PL/Python

Tim Fischer
Denis Hirn
Torsten Grust

% [tim.fischerdenis.hirntorsten.grust)@uni-tuebingen.de

Python Subset Understood by ByePy

-looping and Iteration
(while, for v in range/array)
- flow control statements
(continue, break, return),

- conditional statements (if elif, else)as well as

expressions (e, if e, elsees),

-variable assignment (v=e¢, v+=¢, v[e,;]=¢,) and

reference,
* [|S[S ([81, RN

e.append, e.extend),

- a large range of builtin operators and functions

(+, %, *% & ~ << <= == and,
sqrt, coalesce, ...),
-embedded read-only queries

(SOLCQ7E317~-7en]))

e 1), indexed access and slicing
(e[es], ei[er:e5]), stateful list methods (e.pop,

~len, max, cell,

Interplay of the Python Interpreter

and SQL Engine

Psycopg?

Python & SQL Python &

Psycopg?

SQL

f{planﬂnitantiate [plaﬂ+in$tantiate

teardown)0

f (plan+instantiate
teardown __J 0
f (Plan+instantiate

teardown _J 0 teardown
f U Instahtiate .f

teardown] 03 invoke
f from Python

-----T-P-

EBERHARD KARLS

UNIVERSITAT
TUBINGEN

Snakes % on a Plan — ByePy

Bye, Python! ® — How we compile
UDFs with complex control flow
into one recursive SQL CTE.

2% COMPILER } }

ByePy source #1 X

A~
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
31
52
33
54
35
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
1
12
/3
74
75
76
77
/8
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93

B Save/Load < Addnew...> WV Vim ByePy

@to_compile

def pack(orderkey: int, capacity: int) -> list[list[int]]:
of lineitems 1n order
n: int = SQL(

SELECT COUNT(*) :: int4
FROM 1lineitem AS 1
WHERE 1.1_orderkey = $1
1 1 ,

[orderkey],

order key not found?

n ==

container capacity sufficient to hold largest part?
or capacity

< SQL(

SELECT MAX(p.p_size)
FROM lineitem AS 1, part AS p
WHERE 1.1 _orderkey = $1
AND 1.1_partkey = p.p_partkey
I I]
[orderkey],

)

return []

Initialize empty pack of packs

packs: list[list[int]l] = []

create full set of linenumbers {1,2,...,n}
items: int = (1 << n) -1

as long as there are still lineitems to pack...
while items != 0:

max_size = 0

max_subset = 0 # ¢

subset = items & -items

while True:
find size of current lineitem subset o
size: int = SQL(

SELECT SUM(p.p_size) :: int4

FROM lineitem AS 1, part AS p

WHERE 1.1 _orderkey = $1

AND $2 & (1 << 1.1_linenumber - 1) <> 0
AND 1.1_partkey = p.p_partkey

,

[orderkey, subset],

)
if size <= capacity and size > max_size:
max_size = size

max_subset = subset

exit If iterated through all lineitem subsets ...

O

v

Try the demo

X

/usr/local/bin/ByePy-exe (ByePy, Editor #1, Compiler #1) X

/ust/local/bin/ByePy-exe ¥ @ Compiler options...

A~ <4 Addnew...v o Addtool...”
CREATE OR REPLACE FUNCTION pack_start(orderkey int4,

1
2
3 AS

4 $§

5 WITH RECURSIVE run("rec?",
6 "label",

! "res",

8 "orderkey",

9 ""capacity",

10 "n",

11 "packs",

12 "items",

13 "'max_size",

14 "max_subset",

15 "subset",

16 "'size",

17 "pack",

18 "linenumber") AS
19

20 (SELECT "ifresult37".x*

21 FROM LATERAL (SELECT NULL ::
22 LATERAL

23 (SELECT NULL ::
24 LATERAL (SELECT NULL ::
25 LATERAL

26 (SELECT NULL ::
27 LATERAL

28 (SELECT NULL =
29 LATERAL (SELECT NULL ::
30 LATERAL (SELECT NULL ::
31 LATERAL (SELECT NULL ::
32 LATERAL

33 (SELECT NULL ::
34 LATERAL

35 (SELECT (SELECT (count(*)) ::
36 FROM lineitem AS "1"
37 WHERE "1"."1_orderkey"
38) AS "let33"("query0_1"),

39 LATERAL (SELECT "query@_1" AS "n_1") AS "let34"("n_1"),

40 LATERAL

41 (SELECT (SELECT max("p"."p_size") AS "max"
42 FROM lineitem AS "1", part AS "p"
43 WHERE ("1"."1_orderkey" =
44 AND

45 "1"."1_partkey" = "p"."p_partkey")) AS "query1_1"

46) AS "let35"("query1_1"),
47 LATERAL

48 (SELECT ("n_1" = 0 OR "capacity" < "query1_1") AS "g5_1"

49) AS "let36"("g5_1"),

50 LATERAL

51 ((SELECT False,

52 NULL :: text,

53 ARRAY[] :: int4[1[] AS "result",
54 NULL :: int4,

55 NULL :: int4,

LA NIIIT oo 1n+A
C E Output (3766/0) /usrflocal/bin/ByePy-exe 1 - 1600ms (143398) Ll

https://apfel-db.cs.uni-tuebingen.de

capacity int4) RETURNS int4[1[]

int4 AS "n_3") AS "let24"("n_3"),

int4[1[] AS "packs_13") AS "let25"("packs_13"),
int4 AS "items_13") AS "let26"("items_13"),

int4 AS "max_size_8") AS "let27"(“"max_size_8"),

int4 AS "max_subset_8") AS "let28"("max_subset_8"),
int4 AS "subset_9") AS "let29"("subset_9"),
int4 AS "size_8") AS "let30"("size_8"),
int4[]1 AS "pack_13") AS "let31"("pack_13"),
int4 AS "linenumber_13") AS "let32"("linenumber_13"),

int4 AS "count"

= "orderkey") AS "query0_1"

"orderkey"

O X

Graph Viewer /usr/local/bin/ByePy-exe (Editor #1, Compiler #1) X

119"1]
anumber = $19)

=

v \ example.py.CFG.svg v

More information ¥

O

X

(start:
[query® = $3

FROM 11ne1tem AS "1"
WHERE "1"."1_orderkey" = $01
(0 — orderkey = $@)

n =
[SELECT $3 AS "n"1]
(3 — query® = $3);
queryl = $4

FROM 11ne1tem AS "1", part AS '
(0 — orderkey = $0)

if g5 = $§5 then
E;t [SELECT ARRAY[] :: int4[1[]]

else
. goto ifmerged;]

[SELECT max(p"."p_ size') AS "max"
WHERE ("1"."1 orderkey $0 AND '1"."1_partkey"

[SELECT (count()) :: int4 AS "count"

a5 = $5
[SELECT (82 = 0 OR $1 < $4) AS "g5"]
(1 — capacity = $1,2 — n = $2,4 — queryl = $4);

"p"."p_partkey")]

0 THEN $19 + 1 [packs = $6 «

' \
(for18_end:) :

6 packs = $6,16 — pack $16); items = $7
items = $7
[SELECT §7 & (~ $10) AS "items"]

(2 » n=3%2);
(7 — items = $7,10 +— max_subset = $10);

goto while6_head;] '

ifmerged
[SELECT $6 || (ARRAY[S$16] :: int4[1[]) AS “packs" [packs = $6 «— [SELECT ARRAY[]

:: int4[1[] AS "packs
[SELECT (1 << §2) - 1 AS "items"]

.8oto while6_head;]

(while6_head:)

[pred7 = $8 «
[SELECT $7 <> 0 AS "pred7"]

: (7 — items = $7);
if pred7 = $8 then
goto while6_body;
else
. ret packs = $6;] y

DN

GCC Tree/RTL Viewer /usr/local/bin/ByePy-exe (Editor #1, Compiler #1) X

Av

o0 ~N OO U1 B LW N =

N N =/ 0 e ey e ey e ey oy
_ O W o0 N U BN N, O

001.ssa v

proc pack_start(orderkey = $0,capacity = $1) {
start:
ret pack
(0 ~— orderkey = $0,1 — capacity = $1);
}

proc pack(orderkey = $0,capacity = $1) {
start: {
query0_1 = $3 «
[SELECT (count(*)) ::
FROM lineitem AS "1"
WHERE "1"."1_orderkey" = $01]
(0 + orderkey = $0);
n_1z$2 «
[SELECT $§3 AS "n"]
(3 +— query0_1 = $3);
query1_1 = $4 «
[SELECT max("p"."p_size") AS "max"
FROM lineitem AS "1", part AS "p"
WHERE ("1"."1_orderkey" = $0 AND "1"."1_partkey" = "p"."p_partkey")]
(0 +— orderkey = $0);
g5_1 = §5 «
[SELECT (§2 = 0 OR $1 < $4) AS "g5"]
(1 — capacity = $1,2 — n_1 = $2,4 — queryl_1 = $4);
if 5.1 = $5 then
ret [SELECT ARRAY[] ::
O

else

int4 AS "count"

int4[1[]1]

Download the full paper

https://db.cs.uni-tuebingen.de/staticfiles/publications/snakes-on-a-plan.pdf

Compiling

UDF f:

Intermediate Program Forms

1.Bring f into
conditional

SSA form in which iterative as well as
control flow Is exclusively expressed

In terms of 60TO,
2. translate the resulting graph of SSA blocks into a

natchestot
hack to Itse
4. inline the

bundle of tail-recursive functions in ANF,
3.form a central trampoline function which dis-

ne functions in the bundle, then loops

f and

functions into the trampoline, after

which the recursive CTE Q. can be read off this
final intermediate form.

Compiler Stages

Python &
f iterative
< !
L =
=
@ é SSA GOTO
2 5 l
S g
- ANF recursive
Trampoline single loop
SQL WITH RECURSIVE

evaluated inside
the database kernel

A Collection of Compiled Python UDFs

UDF Description Speedup
force n-body simulation (Barnes-Hut quad tree) 5.7x
march track border of 2D object (Marching Squares) 10.0x
margin buy/sell TPC-H orders to maximize margin 4. 7x
markov Markov-chain based robot control 3.6%

packing pack TPC-H lineitems tightly into containers 16.0x

savings optimize

supply chain of a TPC-H order 31.0x

vm execute program on a simple virtual machine 24.0x

M

ACM SIGMOD
[PODS 2022

o Philadelphia, PA, USA

