
Data Provenance for Recursive SQLQueries
Benjamin Dietrich Tobias Müller Torsten Grust

University of Tübingen

Tübingen, Germany

[b.dietrich,to.mueller,torsten.grust]@uni-tuebingen.de

ABSTRACT
The adoption of recursion in SQL—framed either in terms of recur-

sive common table expressions (CTEs) or recursive user-defined

functions (UDFs)—marked a jump in the expressivity of the query

language. The resulting queries can perform complex computation

close to database-resident data but, at the same time, often prove

challenging to understand and debug. We build on earlier work

on the derivation of where- and why-provenance for complex (yet

non-recursive) SQL queries to also embrace recursive SQL CTEs and

UDFs. Fine-grained data provenance for recursive SQL is derived

through language-level query rewriting and a two-phase evaluation

strategy that does not invade the underlying RDBMS.

CCS CONCEPTS
• Information systems→ Structured Query Language; • Soft-
ware and its engineering → Recursion; • Theory of compu-
tation → Data provenance.

KEYWORDS
SQL, recursion, CTEs, UDFs, data provenance, query debugging

ACM Reference Format:
Benjamin Dietrich, Tobias Müller, and Torsten Grust. 2022. Data Provenance

for Recursive SQL Queries. In 14th International Theory and Practice of
Provenance (TaPP’22), June 17, 2022, Philadelphia, PA, USA. ACM, New York,

NY, USA, 8 pages. https://doi.org/10.1145/3530800.3534536

1 INTRODUCTION
“Rekursiv gehtmeistens schief ” (loosely translated: recursion typically
goes awry) is a rhyming slogan widely known in German software

development communities. While witty, this catchline expresses

that it can indeed be challenging to fully wrap one’s head around

the progress of a recursive computation. What are the intermediate

states? Will this base case be reached eventually?

Since the advent of recursion in SQL—either in the form of SQL:1999’s

recursive common table expressions (CTEs, WITH RECURSIVE) [7]
or self-referential user-defined functions (recursive UDFs, as sup-

ported by PostgreSQL, for example [14])—these challenges also

surface in the context of relational query languages:

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

TaPP’22, June 17, 2022, Philadelphia, PA, USA
© 2022 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ACM ISBN 978-1-4503-9349-2/22/06. . . $15.00

https://doi.org/10.1145/3530800.3534536

1. The semantics of a recursive CTE (see Figure 1) is defined in

terms of a fixpoint computation in which a query 𝑞⟲ (𝑇) is it-
eratively evaluated over its most recent result table 𝑇 until no

(previously unseen) rows are produced. The intermediate results

of 𝑞⟲ are appended to form the overall result of the CTE. To

fully understand query progress, developers would need to keep

track of the states of the working, intermediate, and union tables
that implement this iteration [8].

2. A recursive SQL UDF may invoke itself, possibly at multiple call

sites (non-linear recursion) deeply embedded into a SQL query

that post-processes the results once the recursive calls return

(non-tail recursion). Here, keeping track requires an understand-

ing of the UDF call stack and its frames that hold the UDF’s

query context and current arguments, for example.

WITH RECURSIVE 𝑇(· · ·) AS (
𝑞0 -- evaluated once
UNION ALL

𝑞⟲ (𝑇) -- iterated until ∅
)
TABLE 𝑇;

Figure 1: Recursive CTE.

Should such queries indeed go awry,

the developer’s debugging toolbox

is rather empty. Recursive CTEs are

not easily instrumented without de-

structive effects on their monotonic-

ity or termination properties. Like-

wise, a recursive UDF would need to

be rewritten to return information about intermediate states along

with the actual function result. Such manual query instrumentation

may affect or hide existing bugs and introduce entirely new ones.

Data provenance for recursive SQL queries. We propose to

bank on data provenance as one tool that can provide insight into

recursive query computation. Here, we focus on where- and why-
provenance [3, 12] derived at the level of individual table cells. We

aim to derive

• where-provenance which identifies those table cells that were

copied or transformed to compute the next intermediate (or final)

state of a recursive query, and

• why-provenance to locate those cells that were inspected to
decide whether a particular value is part of the output at all.

In tandem, both provenance kinds paint a complete picture of which

table cells guided the recursive computation or were sourced to

construct the overall result. Below, we study recursive CTEs as well

as UDFs to demonstrate how such provenance information may

help to explain unexpected results or visualize relevant input cells.

The derivation of provenance for (very) complex queries has proven

to be notoriously difficult [3]. Yet, to render provenance useful

and practical for SQL query debugging, the derivation strategy is

required to embrace constructs that constitute a potential hurdle

for query authoring and understanding. This certainly includes

constructs like subqueries (including correlation), grouping and

aggregation, window functions, complex types (like row values

or arrays), or scalar and table-valued built-in and user-defined

functions.

https://doi.org/10.1145/3530800.3534536
https://doi.org/10.1145/3530800.3534536

TaPP’22, June 17, 2022, Philadelphia, PA, USA Benjamin Dietrich Tobias Müller Torsten Grust

The present work continues our earlier effort to derive where-
and why-provenance for a SQL dialect that admits all language con-

structs listed above. To this we add the ability to process recursive

CTEs and recursive SQL UDFs. To analyze SQL query 𝑞, we continue

to pursue a two-phase evaluation process in which

• Phase 1 evaluates a variant query 𝑞1 that processes the original

input tables while it also writes a protocol about the outcome of

predicate evaluation, before

• Phase 2 reads the interim protocol to evaluate variant 𝑞2 which

entirely operates over sets of dependencies between table cells.

Where- and why-provenance for 𝑞 may then be read off the re-

sulting dependency sets.

The variant queries𝑞1 and𝑞2 are derived from𝑞 through systematic

rewriting. Like 𝑞, both variants are regular SQL queries that can be

evaluated on top of off-the-shelf RDBMSs. No kernel-level changes

are called for.

We recapitulate the two phases when we turn to the sample re-

cursive queries below (Sections 2 and 3). For a full review of the

approach we refer to [12]. We have laid out the present paper as

a “companion” to this earlier work—in particular, here we pro-

vide an addendum of inference rules for SQL query rewriting that

form a coherent whole with the rules found in the companion pa-

per [12]. Two-stage evaluation and the processing of—potentially

large—dependency sets has an impact on query evaluation time.

We quantify the slowdown in Section 3.2 but will also show how

Phase 2 can peruse the mentioned interim protocol to actually per-

form significantly better than regular query evaluation. A review

of related efforts is found in Section 4.

2 UNRAVELING RECURSIVE CTEs
When a SQL query yields unexpected results, provenance helps to

zoom in on the relevant input data items and (potentially buggy)

query portions. We have made this observation for non-recursive

queries in [12]—here we extend it to recursive CTEs.

Let us focus on CTE bom of Figure 2 which recursively com-

putes the bill of materials (or: parts explosion) of a humanoid robot.

(We have adapted this query from the PostgreSQL manual [14]—

the manual contains just the bug we discuss here.) Robot parts,

along with their sub-parts and required quantities, are held in in-

put table parts (see Figure 3(a)). The CTE yields the output table

of Figure 3(a) which lists the quantities (column qty) of all parts
(column sub_part) required to assemble the robot. The numbers

of required fingers and feet (5 and 1, respectively) certainly look

suspicious: we had expected 10 and 2. To understand how CTE bom
arrived at these questionable results, we explore the provenance of

output value 5 (55 in Figure 3(a)).

The why-provenance of 55 reveals all input table cells that have

been inspected to decide whether 55 occurs in the output table.

We find the highlighted input cells armarm , bodybody , and humanoidhumanoid
which the CTE has used to recursively descend into the part hierar-

chy encoded by table parts (see predicate p.part = b.sub_part
in Line 9 of Figure 2). The chain humanoid–body–arm describes

the expected path from root part humanoid to sub-part finger: the
recursive traversal expressed by CTE bom appears to be in order.

The where-provenance of output 55 , however, is shown to only

refer to the quantity 55 of fingers on an arm. This is unexpected:

1 WITH RECURSIVE bom(part, sub_part, qty) AS (
2 SELECT p.part, p.sub_part, p.qty
3 FROM parts AS p
4 WHERE p.part = 'humanoid'
5 UNION ALL
6 SELECT p.part, p.sub_part, p.qty -- BUG (should read p.qty * b.qty)
7 FROM bom AS b,
8 parts AS p
9 WHERE p.part = b.sub_part
10)
11 SELECT b.sub_part, b.qty
12 FROM bom AS b

Figure 2: Recursive CTE to find the bill of materials for a
humanoid robot. The computation of qty in Line 6 is buggy.

parts
part sub_part qty

humanoidhumanoid headhead 11
humanoidhumanoid bodybody 11
bodybody armarm 22
bodybody legleg 22
armarm fingerfinger 55
legleg footfoot 11
chassischassis wheelwheel 44

output (buggy)

sub_part qty
head 11
body 11
arm 22
leg 22
finger 55
foot 11

(a) Provenance derivation for the suspicious output value
55 yields where-provenance and why-provenance .

parts
part sub_part qty

humanoidhumanoid headhead 11
humanoidhumanoid bodybody 11
bodybody armarm 22
bodybody legleg 22
armarm fingerfinger 55
legleg footfoot 11
chassischassis wheelwheel 44

output
sub_part qty
head 11
body 11
arm 22
leg 22
finger 1010
foot 22

(b) Provenance after the bug in CTE bom has been fixed.

Figure 3: Input and output tables for CTE bom of Figure 2.

no other value in column qty has been accessed to compute the

output 55 . Indeed, the query disregards parent part quantities

while it walks down the hierarchy (and thus misses the fact that a

body has two arms, for example). To correctly compute the quantity

of a part p, we need to factor in the quantity of its parent part b.
Once we fix the quantity calculation to read p.qty * b.qty in

Line 6, CTE bom yields the expected finger count 1010 in output
table of Figure 3(b). We also find the expected where-provenance
now: during hierarchy traversal, we multiply quantities 11 * 22
* 55 to arrive at 1010 fingers.

2.1 Values Here, Dependencies There
This work pursues an approach to provenance derivation [12] that

strictly separates

1. the realm of regular values (e.g., the string or integer data found

in table cells) from

2. the realm of dependency sets which describe the table cells that

influenced the computation of those values.

This strict separation applies to both, tables and queries, used during

provenance derivation. We turn to the tables first.

Tables and their mirror images. Given a table 𝑇 , provenance

derivation distinguishes between its

Data Provenance for Recursive SQLQueries TaPP’22, June 17, 2022, Philadelphia, PA, USA

• variant 𝑇1 which is an (almost exact) copy of 𝑇 in which table

cells hold regular values of the known SQL types, and

• its mirror image 𝑇2 whose table cells hold dependencies of type

P (the type of sets of cell identifiers).
Throughout, we maintain a one-to-one correspondence between

both: any value cell in 𝑇1 is associated with its dedicated depen-

dency set in 𝑇2. In consequence, 𝑇2 has the same cardinality and

columns as 𝑇1. Since 𝑇1, 𝑇2 are relational tables (and thus are

unordered), both carry a column 𝜚 of row identifiers which tie

corresponding rows together.

Figure 4 shows the input and output tables of the bom query

of Figure 2, both in their value and their dependency set variants

(disregard the overlaid arrows for now). In the input tables, you

will find that any cell value in parts1 is associated with a singleton
dependency set in parts2. To illustrate, value 5 of type int is

associated with set {𝑝15} of type P, both in row 𝜚5 and column qty
of their tables: cell identifier 𝑝15 represents the cell of value 5 and
there is no dependency to any other cell.

In the (non-singleton, in general) dependency sets of output

table output2, provenance derivation has accumulated all cell iden-

tifiers that influenced the computation of the associated value cell

in output1. Row and cell identifiers suffice to trace the data prove-

nance of any output table cell. For output value 10 in table output1,
for example, we find the following (following the arrows overlaid

on Figure 4):

1. The computation of 10 (row 𝜚35, column qty) depended on the

8 input cells with identifiers {𝑝6, 𝑝9, ... , 𝑝13}, see table output2.
(The grey 𝑝13 indicates why-provenance—we come back to the

distinction between provenance kinds in Section 2.2.)

2. Among these, 𝑝13 designates row 𝜚5, column part of input ta-
ble parts2.

3. The value associated with cell 𝑝13 is string arm in row 𝜚5, col-

umn part of table parts1.
(If we trace all 8 input cells influencing output 10, we obtain the

8 green highlights in Figure 3(b).)

We assume that input table 𝑇1 is provided. Its column 𝜚 of row

identifiers may either hold externalized RDBMS-internal row IDs or

can be generated explicitly through row numbering. Table 𝑇2 may

be derived from 𝑇1 in terms of a SQL view that invents singleton

sets of arbitrary, yet unique cell identifiers (i.e., the {𝑝𝑖 } discussed
above). Several options exist to represent these dependency sets in

a SQL system: in [12], we discuss arrays as well as variable-length

bit sets as two possible implementations of type P.

Queries and their mirror images. The strict separation of the

value and dependency set realms is reflected by queries as well.

Given a SQL query 𝑞, we systematically rewrite it into a query pair

𝑞 �⇒ ⟨𝑞1, 𝑞2⟩ that we evaluate in two phases (see Figure 5):

• In Phase 1, SQL query 𝑞1 consumes tables𝑇1, . . . of cell values of

the regular SQL types and emits table output1. Unlike 𝑞, 𝑞1 addi-

tionally writes a protocol about value-based decisions performed

during query evaluation.

• In Phase 2, SQL query 𝑞2 entirely operates over tables of depen-

dency sets𝑇2, . . . , i.e., all table cells processed by 𝑞2 are of type P.
While it executes, query 𝑞2 consults the interim protocol and

finally emits table output2.

While the paired queries operate in separate realms, both (1) read

and emit tables of identical shape (cardinality and column width)

and (2) adhere to a common syntactic structure: the rewrite �⇒
maps subexpressions 𝑒1 of 𝑞1 to their mirror image 𝑒2 of 𝑞2 in

a compositional fashion. In a nutshell, both expressions relate as

follows:

• Assume 𝑒1 ≡ 𝑥 ⊛ 𝑦 (where ⊛ denotes an arbitrary binary SQL

operator). If 𝑒1 yields value 𝑧, the dependencies of 𝑧 comprise

the dependencies of both argument values 𝑥 and 𝑦.

• The mirror image of 𝑒1 will be 𝑒2 ≡ 𝑥 ∪ 𝑦 in which 𝑥 and 𝑦 are

the dependency sets of the values 𝑥 and 𝑦. 𝑒2 thus reads and

emits sets of type P.

Interim protocols. If 𝑞1 contains a clause WHERE 𝑒1, the Boolean
value of 𝑒1 is used to perform value-based decisions during query

evaluation in Phase 1. Note that 𝑞2 will not be able to simply

use WHERE 𝑒2 to reenact these decisions in Phase 2, since 𝑒2 is

of type P. Instead, we instrument query 𝑞1 to invoke function

write□ (ℓ , 𝑣1 .𝜚, ... , 𝑣𝑛 .𝜚) to record the fact that 𝑒1 evaluated to true.
In this call,

• ℓ identifies the WHERE clause’s location in the SQL text (𝑞1 may

contain multiple such clauses), and

• the 𝑣1, ... , 𝑣𝑛 denote the SQL row variables that occur free in 𝑒1

(the Boolean value of 𝑒1 depends on the rows bound to these

variables).

Function write□ then (1) returns a unique row identifier 𝜚 repre-

senting the row that passed predicate 𝑒1 under the current bindings

of the 𝑣𝑖 , and (2) saves (ℓ , 𝑣1 .𝜚, ... , 𝑣𝑛 .𝜚, 𝜚) to a persistent protocol

to record this value-based decision.

Phase 2 can reenact just this behavior through the invocation

of read□ (ℓ , 𝑣1 .𝜚, ... , 𝑣𝑛 .𝜚). read□ returns 𝜚 if (ℓ , 𝑣1 .𝜚, ... , 𝑣𝑛 .𝜚, 𝜚) is
found in the protocol but yields ∅ (represented as the empty table)

otherwise. We have thus defined �⇒ to replace predicate evaluation

in 𝑞1 with corresponding read□ invocations in 𝑞2 (peek ahead at

Lines 2 and 5 in Figures 7(a) and 7(b) to see how this plays out for

the bom query). Analogously, the interim protocol can be used to

communicate the formation of groups or the elimination of rows

due to DISTINCT from Phase 1 to Phase 2.

Again, multiple implementation options exist to realize the proto-

col and the side effects performed by read□ andwrite□. In [12], both
functions were realized as SQL UDFs that write to and read from a

common table. We will report on protocol sizes in Section 3.2.

The companion paper [12] defined syntax-directed rewrites 𝑞 �⇒
⟨𝑞1, 𝑞2⟩ for a broad range of SQL constructs. Below, we add rewrit-

ing rules for recursive CTEs (and recursive UDFs in Section 3).

2.2 Recursive Provenance Derivation
In tandem, the rewrite Rules With and UnionAll of Figure 6 ex-

tend the definition of �⇒ to embrace the syntactic shape of recursive

CTEs (see Figure 1). Both rules follow the principle of composition-

ality: the rewrite of a complex query construct is assembled from

the rewrites of its (simpler) constituent queries—see the rewrites

𝑞𝑖 �⇒ ⟨𝑞1
𝑖
, 𝑞2

𝑖
⟩ (𝑖 = 0, ... , 𝑛) in Rule With as well as 𝑞0 �⇒ ⟨𝑞1

0
, 𝑞2

0
⟩

and 𝑞⟲ �⇒ ⟨𝑞1⟲, 𝑞2⟲⟩ in Rule UnionAll. Rule With extends the

CTE’s column list by column 𝜚 to preserve the row identifiers that

tie values and their associated dependency sets together (recall Sec-

tion 2.1). Other than that, both rules preserve the syntactic shape

TaPP’22, June 17, 2022, Philadelphia, PA, USA Benjamin Dietrich Tobias Müller Torsten Grust

parts1

part sub_part qty 𝜚
humanoid head 1 𝜚1
humanoid body 1 𝜚2
body arm 2 𝜚3
body leg 2 𝜚4
arm finger 5 𝜚5
leg foot 1 𝜚6
chassis wheel 4 𝜚7

parts2

part sub_part qty 𝜚
{𝑝1 } {𝑝2 } {𝑝3 } 𝜚1
{𝑝4 } {𝑝5 } {𝑝6 } 𝜚2
{𝑝7 } {𝑝8 } {𝑝9 } 𝜚3
{𝑝10 } {𝑝11 } {𝑝12 } 𝜚4
{𝑝13 } {𝑝14 } {𝑝15 } 𝜚5
{𝑝16 } {𝑝17 } {𝑝18 } 𝜚6
{𝑝19 } {𝑝20 } {𝑝21 } 𝜚7

(a) Input tables (original and dependency set mirror image).

output1

sub_part qty 𝜚
head 1 𝜚31
body 1 𝜚32
arm 2 𝜚33
leg 2 𝜚34
finger 10 𝜚35
foot 2 𝜚36

output2

sub_part qty 𝜚
{𝑝2, 𝑝1 } {𝑝3, 𝑝1 } 𝜚31
{𝑝5, 𝑝4 } {𝑝6, 𝑝4 } 𝜚32
{𝑝8, 𝑝4, 𝑝5, 𝑝7 } {𝑝6, 𝑝9, 𝑝4, 𝑝5, 𝑝7 } 𝜚33
{𝑝11, 𝑝4, 𝑝5, 𝑝10 } {𝑝6, 𝑝12, 𝑝4, 𝑝5, 𝑝10 } 𝜚34
{𝑝14, 𝑝4, 𝑝5, 𝑝7, 𝑝8, 𝑝13 } {𝑝6, 𝑝9, 𝑝15, 𝑝4, 𝑝5, 𝑝7, 𝑝8, 𝑝13 } 𝜚35
{𝑝17, 𝑝4, 𝑝5, 𝑝10, 𝑝11, 𝑝16 } {𝑝6, 𝑝12, 𝑝18, 𝑝4, 𝑝5, 𝑝10, 𝑝11, 𝑝16 } 𝜚36

(b) Output tables generated by provenance derivation.

Figure 4: Input and output tables of the bom query of Figure 2 with row identifiers 𝜚 . Arrows trace output value 10 back to its
dependency arm in input table parts1. In output2, 𝑝𝑖 denotes where-provenance while 𝑝 𝑗 denotes why-provenance.

𝑞

�⇒

𝑞1 𝑞2
interim protocol Phases 1 and 2

evaluated by the RDBMS

Figure 5: Two-phase provenance derivation.

of the original query, a salient feature of the two-phase approach

that aids the efficient evaluation of the rewritten queries [12].

Given these extensions, �⇒ rewrites the bom CTE of Figure 2 into the

CTE pair ⟨bom1, bom2⟩ depicted in Figure 7. Where these generated

CTEs exhibit relevant changes from the original bom, we have added
blue highlights.

Phase1, Figure 7(a). In CTE bom1, Line 2 callswriteFILTER (1 , p.𝜚)
to record the fact that row p has passed the predicate p.part =
’humanoid’. Likewise, writeJOIN (2 , b.𝜚, p.𝜚) in Line 8 creates a

protocol entry if the rows bound to row variables b and p joined
under condition p.part = b.sub_part.

When query bom1 is executed on input table parts1 of Fig-

ure 4(a), the recursive CTE performs the initial query𝑞0 in Lines 2–5

once before it iterates query 𝑞⟲ in Lines 8–11 twice (recall Figure 1).

Figure 8 shows how the intermediate results of these queries are

assembled to form output1. Side effects on the protocol are shown

under heading protocol writes (read Figure 8 top-down). The

protocol reflects the characteristic iterative nature of a SQL CTE:

• In the first iteration of 𝑞⟲, rows 𝜚3 and 𝜚4 are joined with row 𝜚32
which has been generated by the initial query 𝑞0 (establishing

that arm and leg are parts of the robot body),
• in the second iteration of 𝑞⟲, rows 𝜚5 and 𝜚6 join with rows 𝜚33
and 𝜚34, respectively, which have just been generated by the first

iteration (finger is part of arm, foot is part of leg).
The protocol contents thus contain a complete history of the iterated

joins performed by the CTE.

Phase 2, Figure 7(b). CTE bom2 operates over dependency sets

and thus trades value-based expressions like p.qty * b.qty for

p.qty ∪ b.qty (see Line 9 in bom1 and bom2) to compute the

where-provenance of the arithmetic operation. A predicate like

p.part = b.sub_part decides whether the current bindings for
row variables p and b may contribute to the query result. We thus

1. derive the predicate’s dependency set by p.part ∪ b.sub_part,
and

2. use function Y(·) to mark all cell identifiers in that set as why-
provenance, see Lines 6 and 12 in bom2 (in table output2 of Fig-

ure 4(b) we have colored these cell identifiers in grey: 𝑝 𝑗). Since

why-provenance affects all columns of a row that passed a pred-

icate, we bind the resulting dependency set to wh.y once and

then refer to that alias as needed to avoid recomputation effort.

Since we exclusively operate over dependency sets, function call

readFILTER (1 , p.𝜚) in Line 5 assumes the role of predicate p.part
= ’humanoid’. Likewise, readJOIN (2 , b.𝜚, p.𝜚) reenacts the value-
based predicate p.part = b.sub_part. Both functions return the

empty table if the corresponding protocol entries are missing. In

that case, the current bindings for row variables p and b will not
contribute to the query result (just like in Phase 1). If a protocol

entry is found, the functions return row identifier log.𝜚 of the

row that passed the predicate (e.g., readJOIN (2 , 𝜚33, 𝜚5) yields 𝜚35,
see the last but one protocol row in Figure 8). In effect, bom2 will

show the exact filtering/join behavior like its mirror CTE bom1. In
particular, the queries will perform the exact same number of CTE

iterations in both phases.

WITH RECURSIVE ... (... UNION DISTINCT ...). This approach to prove-
nance derivation can be adapted to cover recursive CTEs with set

semantics in which iteration ends when no new result rows are pro-

duced by 𝑞⟲. Since the generation of unique row identifiers by the

write□ functions can affect the detection of row duplicates, this calls

for an appropriate implementation of equality on row identifiers

(column 𝜚). We do not elaborate on the details here, but examples

of such CTEs are found in the GitHub repository accompanying

this paper (see Section 5).

Data Provenance for Recursive SQLQueries TaPP’22, June 17, 2022, Philadelphia, PA, USA

𝑞𝑖 �⇒ ⟨𝑞1𝑖 , 𝑞2𝑖 ⟩
����
𝑖=0...𝑛

𝑖1 = WITH RECURSIVE 𝑡1
1
(𝜚,𝑐11, ... ,𝑐1𝑘1) AS (𝑞1

1
), ... ,

𝑡1𝑛(𝜚,𝑐𝑛1, ... ,𝑐𝑛𝑘𝑛) AS (𝑞1𝑛)

𝑞1
0

𝑖2 = WITH RECURSIVE 𝑡2
1
(𝜚,𝑐11, ... ,𝑐1𝑘1) AS (𝑞2

1
), ... ,

𝑡2𝑛(𝜚,𝑐𝑛1, ... ,𝑐𝑛𝑘𝑛) AS (𝑞2𝑛)

𝑞2
0

WITH RECURSIVE 𝑡1(𝑐11, ... ,𝑐1𝑘1) AS (𝑞1), ... ,
𝑡𝑛(𝑐𝑛1, ... ,𝑐𝑛𝑘𝑛) AS (𝑞𝑛)
𝑞0

�⇒ ⟨𝑖1, 𝑖2 ⟩

(With)

𝑞0 �⇒ ⟨𝑞1
0
, 𝑞2

0
⟩ 𝑞⟲ �⇒ ⟨𝑞1⟲, 𝑞

2

⟲ ⟩
𝑞0 UNION ALL 𝑞⟲ �⇒ ⟨𝑞1

0
UNION ALL 𝑞1⟲, 𝑞

2

0
UNION ALL 𝑞2⟲ ⟩

(UnionAll)

Figure 6: Rewrite rules 𝑞 �⇒ ⟨𝑞1, 𝑞2⟩ for recursive SQL CTEs. Combine with the rules of [12].

1 WITH RECURSIVE bom1(𝜚, part, sub_part, qty) AS (
2 SELECT writeFILTER(1 , p.𝜚) AS 𝜚,
3 p.part, p.sub_part, p.qty
4 FROM parts1 AS p
5 WHERE p.part = 'humanoid'
6

7 UNION ALL
8 SELECT writeJOIN(2 , b.𝜚, p.𝜚) AS 𝜚,
9 p.part, p.sub_part, p.qty * b.qty
10 FROM bom1 AS b, parts1 AS p
11 WHERE p.part = b.sub_part
12

13)
14 SELECT b.𝜚, b.sub_part, b.qty
15 FROM bom1 AS b

(a) Phase 1 (CTE bom1).

1 WITH RECURSIVE bom2(𝜚, part, sub_part, qty) AS (
2 SELECT log.𝜚,
3 p.part ∪ wh.y, p.sub_part ∪ wh.y, p.qty ∪ wh.y
4 FROM parts2 AS p,
5 readFILTER(1 , p.𝜚) AS log(𝜚),
6 Y(p.part) AS wh(y)
7 UNION ALL
8 SELECT log.𝜚, p.part ∪ wh.y,
9 p.sub_part ∪ wh.y, p.qty ∪ b.qty ∪ wh.y
10 FROM bom2 AS b, parts2 AS p,
11 readJOIN(2 , b.𝜚, p.𝜚) log(𝜚),
12 Y(p.part ∪ b.sub_part) AS wh(y)
13)
14 SELECT b.𝜚, b.sub_part, b.qty
15 FROM bom2 AS p

(b) Phase 2 (CTE bom2).

Figure 7: Rewriting CTE bom (Figure 2) for provenance derivation yields a pair of CTEs.

output1

part sub_part qty 𝜚 protocol writes
humanoid head 1 𝜚31 writeFILTER(1 , 𝜚1) = 𝜚31
humanoid body 1 𝜚32 writeFILTER(1 , 𝜚2) = 𝜚32
body arm 2 𝜚33 writeJOIN(2 , 𝜚32, 𝜚3) = 𝜚33
body leg 2 𝜚34 writeJOIN(2 , 𝜚32, 𝜚4) = 𝜚34
arm finger 10 𝜚35 writeJOIN(2 , 𝜚33, 𝜚5) = 𝜚35
leg foot 2 𝜚36 writeJOIN(2 , 𝜚34, 𝜚6) = 𝜚36

𝑞0

𝑞⟲
iteration 1

𝑞⟲
iteration 2

Figure 8: Result rows and protocol entries generated during
the evaluation of bom1. Result and protocol grow top-down.

3 TRACING RECURSIVE SQL UDFS
CTEs are but one option to express recursive computation right

inside the RDBMS (and thus close to the data). In what follows, we

focus on recursive user-defined functions which provide an—often

concise and readable, even elegant—alternative to CTEs. In a recur-

sive UDF 𝑓 , recursion is directly expressed through self-invocation

of 𝑓 , much like in a functional programming language. While re-

cursive CTEs underly syntactic monotonicity and linearity restric-

tions [8], no such constraints apply to recursive UDFs. A number of

RDBMSs, including PostgreSQL, Oracle, and Microsoft SQL Server,

support recursive UDFs off-the-shelf. Provenance derivation helps

to untangle, debug, or visualize the potentially complex recursive

computation that such UDFs can perform.

Function dtw of Figure 9 follows the recursive UDF style. dtw uses

three-fold recursion (see the recursive calls in Lines 8–10) to com-

pute the Dynamic Time Warping (short: DTW) score of two time

series 𝑋 = (𝑥𝑖) and 𝑌 = (𝑦 𝑗) [2]. DTW has the ability to locally

stretch and compress the series to minimize the distance between

both. Thewarp parameter w of dtw determines how far such stretch-

ing may go: 𝑥𝑖 may be matched with any 𝑦 𝑗 such that |𝑖 − 𝑗 | ⩽ w.

Applications of DTW abound and include speech recognition or

feature comparison in machine-learning setups.

As input, dtw assumes a tabular encoding distances(i,j,𝛿) of
the distance matrix of both time series: a row (𝑖, 𝑗, 𝛿) indicates that
𝛿 = |𝑥𝑖 − 𝑦 𝑗 |. Figure 10 shows the distances tables and its matrix

representation for two sample time series of length 6 depicted

in Figure 10(c). A UDF call dtw(6,6,w=1) for these time series

yields a distance score of 1.0.
If we derive where- and why-provenance for result value 1.0

to understand how UDF dtw arrived at this score, we find the de-

pendencies marked and in Figure 10. We find that DTW has

inspected all entries in distances that are close to the matrix’ main

diagonal, i.e., if their indices satisfy |𝑖 − 𝑗 | ⩽ w (why-provenance
along the diagonal). Inside this window around the diagonal,

DTW has added the minimal distances to find the overall score: in-

deed, 00 + ··· + 11 + 00 + 00 yields 1.0 (where-provenance). We

also learn that a warp parameter of w=2 would have widened the

1 CREATE FUNCTION dtw(i int, j int, w int) RETURNS float AS $$
2 SELECT CASE
3 WHEN dtw.i=0 AND dtw.j=0 THEN 0.0
4 WHEN dtw.i=0 OR dtw.j=0 THEN ∞
5 WHEN abs(dtw.i-dtw.j)>dtw.w THEN ∞
6 ELSE (SELECT d.𝛿
7 + LEAST(
8 dtw(dtw.i-1, dtw.j-1, dtw.w),
9 dtw(dtw.i-1, dtw.j , dtw.w),
10 dtw(dtw.i , dtw.j-1, dtw.w))
11 FROM distances AS d
12 WHERE (d.i,d.j)=(dtw.i,dtw.j))
13 END
14 $$ LANGUAGE SQL STABLE;

Figure 9: A recursive SQL UDF that implements DTW.

TaPP’22, June 17, 2022, Philadelphia, PA, USA Benjamin Dietrich Tobias Müller Torsten Grust

distances
i j 𝛿

11 11 00

11 22 00

1 3 1··· ··· ···
3 5 0

44 55 11

4 6 0··· ··· ···

(a) Distance table.

©­­­­­­«
ª®®®®®®¬

6 0 0 1 0 00 00

5 1 1 0 11 11 11

4 1 1 00 11 11 1

𝑗 3 1 11 00 11 1 1

2 00 00 11 0 0 0

1 00 00 1 0 0 0

1 2 3 4 5 6

𝑖

(b) Distance matrix 𝛿 (𝑖, 𝑗).

1 2 3 4 5 6 𝑖/𝑗

𝑥𝑖

0

1

𝑋

𝑦 𝑗

0

1

𝑌

(c) Sample time series 𝑋 = (𝑥𝑖) and 𝑌 = (𝑦 𝑗).
Figure 10: Distance table, distance matrix, and visualization of the time series 𝑋 = (𝑥𝑖), 𝑌 = (𝑦 𝑗). Provenance derivation for the
recursive UDF dtw of Figure 9 generates where-provenance and why-provenance that explains the workings of DTW.

𝑒𝑖 �⇒ ⟨𝑒1𝑖 , 𝑒2𝑖 ⟩
����
𝑖=1...𝑛

ℓ B unique call site identifier

{𝑣1, ... , 𝑣𝑚 } B free row variables in 𝑒𝑖 , ... , 𝑒𝑛

𝑖1 B 𝑓 1(writeCALL(ℓ ,𝑣1.𝜚, ... ,𝑣𝑚.𝜚),𝑒1
1
, ... ,𝑒1𝑛)

𝑖2 B 𝑓 2(readCALL(ℓ ,𝑣1.𝜚, ... ,𝑣𝑚.𝜚),𝑒2
1
, ... ,𝑒2𝑛)

𝑓 (𝑒1, ... ,𝑒𝑛) �⇒ ⟨𝑖1, 𝑖2 ⟩
(UDF-Call)

𝑞 �⇒ ⟨𝑞1, 𝑞2 ⟩

𝑖1 B

CREATE FUNCTION
udf1(𝜚 rowID,𝑎1 𝜏1, ... ,𝑎𝑛 𝜏𝑛)
RETURNS 𝜏res AS $$

SELECT 𝑞1

$$ LANGUAGE SQL VOLATILE

𝑖2 B

CREATE FUNCTION
udf2(𝜚 rowID,𝑎1 P, ... ,𝑎𝑛 P)
RETURNS P AS $$

SELECT 𝑞2

$$ LANGUAGE SQL STABLE

CREATE FUNCTION udf(𝑎1 𝜏1, ... ,𝑎𝑛 𝜏𝑛)
RETURNS 𝜏res AS $$

SELECT 𝑞
$$ LANGUAGE SQL STABLE

�⇒ ⟨𝑖1, 𝑖2 ⟩

(UDF-Def)

Figure 11: Rewrite rules 𝑞 �⇒ ⟨𝑞1, 𝑞2⟩ for the definition and invocation of recursive UDFs. Combine with the rules of [12].

1 CREATE FUNCTION dtw1(𝜚 rowID, i int, j int, w int) RETURNS float AS $$
2 SELECT
3 CASE writeCASE(6 , dtw1.𝜚, CASE
4 WHEN dtw1.i=0 AND dtw1.j=0 THEN 1
5 WHEN dtw1.i=0 OR dtw1.j=0 THEN 2
6 WHEN abs(dtw1.i-dtw1.j)>dtw1.w THEN 3
7 ELSE 0 END)
8 WHEN 1 THEN 0.0
9 WHEN 2 THEN '∞'
10 WHEN 3 THEN '∞'
11 WHEN 0 THEN
12 (SELECT t.score FROM (
13 SELECT writeJOIN(5 ,dtw1.𝜚, d.𝜚) AS 𝜚,
14 d.𝛿 + LEAST1(
15 writeCALL(4 , dtw1.𝜚),
16 dtw1(writeCALL(1 , dtw1.𝜚), dtw1.i-1, dtw1.j-1, dtw1.w),
17 dtw1(writeCALL(2 , dtw1.𝜚), dtw1.i-1, dtw1.j , dtw1.w),
18 dtw1(writeCALL(3 , dtw1.𝜚), dtw1.i , dtw1.j-1, dtw1.w)
19) AS score
20 FROM distances1 AS d
21 WHERE (d.i,d.j)=(dtw1.i,dtw1.j)
22) AS t(𝜚, score))
23 END
24 $$ LANGUAGE SQL VOLATILE;

(a) Phase 1 (UDF dtw1).

1 CREATE FUNCTION dtw2(𝜚 rowID, i P, j P, w P) RETURNS P AS $$
2 SELECT
3 CASE readCASE(6 , dtw2.𝜚)
4 WHEN 1 THEN ∅ ∪ Y(dtw2.i ∪ dtw2.j)
5 WHEN 2 THEN ∅ ∪ Y(dtw2.i ∪ dtw2.j)
6 WHEN 3 THEN ∅ ∪ Y(dtw2.i ∪ dtw2.j ∪ dtw2.w)
7 WHEN 0 THEN
8 (SELECT t.score FROM (
9 SELECT log.𝜚 AS 𝜚,
10 d.𝛿 ∪ LEAST2(
11 readCALL(4 , dtw2.𝜚),
12 dtw2(readCALL(1 , dtw2.𝜚),
13 dtw2.i ∪ ∅, dtw2.j ∪ ∅, dtw2.w),
14 dtw2(readCALL(2 , dtw2.𝜚),
15 dtw2.i ∪ ∅, dtw2.j, dtw2.w),
16 dtw2(readCALL(3 , dtw2.𝜚),
17 dtw2.i, dtw2.j ∪ ∅, dtw2.w)
18) ∪ Y(d.i ∪ d.j ∪ dtw2.i ∪ dtw2.j) AS score
19 FROM distances2 AS d,
20 readJOIN(5 , dtw2.𝜚, d.𝜚) AS log(𝜚)
21) AS t(𝜚, score)) ∪ Y(dtw2.i ∪ dtw2.j ∪ dtw2.w)
22 ELSE ∅
23 END
24 $$ LANGUAGE SQL STABLE;

(b) Phase 2 (UDF dtw2).

Figure 12: Generated pair of recursive UDFs to derive where- and why-provenance for SQL UDF dtw (Figure 9).

window around the diagonal to include the distances at (𝑖, 𝑗) co-
ordinates (3, 5) and (4, 6) to obtain a perfect DTW score of 0.0.
(Widening the window inspects more data as why-provenance has
shown but may lead to better matches—a typical tradeoff in the use

of DTW.)

3.1 Rewriting UDFs for Provenance Derivation
We stick to the principle of two-phase provenance derivation: the

extended rules for �⇒ in Figure 11 rewrite a recursive UDF 𝑓 into a

pair of UDFs ⟨𝑓 1, 𝑓 2⟩. The application of these rules to UDF dtw
of Figure 9 yields the UDF pair ⟨dtw1, dtw2⟩ shown in Figure 12.

As expected, dtw1 computes over regular values (consuming int
parameters, yielding the score of type float), while dtw2 receives

and returns dependency sets of type P.
The body of a (recursive) UDF is a regular SQL query 𝑞. Rule UDF-

Def thus recursively applies rewrite �⇒ to 𝑞 to obtain function

bodies ⟨𝑞1, 𝑞2⟩ that perform provenance derivation. These rewrites

handle SQL constructs like CASE...WHEN or the invocation of non-

recursive functions like LEAST (𝑛-way minimum). Note how literals

like 0 or 1 are represented as empty dependency sets ∅ in Phase 2:

a literal does not depend on any input table cell [12]. Unlike the

original UDF which we assume to be a true read-only (or: STABLE)

Data Provenance for Recursive SQLQueries TaPP’22, June 17, 2022, Philadelphia, PA, USA

runtime overhead

2×
4×
6×
8×
10×
12×
14×

of recursive dtw calls

10
0

10
1

10
2

10
3

10
4

10
5

10
6

where + why

where only

(a) Provenance derivation overhead.

wall clock time [ms]

10
0

10
1

10
2

10
3

10
4

10
5

10
6

of recursive dtw calls

10
0

10
1

10
2

10
3

10
4

10
5

10
6

𝑞2

𝑞1

𝑞

𝑞2 (where only)

(b) Runtime (original, Phases 1 + 2).

protocol size [bytes]

10
2

10
4

10
6

10
8

of recursive dtw calls

10
0

10
1

10
2

10
3

10
4

10
5

10
6

where + why
(written by write□ /
read by read□)

(c) Protocol table size.

Figure 13: Quantifying the runtime and protocol size overhead of provenance derivation (recursive UDF dtw).

function, the body of dtw1 will perform protocol writing (recall

the discussion in Section 2.1 as well as Figure 8). Rule UDF-Def

changes the function volatility category of dtw1 to VOLATILE to

announce this to the RDBMS [14].

In the case of recursive CTEs, extra row identifiers 𝜚 were in-

troduced to tie values and their dependency sets together. Here,

Rule UDF-Def introduces an extra UDF parameter 𝜚 of type rowID
to serve the same purpose: if the invocation 𝑓 1 (𝜚∗, ...) yields a
value 𝑧, the invocation of the mirror UDF 𝑓 2 (𝜚∗, ...) using the same

call identifier 𝜚∗ derives 𝑧’s dependency set. To rewrite a UDF call

𝑓 (𝑒1, ... , 𝑒𝑛), Rule UDF-Call thus collects the free row variables

𝑣1, ... , 𝑣𝑚 among the function arguments 𝑒𝑖 and proceeds as follows:

1. In Phase 1, instrument the UDF to invoke writeCALL (ℓ , 𝑣1.𝜚, ... ,
𝑣𝑚.𝜚) to map the row identifiers of the 𝑣 𝑗 to a unique call iden-

tifier 𝜚∗. This mapping is also saved in the interim protocol as

entry (ℓ , 𝑣1.𝜚, ... , 𝑣𝑚.𝜚, 𝜚∗). 𝜚∗ is then passed as the first pa-

rameter to 𝑓 1 to identify this particular call.

2. In Phase 2, read the protocol via readCALL (ℓ , 𝑣1.𝜚, ... , 𝑣𝑚.𝜚) to
retrieve 𝜚∗ and pass it to 𝑓 2. Functions 𝑓 1 and 𝑓 2 will thus agree

on the call identifier as required.

Note how the body queries of dtw1 and dtw2 pass the call identifier

(referred to as dtw1.𝜚 and dtw2.𝜚 in Figures 12(a) and 12(b)) to all

embedded write□/read□ invocations: at query runtime, this ensures

that protocol entries can be unambiguously associated with the

current UDF call in progress.

3.2 Provenance: Priceless, but Not for Free
It is expected that provenance derivation introduces tangible query

runtime overhead:

• provenance derivation requires two query evaluation phases,

• the Phases 1 and 2 write and then read the interim protocol, and

• dependency sets may be of substantial cardinality and will cer-

tainly exceed the size of regular 1NF table cell values.

Below, we quantify this overhead for the recursive UDF dtw of Fig-

ure 9. We will also learn, however, that the availability of the proto-

col can be a true advantage.

These experiments were performed on PostgreSQL v14.1, hosted

on a Linux-based Intel Xeon™ machine with 72GB of RAM, 32GB

of which were used for PostgreSQL’s buffer. We extended the stack

size to 64MB to support UDFs that recurse deeply. Dependency sets

were represented using bit sets which efficiently support duplicate

elimination and the central ∪ operation (the associated PostgreSQL

extension is discussed in [12]). We report the average runtime of

five query runs (worst and best runs discarded).

Recursive call counts. UDF dtw indeed constitutes a true stress

test for recursive query evaluation in general and provenance

derivation in particular. The UDF features three-fold recursion

which leads to a number of recursive calls that is exponential in

the length of the time series [6]: the naive, non-memoizing imple-

mentation of dtw in Figure 9 already performs about 800 000 such

calls for time series of length 10. In all plots of Figure 13, the 𝑥-axes

range over the recursive call count. The 10 data points of each curve

report on a series of dtw runs over time series lengths of 1 ... 10.

The largest input instance consists of 10 × 10 = 100 rows stored

in the distances table, effectively the cross product of both time

series. (Note that this instance already leads to millions of recursive

UDF invocations.)

Runtime overhead of provenance derivation. In the proposed

approach, provenance derivation for a SQL query 𝑞 is complete

only once both rewritten variants 𝑞1 and 𝑞2 have been evalu-

ated. The interim protocol forces the Phases 1 and 2 to be per-

formed sequentially. If 𝑡 (𝑞) denotes the runtime required to evalu-

ate query 𝑞, we thus observe a provenance derivation overhead of(
𝑡 (𝑞1) + 𝑡 (𝑞2)

)
/𝑡 (𝑞) relative to the original subject query 𝑞.

The curves of Figure 13(a) report on this overhead for a SQL

query that invokes UDF dtw (and performs no other computa-

tion). If we derive where- as well as why-provenance (see the

curve), we observe slowdowns that range between 3.2× and

13.4×. As we travel the 𝑥-axis left to right and thus perform more

and more recursive calls while we process longer time series, the

overhead increases: each call requires protocol access in both phases

(writeCALL/readCALL), protocol size grows, and more dependency set

operations have to be performed. Beyond 10 000 UDF calls, the slow-

down reaches a plateau indicating that the cost of UDF invocation

itself becomes significant (𝑞 pays this price just like 𝑞1 and 𝑞2 do).

If we derive where-provenance only (curve), the overhead

never exceeds 4.0×. We certainly expect the construction of smaller

dependency sets (all cell identifiers 𝑝 𝑗 are missing), but this alone

cannot explain the significant overhead reduction. Since 𝑞 and 𝑞1

remain identical, savings must occur in Phase 2 and 𝑞2. That is

exactly what we find below.

TaPP’22, June 17, 2022, Philadelphia, PA, USA Benjamin Dietrich Tobias Müller Torsten Grust

Wall clock times. The original query 𝑞 runs fastest, 𝑞1 requires

additional time for protocol access, on top of that 𝑞2 juggles poten-

tially large dependency sets and will be slowest. This is just what

the plot of query execution times in Figure 13(b) shows. Yet, the

curves , , and largely run in parallel which indicates that Post-

greSQL is able to find query plans for the𝑞1 and𝑞2 that—despite the

side-effecting operations of protocol writing and reading—exhibit

runtime characteristics comparable to the plans for 𝑞 (this also

explains the overhead plateau in Figure 13(a)).

Interestingly, the protocol can save Phase 2 and thus 𝑞2 from the

exponential complexity of three-fold recursion if we derive where-
provenance only (see curve). In the original query𝑞 as well𝑞1, the

evaluation of the three-way minimum LEAST(𝑒1,𝑒2,𝑒3) requires
the evaluation of all arguments 𝑒𝑖—for dtw, this leads to three

recursive calls (see Lines 16–18 in Figure 12(a)). When 𝑞2 evaluates

LEAST, however, the protocol already reveals which of the three

branches (say 𝑒𝑚,𝑚 ∈ {1, 2, 3}) yielded the minimum. (Internally,

LEAST uses writeCASE/readCASE; refer to Lines 3–7 in Figures 12(a)

and 12(b) but disregard the terms Y(·)). Pursuing branch 𝑒𝑚 only

leads to a single recursive call, effectively turning dtw into a linear

recursive function. Indeed, we find 𝑞2 to use negligible time of

no more than 26ms across all time series lengths. Similar, yet less

dramatic, Phase 2 savings have also been found in [12].

Protocol size. The interim protocol provides essential glue be-

tween Phases 1 and 2. All timings reported in this section are based

on a tabular implementation of the protocol thatwrite□/read□ write
to and read from. Figure 13(c) reports that both side-effecting func-

tions move between 120 kB and 160MB of protocol data (between

16 and 3 400 000 protocol entries), depending on the number of

recursive dtw calls.

4 MORE RELATEDWORK
We view this work as a proof of the versatility of the two-phase

approach to cell-level provenance derivation for SQL. Our focus

in the companion paper [12] has been on the derivation of where-
and why-provenance for a practically relevant (yet non-recursive)

dialect of SQL, including correlation, grouping and aggregation, or

window functions. The present findings blend with that work and

also fit with the computation of how-provenance for SQL [13].

With Perm [9, 10], we share the goal to bring data provenance

to rich SQL subsets. Perm derives provenance for aggregates, set

operations, or correlated subqueries, but has not embraced recur-

sion. Its implementation is based on a PostgreSQL kernel that has

been modified to support data provenance. We have deliberately

designed Phases 1 and 2 to build on non-invasive, language-level

query transformations that apply to a variety of RDBMS backends.

In this respect, we are closer to Glavic’ GProM [1].

Provenance support for Datalog—in a sense the prototypical re-
lational query language to support recursion—has already been

established by the early works of the field, notably in the perva-

sive semirings approach [11]. These foundations are turned into

an efficient implementation by [15] which instruments the internal

relational algebra machine program for a given Datalog query to de-

rive its semiring-based provenance. Indeed, query instrumentation

is a common theme that spans our efforts, the just mentioned work

of Senellart and his colleagues, as well as the effort of Deutch et

al. [4]. The latter realizes a notion of how-provenance for recur-
sive Datalog in which the relevant intensional facts (or: derivation

trees) of a query are computed. The returned provenance can be

queried—also to control its potentially huge size—an idea that we

fully subscribe to: much like Perm, we return a relational repre-

sentation of dependency sets (recall Figure 4) that is subject to

exploration via SQL itself.

Recursive queries may yield infinite provenance if all possible
derivations of an output row are considered [11]. Deutch et al.
employ Boolean circuits [5] to mitigate this. In contrast, the present

approach derives a single dependency set per output cell.

5 WRAP-UP
Recursion is key to bring complex computation close to database-

resident data. We pursue this thread of work to bring the derivation

of data provenance in line with the recursive SQL query constructs

found “in the wild,” recursive common table expressions and user-

defined functions, in particular. Provenance derivation is especially

valuable when the runtime behavior of a query can be intricate

(or even puzzling), e.g., in the presence of fixpoint computation or

𝑛-fold, non-tail recursive functions.

While our discussion has revolved around CTE bom and UDF

dtw, we have prepared a GitHub repository1 that holds the original
as well as instrumented SQL sources for a series of further recursive

queries. Applications include parsing, string matching, 2D pixel

processing (Marching Squares), and graph algorithms. All queries

are ready to run, include sample data, and can be evaluated on any

contemporary PostgreSQL instance.

REFERENCES
[1] S.A. Arab, S. Feng, B. Glavic, S. Lee, X. Niu, and Q. Zeng. 2018. GProM - A Swiss

Army Knife for Your Provenance Needs. IEEE Data Eng. Bulletin 41, 1 (2018).

[2] D.J Berndt and J. Clifford. 1994. Using Dynamic Time Warping to Find Patterns

in Time Series. In AAAI Workshop. Seattle, WA, USA.

[3] J. Cheney, L. Chiticariu, and W.-C. Tan. 2007. Provenance in Databases: Why,

How, and Where. Foundations and Trends in Databases 1, 4 (2007).
[4] D. Deutch, A. Gilad, and Y. Moskovitch. 2018. Efficient Provenance Tracking for

Datalog Using Top-k Queries. VLDB J. 27, 2 (2018).
[5] D. Deutch, T. Milo, S. Roy, and V. Tannen. 2014. Circuits for Datalog Provenance.

In Proc. ICDT. Athens, Greece.
[6] C. Duta and T. Grust. 2020. Functional-Style SQL UDFs with a Capital ’F’. In Proc.

SIGMOD. Portland, OR, USA.
[7] A. Eisenberg and J. Melton. 1999. SQL:1999, Formerly Known as SQL3. ACM

SIGMOD Record 28, 1 (March 1999).

[8] S.J. Finkelstein, N. Mattos, I. Mumick, and H. Pirahesh. 1996. Expressive Recursive

Queries in SQL. Joint Technical Committee ISO/IEC JTC 1/SC 21WG 3, Document

X3H2-96-075r1.

[9] B. Glavic and G. Alonso. 2009. PERM: Processing Provenance and Data on the

Same Data Model through Query Rewriting. In Proc. ICDE. Shanghai, China.
[10] B. Glavic and G. Alonso. 2009. Provenance for Nested Subqueries. In Proc. EDBT.

Saint Petersburg, Russia.

[11] T.J. Green, G. Karvounarakis, and V. Tannen. 2007. Provenance Semirings. In

Proc. PODS. Beijing, China.
[12] T. Müller, B. Dietrich, and T. Grust. 2018. You Say ’What’, I Hear ’Where’ and

’Why’? (Mis-)Interpreting SQL to Derive Fine-Grained Provenance. PVLDB 11,

11 (2018).

[13] T. Müller and P. Engel. 2022. How, Where, and Why Data Provenance Improves

Query Debugging. In Proc. ICDE. Kuala Lumpur, Malaysia.

[14] PostgreSQL [n.d.]. PostgreSQL 14 Documentation. http://www.postgresql.
org/docs/14/.

[15] Y. Ramusat, S. Maniu, and P. Senellart. 2021. A Practical Dynamic Programming

Approach to Datalog Provenance Computation. CoRR (2021).

1https://github.com/DBatUTuebingen/provenance-for-recursive-queries

http://www.postgresql.org/docs/14/
http://www.postgresql.org/docs/14/
https://github.com/DBatUTuebingen/provenance-for-recursive-queries

	Abstract
	1 Introduction
	2 Unraveling Recursive CTEs
	2.1 Values Here, Dependencies There
	2.2 Recursive Provenance Derivation

	3 Tracing Recursive SQL UDFs
	3.1 Rewriting UDFs for Provenance Derivation
	3.2 Provenance: Priceless, but Not for Free

	4 More Related Work
	5 Wrap-Up
	References

