n"]
 (3 ↦ query0 ≡ $3);
query1 ≡ $4 ←
 [SELECT max("p"."p_size") AS "max"
FROM lineitem AS "l", part AS "p"
WHERE ("l"."l_orderkey" = $0 AND "l"."l_partkey" = "p"."p_partkey")]
 (0 ↦ orderkey ≡ $0);
q5 ≡ $5 ←
 [SELECT ($2 = 0 OR $1 < $4) AS "q5"]
 (1 ↦ capacity ≡ $1,2 ↦ n ≡ $2,4 ↦ query1 ≡ $4);
if q5 ≡ $5 then
 ret [SELECT ARRAY[] :: int4[][]]
 ();
else
 goto ifmerge4;]

while6_body:

[max_size ≡ $9 ← [SELECT 0 AS "max_size"];
max_subset ≡ $10 ← [SELECT 0 AS "max_subset"];
subset ≡ $11 ←
 [SELECT $7 & (- $7) AS "subset"]
 (7 ↦ items ≡ $7);
goto loop8_body;]

!

26

27

28

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

8

9

5

6

7

1

2

3

4

 ret [SELECT ARRAY[] :: int4[][]]

 ();

 else

 [SELECT (count(*)) :: int4 AS "count"

FROM lineitem AS "l"

WHERE "l"."l_orderkey" = $0]

 (0 ↦ orderkey ≡ $0);

 n_1 ≡ $2 ←

 [SELECT $3 AS "n"]

 (3 ↦ query0_1 ≡ $3);

 query1_1 ≡ $4 ←

 [SELECT max("p"."p_size") AS "max"

FROM lineitem AS "l", part AS "p"

WHERE ("l"."l_orderkey" = $0 AND "l"."l_partkey" = "p"."p_partkey")]

 (0 ↦ orderkey ≡ $0);

 q5_1 ≡ $5 ←

 [SELECT ($2 = 0 OR $1 < $4) AS "q5"]

 (1 ↦ capacity ≡ $1,2 ↦ n_1 ≡ $2,4 ↦ query1_1 ≡ $4);

 if q5_1 ≡ $5 then

 start: {

 query0_1 ≡ $3 ←

}

proc pack(orderkey ≡ $0,capacity ≡ $1) {

proc pack_start(orderkey ≡ $0,capacity ≡ $1) {

 start:

 ret pack

 (0 ↦ orderkey ≡ $0,1 ↦ capacity ≡ $1);

ByePy /usr/local/bin/ByePy-exe example.py.CFG.svg

001.ssa

'

(

ByePy source #1 /usr/local/bin/ByePy-exe (ByePy, Editor #1, Compiler #1) Graph Viewer /usr/local/bin/ByePy-exe (Editor #1, Compiler #1)

GCC Tree/RTL Viewer /usr/local/bin/ByePy-exe (Editor #1, Compiler #1)

Try the demo
https://apfel-db.cs.uni-tuebingen.de

Download the full paper
https://db.cs.uni-tuebingen.de/staticfiles/publications/snakes-on-a-plan.pdf

Compiling UDF f:
Intermediate Program Forms

1. Bring f into SSA form in which iterative as well as
conditional control flow is exclusively expressed
in terms of GOTO,

2. translate the resulting graph of SSA blocks into a
bundle of tail-recursive functions in ANF,

3. form a central trampoline function which dis-
patches to the functions in the bundle, then loops
back to itself, and

4. inline the functions into the trampoline, after
which the recursive CTE Qf can be read off this
final intermediate form.

Compiler Stages

Python plain SQL

iterative

GOTO

recursive

single loop

WITH RECURSIVE

ev
alu

at
ed

in
sid

e
th
ed

at
ab

as
ek

er
ne

l
ou

tsi
de

th
e

da
ta
ba

se
ke
rn
el

f

SSA

ANF

Trampoline

SQL

Qf

A Collection of Compiled Python UDFs

UDF Description Speedup
force 𝑛-body simulation (Barnes-Hut quad tree) 5.7×

march track border of 2D object (Marching Squares) 10.0×
margin buy/sell TPC-H orders to maximize margin 4.7×
markov Markov-chain based robot control 3.6×
packing pack TPC-H lineitems tightly into containers 16.0×
savings optimize supply chain of a TPC-H order 31.0×

vm execute program on a simple virtual machine 24.0×

