
Another Way to Implement Complex Computations:
Functional-Style SQL UDF

Christian Duta

Department of Computer Science

University of Tübingen, Germany

christian.duta@uni-tuebingen.de

ABSTRACT
Whenever data-intensive computation gets so complex that

it requires the use of iteration or recursion, SQL developers

turn towards recursive common table expressions (CTEs).

We present the results of a user study that shows how devel-

opers struggle with the unusual fixpoint semantics and awk-

ward monolithic syntactic structure of CTEs. The study sug-

gests that recursive user-defined functions (UDFs)—written

in a style much like regular functional programs—are less

prone to errors, significantly more readable, and can be au-

thored more quickly. Since such recursive UDFs can be auto-

matically compiled into efficiently executable CTEs, we put

functional-style UDFs forward as another promising pillar

to express complex computation close to the data.

CCS CONCEPTS
• Human-centered computing → User studies; • Soft-
ware and its engineering → Functional languages; •
Information systems→ Relational database query lan-
guages.

KEYWORDS
Functional Programming, Recursive SQL Queries, User Study

ACM Reference Format:
Christian Duta. 2022. Another Way to Implement Complex Compu-

tations: Functional-Style SQL UDF. InWorkshop on Human-In-the-
Loop Data Analytics (HILDA ’22), June 12, 2022, Philadelphia, PA,
USA. ACM, New York, NY, USA, 7 pages. https://doi.org/10.1145/

3546930.3547508

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies

are not made or distributed for profit or commercial advantage and that

copies bear this notice and the full citation on the first page. Copyrights

for components of this work owned by others than the author(s) must

be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific

permission and/or a fee. Request permissions from permissions@acm.org.

HILDA ’22 , June 12, 2022, Philadelphia, PA, USA
© 2022 Copyright held by the owner/author(s). Publication rights licensed

to ACM.

ACM ISBN 978-1-4503-9442-0/22/06. . . $15.00

https://doi.org/10.1145/3546930.3547508

1 WITH RECURSIVE
2 T(𝑐1,...,𝑐𝑛) AS (
3 q0
4 UNION
5 q⟲(T)
6)
7 TABLE T;

(a) Recursive CTE.

1 u← distinct(q0)
2 w← u
3 loop

4 i← distinct(q⟲(w)∖u)
5 if i = ∅ then break

6 u← u ⊍ i
7 w← i
8 end

9 return u

(b) Pseudo code.

Figure 1: The general form of a recursive query T (Fig-
ure 1(a)) and its semantics (Figure 1(b)). Evaluation
requires keeping track of three bag variables: i (inter-
mediate table), u (union table), and w (working table).

1 WHERE TO MOVE COMPLEX
COMPUTATION

Many developers find themselves in a situation where they

need computations performed inside an RDBMS. Many pop-

ular RDBMSs provide these developers with SQL dialects that

come with a rich toolbox of features to help them implement

some of the computations. But, the more complex the compu-

tation becomes, say recursive algorithms over tabular data,

e.g., graph algorithms, the deeper the developer has to reach

into the SQL toolbox. And whenever SELECT-FROM-WHERE
does not cut it anymore, a developer may have to choose the

more expressive recursive common table expression (CTE) [12],
which many popular RDBMSs support since its introduction

in SQL:1999 [17]. However, this usually requires the devel-

oper to restructure the algorithm into a formulation that fits

the rigid fix-point semantics of recursive CTEs (see Figure 1).

Recursive CTEs impose restrictions on the programmer (lin-

earity, monotonicity), possibly moving the implementation

further away from its original formulation. Finkelstein et al.

argue in favor of the potential benefits these rigid recursive

CTEs provide [8], but many RDBMS, like PostgreSQL, imple-

ment only the restrictions and none of the benefits, as far

as we know [16]. Simple syntactic cover-ups are sufficient

to lift these restrictions, allowing even for non-monotonic

recursive CTEs to use grouping, aggregates, and anti-joins.

“Is there no other way to move computation close to the data?”

https://doi.org/10.1145/3546930.3547508
https://doi.org/10.1145/3546930.3547508
https://doi.org/10.1145/3546930.3547508

HILDA ’22 , June 12, 2022, Philadelphia, PA, USA Christian Duta

1 CREATE FUNCTION knap(𝑘 int,𝑢 int)
2 RETURNS int AS $$
3 SELECT CASE
4 WHEN 𝑘 = 1 THEN 0

5 ELSE (
6 SELECT CASE
7 WHEN i.𝑤 > 𝑢 THEN knap(𝑘−1,𝑢)
8 ELSE
9 GREATEST(

knap(𝑘−1,𝑢),
knap(𝑘−1,𝑢−i.𝑤)+i.𝑝)

10 END
11 FROM items AS i
12 WHERE i.i = 𝑘

13)
14 END;
15 $$ LANGUAGE SQL;

(a) Functional-style UDF

knap(1,𝑢) = 0

knap(𝑘,𝑢) =

)︀
⌉︀⌉︀⌉︀⌉︀
⌋︀
⌉︀⌉︀⌉︀⌉︀
]︀

knap(𝑘−1,𝑢) ,𝑤𝑘 > 𝑢

𝑚𝑎𝑥{
knap(𝑘−1,𝑢),
knap(𝑘−1,𝑢−𝑤𝑘)+𝑝𝑘

(︀ , 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

(b) Textbook-style

1CREATE FUNCTION knap(𝑘 int,𝑢 int)
2RETURNS int AS $$
3WITH RECURSIVE sack(i,w,p) AS (
4SELECT 1,0,0
5UNION
6SELECT s.i+1,s.w+c.w,s.p+c.p
7FROM sack AS s,items AS i,
8LATERAL (
9VALUES (0,0),(i.𝑤,i.𝑝)
10) AS c(w,p)
11WHERE s.w+i.𝑤 <= 𝑢

12AND i.i = s.i+1
13AND s.i <= 𝑘)
14SELECT MAX(s.p) FROM sack AS s;
15$$ LANGUAGE SQL;

(c) Recursive CTE

Figure 2: Each function in Figures 2(a) to 2(c) solves the 0-1 Knapsack problem. A rough comparison of the
function body in Figure 2(b) with the body found in Figure 2(a) shows strong similarities when set side by side.
However, compared to Figure 2(c), the function bodies look almost unrecognizably different.

Functional-style SQL user-defined functions (we call

functional-style UDFs) gives developers another way of ex-

pressing complex computations. Functional-style UDFs are

your run-of-the-mill SQL functions which allow recursive

self-invocations inside their function body.

In this publication, we present the results of a user study

to see if functional-style UDFs are a welcome addition to

how a developer writes complex computations close to the

data. We argue that there are algorithms where developers

have an easier time writing and thinking about them in the

form of a functional-style UDF when compared to the more

restrictive and almost assembly-like recursive CTEs. The

cognitive load a developer has to juggle when working with

recursive CTEs can be alot more straining when compared

to functional-style UDFs.

Consider the 0-1 Knapsack problem [13], for example.

Given items 𝑖 ∈ 1, . . . , 𝑛 where each item has a weight 𝑤𝑖

and a value 𝑝𝑖 . Then knap(𝑛,𝑤), recursively defined in its

textbook-style formulation in Figure 2(b), maximizes the sum

of values of items that fit into a knapsack of weight𝑤 . The re-

cursive CTE formulation (Figure 2(c)), while compact, looks

very different than its textbook-style form. Compared to that,

the functional-style UDF formulation (Figure 2(a)) does not

significantly alter the textbook-style form. The user study

results in Section 3 discuss wether functional-style UDFs are

feasible to become another pillar of support for developers

to move their complex computations into RDBMSs. Section 4

summarized the results of this study.

Recursive CTE as Target Language. Some RDBMSs, like

PostgreSQL, support functional-style UDFs out-of-the-box.

However, they do not support any optimizations that would

improve the performance of recursive functional-style UDFs.

And it shows. Thus, we defined a SQL-to-SQL compiler [7]

which utilizes a wide variety of optimizations. The com-

piler takes a functional-style UDF body f and replaces it

with a semantically equivalent function body f ′ without self-
invocations using recursive CTEs instead. The function f ′

then evaluates in a two-step process:

(1) Construct call graph g top-down. This step records all

recursive calls that f would have performed. We utilize

the well known program slicing technique [20, 18] which
enables the function to find all recursive calls without

invoking itself recursively. This continues until base cases

have been reached.

(2) Traverse call graph g bottom up. Start with the base

cases and record intermediate results until we produce

and return the result of the initial function call at the

root of call graph g.
This leaves the doors wide open for optimizations without

modifying the underlying RDBMS. Some of them we list

here:

● Sharing. Collapse all recursive calls with the same argu-

ments into one to remove redundant function call nodes

in the call graph.

● Memoization. Store the results of the initial and all in-

termediate recursive function calls inside a memoization

table m for later function calls.

● Linear-/Tail-Recursion. The compiler detects and ex-

ploits if a functional-style UDF is linear- or tail-recursive.

Only when compiling functional-style UDFs do many al-

gorithms become feasible to run inside the RDBMS. This

Another Way to Implement Complex Computations: Functional-Style SQL UDF HILDA ’22 , June 12, 2022, Philadelphia, PA, USA

includes widely used algorithms like dynamic time warp-
ing [3] (DTW), which have their call graph size reduced

significantly from exponential to quadratic size when com-

piled. Thus, runtime measurements come close to that of a

carefully optimized hand-written version of DTW in its pure

recursive CTE form.

Further compilation methods for SQL UDFs with self-

invocations exist. One notable research effort takes the func-

tion body and, using a form of continuation-passing style
transformation, translates it into a function body without

self-invocations [4]. Another, called R-SQL [2], translates

SQL functions with self-invocation into a set of queries with

SELECT and INSERT statements. An external program, writ-

ten in Python, evaluates these statements until a fixpoint is

reached.

2 MORE RELATEDWORK
While this publication focuses strictly on functional-style

UDFs and recursive CTEs, there is research effort for ways

to give developers further options to express complex algo-

rithms.

Some RDBMS offer a non-standard procedural extension
to SQL. PL/SQL is such an extension. It originated as part of

the Oracle database [15] and spawned a derivate PL/pgSQL
which ships with PostgreSQL [16]. However, the performance

of PL/pgSQL-functions are disappointing, as each SQL query

embedded inside a statement requires a context switch from

extension executor to query executor and back. This can be

alleviated by translating these functions into their semanti-

cally equivalent LANGUAGE SQL counterpart [10].

Further research was conducted for HyPer [14], extending
the SQL language itself by adding an ITERATE-operator. This
operator allows for an iterative subquery inside a SQL query.

The ITERATE-operator works similar to a for-loop, where the
developer defines an initialize-, iterate- and stop-expression.

3 USER STUDY
In 2020, we conducted an anonymous online study which

targeted three demographics: students that have attended

the Advanced SQL lecture of summer semester 2020 [1], users

subscribed to the DBWorld mailing list [5], and interested

students, as well as staff of the University of Tübingen, sub-

scribed to the user study mailing list. Students who attended

Advanced SQL were not introduced to functional-style UDFs

before this study. The course focused on other SQL features

like (recursive) CTEs, window functions, and other features

beyond the common SELECT-FROM-WHERE-query. The com-

plete user study form is viewable online [19].

We went through the following steps to conduct the user

study: Whenever an interested participant contacted us, they

received a link with a randomly generated token in response.

They were eligible to participate in the user study exactly

once with this token. When the participant submits their

result, it is automatically assigned a random identification

number, decoupling the submission from the user. Out of 52

interested participants who received a generated token, 19

submitted their results. Dragicevic [6] deems this sufficient

to draw meaningful conclusions from. The following discus-

sion is centered around each task’s aggregated scores and

times (in minutes). Every discussion that centers exclusively

around aggregated values, is based on a 95% confidence in-
terval (CI (95%)) and the p-value (p-Val). Skipped tasks do

not factor into the statistics.

User study introduction. Before the user study proper, an

introductory text informed every participant not to use any

external programs to run queries found in this study. Instead,

they were asked to use pen and paper only, if at all.

Then, we asked them to list three regular programming

languages they are familiar with and if they had some ex-

posure to Functional Programming before this study. This

helped us gain insight into the participant’s background as

a programmer. We found that those 19 participants form a

homogenous group where everyone is familiar with at least

one imperative programming language, the majority being

Java and Python. And 15 of them had at least some exposure

to Functional Programming.

The study itself is segmented into four general topics:

choose the correct implementations (Section 3.1), describe

a code snippet (Section 3.2), manually evaluate a code snip-

pet (Section 3.3), and write the 0-1 knapsack algorithm (Sec-

tion 3.4).

3.1 Choose the Correct Implementations
The first topic gauges the accuracy and speed required of

the participants to distinguish between correct and incorrect

implementations. The topic is seperated into two tasks, each

with its own textbook-style algorithm: Fibonacci Numbers [9]
(fib):

fib(0) = 0

fib(1) = 1

fib(𝑛) = fib(𝑛 − 1) + fib(𝑛 − 2),

and Greatest Common Divisor [11] (gcd):

gcd(𝑛, 0) = 𝑛

gcd(𝑛,𝑘) = gcd(𝑘,𝑛 mod 𝑘).

These algorithms were chosen for their concise textbook-

style formulation and comparatively simple implementations

as recursive CTE and functional-style UDF. At first, each task

presents the participants with the definition of the textbook-

style function. Then, they are given a choice of four similar-

looking recursive CTEs, and four similar-looking functional-

style UDFs for fib (and vice versa, for gcd). Then, they are

HILDA ’22 , June 12, 2022, Philadelphia, PA, USA Christian Duta

Task Points CI (95%) p-Val
min avg max Σ

fib
Functional-Style UDF 0.0 2.6 4.0 50 (︀1.89, 3.37⌋︀

0.3347
Recursive CTE -2.0 2.9 4.0 54 (︀1.98, 3.80⌋︀

gcd
Functional-Style UDF 0.0 2.5 4.0 48 (︀1.94, 3.11⌋︀

0.2627
Recursive CTE -2.0 2.0 4.0 38 (︀0.92, 3.08⌋︀

(a) Aggregated Scores.

Task Time [min] CI (95%) p-Val
min avg max

fib
Functional-Style UDF 1:00 2:47 6:00 (︀2:03, 3:32⌋︀

0.0006
Recursive CTE 3:00 5:47 12:00 (︀4:23, 7:11⌋︀

gcd
Functional-Style UDF 1:00 2:16 7:00 (︀1:37, 2:55⌋︀

0.0002
Recursive CTE 2:00 4:15 8:00 (︀3:32, 4:58⌋︀

(b) Aggregated Times.

Figure 3: The aggregated scores and times of the tasks
Fibonacci Numbers (fib) and Greatest Common Divisor
(gcd).
Scoring scheme: participants earn +1 point, if a selection
is correct and -1 point, if incorrect.

tasked to select only those snippets that correctly implement

the algorithm. The participants submit the time they need

to complete this task.

Scores and times of each task fib and gcd are aggregated

in Figures 3(a) and 3(b). The aggregated times for each task

show significantly lower times for functional-style UDFs

compared to recursive CTEs. One participant skipped both

recursive CTE parts of fib and gcd.

Conclusion. The aggregated scores in Figure 3 suggest

that participants perform similarly well in differentiating

between correct and incorrect implementations if we com-

pare functional-style UDFs and recursive CTEs. However,

participants require about half the time for functional-style

UDFs. The reason is that recursive CTEs disfigure the simple

formulation of the textbook-style form, and thus it becomes

much more time-consuming to detect any errors. Functional-

style UDFs, on the other hand, are very similar looking and

can be compared almost verbatim to the textbook-style form,

which is ideal.

3.2 Describe a Code Snippet
The second topic is also separated into two tasks (Compre-
hension I and Comprehension II). It gauges the ability and

speed with which each participant understands and correctly

describes an undocumented code snippet. One is a functional-

style UDF, and the other is a recursive CTE. Both snippets

1 CREATE FUNCTION f(i int, j int, k float)
2 RETURNS float AS $$
3 SELECT CASE
4 WHEN i > j THEN k
5 ELSE (SELECT f(i+1, j, s.b + 0.5 * k)
6 FROM s
7 WHERE s.a = i)
8 END;
9 $$ LANGUAGE SQL;

Figure 4: Functional-style UDF f(i,j,k) of task Com-
prehension I.

1 CREATE FUNCTION g(a int)
2 RETURNS bigint AS $$
3 WITH RECURSIVE
4 r(x, y, z) AS (
5 SELECT t.x, t.y, t.z
6 FROM t
7 WHERE t.x = a
8 UNION
9 SELECT r.x, t.y, t.z
10 FROM r, t
11 WHERE r.y = t.x
12)
13 SELECT SUM(r.z)
14 FROM r;
15 $$ LANGUAGE SQL;

Figure 5: Recursive CTE g(a) of task Comprehension II.

were chosen for their elegance and concise formulation in

their specific style:

● a functional-style UDF f(i,j,k) which applies an error

that propagates over time (see Figure 4), and

● a recursive CTE g(a)which traverses a directed graph and
sums up each edge weight it passes once (see Figure 5).

The participants submit the time they need to complete this

task. Scores and times of tasks fib and gcd are aggregated
in Figures 6(a) and 6(b). Two participants skipped the recur-

sive CTE in Comprehension II.
Conclusion. The aggregated scores in Figure 6(a) show that

twice as many participants described the functional-style

UDF correctly (i.e., scored two or more points). Participants

seem to have difficulty explaining what the recursive CTE

does without discovering its intended purpose. The more

convoluted nature of recursive CTEs may be the reason

(recall Figure 7). The aggregated times in Figure 6(b) sug-

gest that each function took the participants about the same

amount of time until they were confident enough to submit

their results. Thus, we conclude that developers are more

likely to provide an accurate description of an undocumented

functional-style UDF than they would an undocumented re-

cursive CTE in roughly the same amount of time.

Another Way to Implement Complex Computations: Functional-Style SQL UDF HILDA ’22 , June 12, 2022, Philadelphia, PA, USA

Task Points Skip
0 1 2 3 Σ avg

Functional-Style UDF 3 4 5 7 35 1.84 0

Recursive CTE 6 5 1 5 22 1.29 2

(a) Aggregated Scores.

Task Time [min] CI (95%) p-Val
min avg max

Functional-Style UDF 2:00 6:54 12:00 (︀5:44, 8:03⌋︀
0.0497

Recursive CTE 1:00 5:21 11:00 (︀4:04, 6:38⌋︀

(b) Aggregated Times.

Figure 6: The aggregated scores and times of tasksCom-
prehension I and Comprehension II.
Scoring scheme: Incorrect description (0 points), par-
tially correct description (1 point), correct description
without discovering its intended purpose (2 points),
correct description of its intended purpose (3 points).

Task Points Skip
0 1 2 Σ avg

Functional-Style UDF 3 4 12 28 1.47 0

Recursive CTE 8 0 9 18 1.06 2

(a) Aggregated Scores.

Task Time [min] CI (95%) p-Val
min avg max

Functional-Style UDF 1:00 3:21 10:00 (︀2:05, 4:36⌋︀
0.2806

Recursive CTE 0:30 2:51 10:00 (︀1:52, 3:50⌋︀

(b) Aggregated Times.

Figure 7: The aggregated scores and times of task Eval-
uation.
Scoring scheme: Incorrect result (0 points), partially
correct intermediate steps (1 point), the correct result
(2 points).

3.3 Manually Evaluate a Code Snippet
The third topic, Evaluation, builds upon the functions of

the previous tasks Comprehension I and Comprehension II
in Section 3.2. This topic gauges the ability and speed of

the participants to manually evaluate a sample function call

f(1,3,0) and g(4) (recall the functions f and g in Figures 4

and 5). The participants then submit the results of these

function calls and the time they need to complete this task.

Scores and times of this task are aggregated in Figures 7(a)

and 7(b). Only the scores differ between functional-style UDF

and recursive CTE. Two participants skipped evaluating the

function of Comprehension II.

t
x y z
1 2 5
2 4 3
3 2 2
4 3 1

𝑟1 :
𝑟2 :
𝑟3 :
𝑟4 :

(a) Sample table.

1.
Inititalize

Line 1,2 u = N 𝑟4 O w = N 𝑟4 O

2.
Iterate
Line 4,6,7 i = N 𝑟3 O u = N 𝑟4 𝑟3 O w = N 𝑟3 O

3.
Iterate
Line 4,6,7 i = N 𝑟2 O u = N 𝑟4 𝑟3 𝑟2 O w = N 𝑟2 O

4.
Stop
Line 4,5 i = N O ↪ return u

(b) Bag Variable Trace.

Figure 8: Evaluating a recursive CTEmanually requires
the developer to keep track of three bag variables i, u,
and w (recall Figure 1(b)). The complete variable trace
of function g (Figure 5) for call g(4). The N O denote
bags.

We find that participants who did well for the previous

tasks in Section 3.2 also performed well in both tasks here.

This is unsurprising since both tasks utilize the same func-

tions f and g. Thus, participants that understood a function

were almost certainly going to evaluate them correctly.

Conclusion. The way most developers with at least some

knowledge about functional programming would evaluate

f(1,3,0) is very straightforward: they first keep track of

each function call until they reach a base case. Then, they

backtrack until they reach the original function call and

produce the final result.

This stands in stark contrast with recursive CTEs. Devel-

opers have to juggle many implicit variables throughout the

evaluation process. The complete bag variable trace (see Fig-

ure 8) highlights the cognitive load a developer must juggle

to evaluate the function call g(4) manually.

Both functions f and g were chosen for their elegant im-

plementation in their respective style. However, these results

make it easy to argue in favor of preferring the more explicit

and readable nature of functional-style UDFs compared to

recursive CTEs and their awkward syntax.

3.4 Write the 0-1 Knapsack Algorithm
This final topic, 0-1 Knapsack, requires the participants to
choose between writing a functional-style UDF or recur-

sive CTE. First, the topic presents the participants with the

textbook-style algorithm of the 0-1 Knapsack problem [13]

(recall Figure 2(b)). The participants then submit their imple-

mentation and the time they need to complete this task.

HILDA ’22 , June 12, 2022, Philadelphia, PA, USA Christian Duta

Task Ratings Skip
wrong minor syntax correct

Functional-Style UDF 3 2 4 2

8

Recursive CTE - - - -

(a) Scores.

Task Time [min]

min avg max

Functional-Style UDF 3:00 9:06 19:00

Recursive CTE - - -

(b) Aggregated Times.

Figure 9: The scores and aggregated times of task 0-1
Knapsack.
Rating scheme: unrecognizable or unfixable (wrong),
easily fixable mistakes e.g., ≥ instead of > or missing
edge cases (minor), valid but with syntax errors a com-
piler would detect e.g., use MAX instead of GREATEST or
’)’ missing (syntax), correct implementation (correct).

Scores and times of task 0-1 Knapsack are aggregated in Fig-

ures 9(a) and 9(b). No participants tried to implement the

0-1 Knapsack algorithm as a recursive CTE. Thus, we only

discuss aggregated scores and times of the functional-style

UDF implementations. Eight participants skipped this task.

Conclusion.We chose the textbook-style 0-1 Knapsack (Fig-
ure 2(b)) algorithm for this task because both implementa-

tions as a functional-style UDF (Figure 2(a)) and recursive

CTE (Figure 2(c)) are of similar complexity, which makes

them comparable to each other. However, only the functional-

style UDF resembles the textbook-style algorithm.

This supports our claim that some algorithms do not lend

themselves to be easily rewritten into their equivalent recur-

sive CTE formulation. Thus, if developers have the choice,

they may choose functional-style UDFs over recursive CTEs.

4 SUMMARY
Overall, this user study suggests that functional-style UDFs

allow developers a feasible alternative to implementing com-

plex computation inside an RDBMS. We found that only

tasks which focus on recursive CTEs were skipped. This fur-

ther hints at a need for alternative ways to write complex

computations besides recursive CTEs.

For developers familiar with (functional) programming

languages, we found that some functional-style UDFs require

about half the time to distinguish correct from incorrect

compared to recursive CTEs. Developers are more likely to

correctly describe and manually evaluate a functional-style

UDF when compared to recursive CTEs. And finally, we are

now confident that there exist (textbook-style) algorithms,

where developers would prefer writing them as a functional-

style UDF instead of a recursive CTE. Thus, we conclude that

functional-style UDFs would support developers to move

even more complex computations closer to the data.

Another Way to Implement Complex Computations: Functional-Style SQL UDF HILDA ’22 , June 12, 2022, Philadelphia, PA, USA

REFERENCES
[1] Advanced SQL Lecture, 2020. https://db.inf.uni-tuebingen.de/teaching/

AdvancedSQLSS2020.html.

[2] G. Aranda, S. Nieva, F. Sáenz-Pérez, and J. Sánchez-Hernández. R-

SQL: An SQL Database System with Extended Recursion. Electronic
Communications of the EASST, 64, September 2013.

[3] D.J. Berndt and J. Clifford. Using Dynamic Time Warping to Find

Patterns in Time Series. In Proceedings of the KDD Workshop, Seattle,
WA, USA, July 1994.

[4] T. Burghardt, D. Hirn, and T. Grust. Functional Programming on Top

of SQL Engines. In J. Cheney and S. Perri, editors, Practical Aspects
of Declarative Languages, pages 59–78, Cham, 2022. Springer Interna-

tional Publishing.

[5] DBWorld Mailing List. https://dbworld.sigmod.org/ (formerly: https:

//research.cs.wisc.edu/dbworld/browse.html).

[6] P. Dragicevic. HCI Statistics without p-values. Research Report RR-

8738, Inria, June 2015.

[7] C. Duta and T. Grust. Functional-Style UDFs With a Capital ’F’. In Proc.
SIGMOD, Portland, OR, USA, June 2020.

[8] S. J. Finkelstein, N. Mattos, I. Mumick, and H. Pirahesh. Expressing

Recursive Queries with SQL. ISO Technical report, 1996.

[9] R. Graham, D. Knuth, and Patashnik O. Concrete Mathematics: A Foun-
dation for Computer Science, 2nd. Addison-Wesley, 1994.

[10] D. Hirn and T. Grust. One WITH RECURSIVE is Worth Many GOTOs,
page 723–735. Association for Computing Machinery, New York, NY,

USA, 2021.

[11] D. Knuth. The Art of Computer Programming, Volume II: Seminumerical
Algorithms, 3rd Edition. Addison-Wesley, 1998.

[12] L. Libkin. Expressive Power of SQL. Theor. Comput. Sci., 296(3):379–404,
mar 2003.

[13] S. Martello and P. Toth. Knapsack Problems: Algorithms and Computer
Implementations. John Wiley & Sons, Inc., USA, 1990.

[14] Thomas Neumann. Efficiently Compiling Query Plans for Modern

Hardware. Proceedings of the VLDB Endowment, 4(9), August 2011.
[15] Oracle 19c Documentation. http://docs.oracle.com/.

[16] PostgreSQL 14 Documentation. http://www.postgresql.org/docs/14/.

[17] SQL:1999 Standard. Database Languages–SQL–Part 2: Foundation.
ISO/IEC 9075-2:1999.

[18] F. Tip. A Survey of Program Slicing Techniques. Journal of Program-
ming Languages, 3(3), 1995.

[19] Recursion in SQL - User Study. https://recursion-in-sql.github.io/user-

study/.

[20] M. Weiser. Program Slicing. IEEE Transactions on Software Engineering,
SE-10(4), July 1984.

https://db.inf.uni-tuebingen.de/teaching/AdvancedSQLSS2020.html
https://db.inf.uni-tuebingen.de/teaching/AdvancedSQLSS2020.html
https://dbworld.sigmod.org/
https://research.cs.wisc.edu/dbworld/browse.html
https://research.cs.wisc.edu/dbworld/browse.html
http://docs.oracle.com/
http://www.postgresql.org/docs/14/
https://recursion-in-sql.github.io/user-study/
https://recursion-in-sql.github.io/user-study/

	Abstract
	1 Where To Move Complex Computation
	2 More Related Work
	3 User Study
	3.1 Choose the Correct Implementations
	3.2 Describe a Code Snippet
	3.3 Manually Evaluate a Code Snippet
	3.4 Write the 0-1 Knapsack Algorithm

	4 Summary

