How, Where, and Why Data Provenance
Improves Query Debugging

A Visual Demonstration of Fine—Grained Provenance Analysis for SQL

Tobias Miiller
University of Tiibingen
Tiibingen, Germany
to.mueller @uni-tuebingen.de

Abstract—Data provenance is meta—information about the
origin and processing history of data. We demonstrate the prove-
nance analysis of SQL queries and use it for query debugging.
How-provenance determines which query expressions have been
relevant for evaluating selected pieces of output data. Likewise,
Where- and Why-provenance determine relevant pieces of input
data. The combined provenance notions can be explored visually
and interactively. We support a feature-rich SQL dialect with
correlated subqueries and focus on bag semantics. Our fine—
grained provenance analysis derives individual data provenance
for table cells and SQL expressions.

Index Terms—Data Provenance, Databases, Debugging, SQL

I. THREE NOTIONS OF DATA PROVENANCE

We demonstrate the interactive provenance analysis and its
visualization for SQL queries. In short, data provenance is the
description of the origins of a piece of data and the process
by which it arrived in a database (Buneman et al. [1, Sec. 1]).
Our demonstration shows that data provenance is helpful
in understanding and debugging SQL queries. Especially the
formulation of complex queries bears the potential for a class
of subtle bugs which do not trigger static or dynamic errors but
deliver erroneous result values. These bugs are hard to detect.
Through data provenance, we can unveil the possibly intricate
processes that have produced unexpected or buggy outputs.

This work is focussed on read—only query scenarios as
depicted in Figure 1. We make a fundamental distinction
between query logic and input data and map these onto three

Query Logic —

SQL Text
< [How—Provenance |
Query Result
mmm
-
Database Input Data — |
—' + (Where) + (Why)-Provenance

Fig. 1: Query evaluation and associated provenance no-
tions. Data provenance associates pieces of the query result
with the relevant input data and SQL expressions.

Pascal Engel
University of Tiibingen
Tiibingen, Germany
pascal.engel @student.uni-tuebingen.de

provenance notions. Below, an intuition for these notions is
provided. Cheney et al. [2] provide a comprehensive presen-
tation.

« How—provenance uncovers the relationship between out-
put data and query logic. The provenance consists of
all SQL (sub—)expressions which have been relevant in
producing certain output data. We aim at fine—grained
How-provenance which analyzes SQL on the level of
individual subexpressions.

o (Where)—-provenance identifies the pieces of input data
directly related to the output data. Input data may just
be copied to the output or multiple pieces of input data
can be combined to compute one output value. Where—
provenance tracks both.

« (Why)-provenance identifies relevant pieces of input
data which have been involved in deciding about the
existence of output data. For example, this happens when
rows have to qualify against WHERE predicates. Both
Where— and Why—provenance track data at the level of
individual table cells.

This demonstration integrates all of the above provenance
notions. The GUI allows for the interactive exploration of the
provenance results. Both data and SQL query are presented
on-screen and the data provenance gets highlighted. A
distinguishing feature of our approach is that there is no
intermediate representation (e.g. relational algebra) the user
has to understand. Provenance can be explored by looking
directly at the surface language (i.e., SQL expressions just as
they were entered) and the relational data. Notable features
of the supported SQL dialect are SFWGHO queries with
aggregations, correlated subqueries, CTEs, IN, and CASE
expressions.

Our language—centered approach to How-provenance is
inspired by Program Slicing by Weiser [7]. Their basic idea
is to identify all relevant lines of (imperative) code which
determine the contents of a selected variable. In our work,
How-provenance determines the SQL expressions which have
been relevant in producing a selected output table cell.

H
%
o

recipes
i ingredient gty 1

SELECT r.ingredient, r.qgty —— Extract ingredients

31 wheat flour 2 FROM recipes AS r -— of recipe 1
to water 3 WHERE r.rid = 1
i3 spices @
ts| @ 5 UNION ALL _ingredient
ts 4 water 520 7| SELECT ’yeast’ AS ingredient, —— Add yeast ts wheat flour
te 4 spices 4 8 0.015 « [SUM(r.gty) AS gty, -- as required to water

: : 9| FROM [recipes| As r -— by contained flour tio| spices | 4

: : : 10| WHERE Eirid = [ti1 | yeast
tr (Crye flour) (2000) 11 OR

12 r.ingredient IN (fxye flour’, ’'wheat flour’)

(a) Input table recipes

with highlighted
and (Why)-provenance.

(b) SQL query with highlighted How—provenance. Nesting
of subexpressions results in nested provenance.

(¢) Output value {5256
is selected for prove-
nance inspection.

Fig. 2: Debugging example: what ingredients and quantities are required for bread recipe 1?

How-provenance with similar focus is subject of our short
paper [5]. SQL queries are translated into an imperative
language and only then the How—provenance is derived. In
the present work, this detour via an imperative language is
replaced by a SQL-to—SQL rewrite. One advantage is that
existing DBMS infrastructure and query planners can be used
as the runtime system for provenance analysis. We elaborate
on the technical realization in Section III.

The Provenance Semirings approach by Green, Kar-
vounarakis, and Tannen [3] is where the term How—provenance
originates. They develop a formalism (based on exchangeable
semirings) that derives tuple—grained provenance for a query
dialect inspired by relational algebra (RA). Based on the semir-
ings approach, Senellart, Jachiet, Maniu, and Ramusat [6]
demonstrate that How—provenance is practical. However, their
work exhibits a disconnect between the SQL expressions
(entered by the user) and the How-provenance which gets
derived for an RA-based internal query representation. Our
work features two main advantages. Firstly, our provenance
derivation is cell-granular which improves accuracy. Secondly,
we try to avoid the disconnect between the user—facing lan-
guage and the provenance result. Our How—provenance is
derived directly for the SQL surface language.

This is the first system to integrate all three notions of
provenance, a distinct step forward with respect to earlier
work. In the next section, we will present an example query
and argue that the combination of all three provenance notions
boosts query debugging.

II. How TO READ PROVENANCE ANNOTATIONS

The query in Figure 2(b) extracts the ingredients and
quantities for bread recipe 1. Determined by the recipe’s
flour quantities, the query calculates the specific quantity of
yeast. One pound of flour requires 7 grams of yeast,
i.e. 79/500g = 0.015.

The output table in Figure 2(c) consists of three ingredients
(rows tg—t10) copied from the input table plus the computed
quantity of yeast. We observe a massive quantity of yeast
(ca. 10% of flour quantity). Do not use that recipe or your
dough may spill!

~
~

We are going to show how the three integrated provenance
notions help in uncovering the query’s fault. The exploration of
this scenario underlines the value of fine—grained data prove-
nance for SQL debugging and also provides an impression of
what the demo audience will be able to experience on—site

In a first step, the suspicious yeast value of :
probably be in the user’s focus. After a click on that value, the
system will highlight all three provenance notions associated
with this value in response.

(Where?) The green markers in Figure 2(a) are the Where—

input values have been contrlbutlng directly to that output
value. For example, value in input row f 1 has been

dient: water) another marker for Where—provenance can be
found. The query is supposed to derive the yeast quantity from
flour quantities only. Why—provenance can help to drill deeper
at this point.

The values of Figure 2(a) marked in red have
been inspected in order to decide whether data is included
in the query’s output. We learn from #; that id (1) has
been inspected while ingredient wheat flour apparently has
been ignored. However, the query is supposed to check all
ingredient names to distinguish between flour ingredients and
non—flour ingredients. Unexpectedly, the inspection of recipe
id (1) already sufficed to decide the inclusion of Z; in the yeast
computation. This is also true for all other rows of recipe 1.
This Why-provenance raises the suspicion that something
has gone wrong with the predicate evaluation. In ¢5 and 4
we find no Why-provenance because these tuples did not
qualify against the WHERE predicate and were dropped before
aggregation.

How? The nested blue boxes in Figure 2(b) constitute the
How—provenance and tell us which SQL expressions were
relevant in computing the selected output. On the top level, we
learn that only the second subquery of UNION ALL is relevant
. On line 8, output column gty
is derived from the constant value 0.015 and a SUM(:)
aggregate of the |gty column. That is all unsuspicious so
far. Looking at the WHERE predicate, we find that [z.rid

and (1 are highlighted. That comparison should already make
the Why— and Where—provenance for ¢, impossible. This
predicate would throw out any rid which is # 1 — would
it not? On line 11, the WHERE predicate employs an OR
expression. Most likely, we have found our bug: an AND
operator is needed instead of OR. After fixing the OR bug, the
yeast quantity (for 500 grams of wheat flour) indeed changes
to 500 - 0.015 = 7.5[g].

Short Circuiting. The annotations on line 12 exhibit short
circuiting used during the evaluation of the IN expres-
sion. Successful comparison of data value (tu-
ples t, and t7) with the literal [xye f£lour’ produces
Why— and How-provenance. The second comparison with
"wheat flour’ has been skipped (short circuiting or
early—out semantics) or the tuples have not qualified (i.e., t5
and tg). Therefore, How—provenance has not been found.

The demo will enable debugging sessions much like the
above in which query results and provenance are recomputed
interactively.

III. INTEGRATED PROVENANCE ANALYSIS

We have exemplified how query debugging can profit from
a seamless integration of multiple provenance notions. This
integration is also reflected in the technical realization.

Under the hood, this demonstration is based on a two—step
approach of provenance analysis [4]. That approach features
compositional rewrite rules Q = (Q', Q%) which translate a
SQL expression () into a pair of rewritten SQL expressions.
The two expressions Q! and Q? implement a split of respon-
sibilities which we will address below. Upon evaluation, the
two queries yield the data provenance of (). The compositional
and recursive rewrite function = from [4, Def. 5] facilitates
the derivation of Where— and Why—provenance.

In this work, we employ an extended rewrite function ="
which integrates How—provenance with the existing prove-
nance notions. The formal specification of =' is not in
the scope of this demonstration. Instead, we are going to
exemplify the rewrite using a query fragment from Figure 2(b),
line 8. The query fragment is replicated in Figure 3 and
identified as Q.

Rewrite function =7 sticks to the double rewrite policy and
creates two new expressions Q! and Q2. Q! operates in the
domain of SQL values (just like Q), Q? entirely operates in
the domain of sets of provenance annotations and disregards
values. In simple cases (such as this one), we find that Q* = Q
which evaluates to the familiar value 52.56. Additionally, Q]1
writes a log of its value-based decisions (e.g., the outcome
of WHERE predicates). This is essential input for the value—
agnostic Q% which cannot perform these decisions on its own.
The most prominent example of such decisions is the filtering
of rows according to predicates. Such a decision (e.g., keep the
current row or drop it) is recorded by Q' and made available
to Q%. When Q2 is evaluated, it does not perform predicate
evaluation and instead specializes on provenance derivation
only. For more details, we refer to [4, Sec. 3.1].

= 52.56
Q]l.
’ 0.015 * SUM(r.gty)
Q: 0.015 * SUM (r.qgty)
o U U(r.qty)

Fig. 3: Example rewrite Q=" (Q, Q?). In Q?, the value
semantics is retained. In >, set semantics is employed.
Black terms are according to the original rewrite from [4]
and other terms derive How—provenance.

Parse and Annotate Run Pretty Printer

Q > Qant l
1@+ Visualizer
Q. Q%) |

Evaluate

Fig. 4: Overview of the provenance derivation. Query @
is to be analyzed. The rewrite =" operates on an AST
structure. The visualizer renders the annotated query, the
involved tables, and the provenance markers.

Figure 3 illustrates the set of provenance annotations being
derived. Semantically, the data provenance of SQL operator *
is the combined data provenance of its operands. Rewrites
in black are associated with = while blue rewrites are
specific to How-provenance and =*. The original rewrite
of 0.015 produces the empty provenance annotation &
because a literal has no relationship with the input database
(as illustrated in Figure 1). However, the How—provenance is
non—empty. The singleton set is produced where
the identifier represents the provenance relationship
with the literal SQL subexpression 0.015 on line 8 of the
query in Figure 2(b). That item of data provenance will be
propagated (together with Where— and Why—provenance) and
eventually arrives in the result table of QZ. Once it does, the
visualization will set an according provenance marker 0.015
in the query text. Regarding SUM, an analogous provenance
identifier is employed.

From the viewpoint of How—provenance, literals, and ag-
gregates are treated uniformly. Each expression generates a
singleton set carrying a unique provenance identifier P. At run
time of 2, the combined set { , ,...} is derived.
In general, these sets contain identifiers for Where— and Why—
provenance as well.

A. Software Components

An overview of the demo’s toolchain is presented in Fig-
ure 4. A SQL query @ (provided by the user via the GUI)

ANNOTATED QUERY (& recipes — output

C(seLecT "RTEQ"."ingredient" AS P
FROM recipes AS "RTE®"("rid", "ingredient",
"quantity")
WHERE (wRTEQ"."rid") = (1)
) AS "subqueryl"("ingredient", "quantity")
UNION ALL
C(SELECT ryeast' AS ,

"RTEQ"."quantity" AS

(1.5e-2) * (sum(#RTE2"."quantity")) AS

FROM recipes AS "RTE2"("rid", "ingredient",
"quantity")

WHERE (/(RTE2MMridh) = (@)

OR
"RTE2"."ingredient")

ANY (ARRAY [([frye flour®) , 'wheat flour'] :: text[])

) AS "subquery3"("ingredient", "quantity")

%) recipes ® output

= + - = + -
) rid |2 ingredient quantity ingredient | quantity
) o wheat flour @ spices 4

o water @ water 500

o spices o wheat flour 500

0 (5]

4 water 520

4 spices

4
o@® @

Fig. 5: Screenshot of the interactive demo GUI running in a web browser. More predefined examples are available.

is supposed to be analyzed for its How—, Where—, and Why—
provenance. First, the query is parsed into an AST structure
and the query expressions are annotated with unique annota-
tions for How—provenance (denoted Q3"t). A pretty printer
brings the query back on screen in human-readable form.
Invisible for the user, each subexpression is tagged with its
provenance identifier (cf. above). The main rewrite
function = produces the query pair (Q, Q?) (as discussed
in Section II). Through evaluation of both queries, data
provenance is derived. The visualizer combines provenance
result and query, i.e. shows the How—provenance.

The DBMS backend for this demo is an unmodified Post-
greSQL server in version 12. The DBMS is used for query
parsing and evaluation of both @ and Q*. The provenance
sets in Q2 are implemented in terms of PostgreSQL’s arrays in
which we eliminate duplicates explicitly. Our implementation
of the rewrite function =" is written in Haskell and oper-
ates solely on AST structures. The browser—based visualizer
queries a tiny local HTTP server. This server bridges between
web page, DBMS, and query rewriting.

IV. DEMO SETUP AND VISITOR EXPERIENCE

Figure 5 shows is an authentic screenshot of the GUI and
the example query from Section II. On the left, the query and
its How—provenance are presented. In comparison to Figure 2,
the actual demo supports the rendering of deeply nested
expressions with their provenance annotations. The innermost
expressions are rendered in a blue background color. Due to
the pretty printing step (cf. Figure 4), the syntax is more
verbose and the IN expression has been desugared using ANY.

The entire provenance result is cached, i.e. the GUI is
highly responsive. Any output value can be clicked and the
according provenance markers show up in an instant. Further,
the perspective can be changed at will: it is possible to select
input values and query expressions. The dependent output
values will be highlighted in response.

If the conference will be held virtually, we can offer ad—
hoc meetings to interested participants. Our GUI integrates a
list of additional example queries. The participant may ask for
a certain example to be openend. Then, its data provenance
can be inspected and we can walk the participant through the
debugging process. Existing queries can be changed and new
queries can be entered if desired. All query rewrite steps are
carried out automatically and will not take longer than a few
seconds for typical examples.

The annotated and rewritten queries (QY, Q%) are au-
tomatically stored as plain text files and can be presented
to interested participants. We can run the main provenance
analysis (i.e., Qz) in an open DBMS shell and show the raw,
set-based provenance results. The compositional provenance
rewrite rules are implemented in Haskell and the source code
can be shown and discussed.

ACKNOWLEDGMENT

Martin Lutz and Denis Hirn have contributed to the software
components of this demo.

REFERENCES

[1] P. Buneman, S. Khanna, and W.-C. Tan, “Why and Where: A Charac-
terization of Data Provenance,” in Proc. ICDT, London, UK, 2001, pp.
316-330.

[2] J. Cheney, L. Chiticariu, and W.-C. Tan, “Provenance in Databases: Why,
How, and Where,” Foundations and Trends in Databases, vol. 1, no. 4,
2007.

[3] T. Green, G. Karvounarakis, and V. Tannen, “Provenance Semirings,” in
Proc. PODS, Beijing, China, 2007, pp. 31-40.

[4] T. Miiller, B. Dietrich, and T. Grust, “You Say *What’, I Hear *Where’
and "Why’? (Mis-)Interpreting SQL to Derive Fine-Grained Provenance,”
in Proc. VLDB, Rio de Janeiro, Brazil, 2018, pp. 1536—1549.

[S] D. O’Grady, T. Miiller, and T. Grust, “How “"How” Explains What "What”
Computes — How-Provenance for SQL and Query Compilers,” in Proc.
TaPP, London, UK, 2018.

[6] P. Senellart, L. Jachiet, S. Maniu, and Y. Ramusat, “ProvSQL: Provenance
and Probability Management in PostgreSQL,” in Proc. VLDB, Rio de
Janeiro, Brazil, 2018, pp. 2034-2037.

[71 M. Weiser, “Program Slicing,” IEEE Transactions on Software Engineer-
ing, vol. SE-10, no. 4, pp. 352-357, 1984.

