
PL/SQL Without the PL
Denis Hirn Torsten Grust

University of Tübingen
Tübingen, Germany

[denis.hirn,torsten.grust]@uni-tuebingen.de

ABSTRACT
We demonstrate a source-to-source compilation technique
that can translate user-defined PL/SQL functions into plain
SQL queries. These PL/SQL functions may feature arbitrar-
ily complex control flow—iteration, in particular. From this
imperative-style input code we derive equivalent recursive
common table expressions, ready for execution on any re-
lational SQL:1999 back-end. Principally due to the absence
of PL/SQL↔SQL context switches, the output plain SQL code
comes with substantial runtime savings. The demonstration
embeds the compiler into an interactive setup that admits
function editing while live re-compilation and visualization
of intermediate code forms happens in the background.
ACM Reference Format:
Denis Hirn and Torsten Grust. 2020. PL/SQL Without the PL. In
Proceedings of the 2020 ACM SIGMOD International Conference on
Management of Data (SIGMOD’20), June 14–19, 2020, Portland, OR,
USA. ACM, New York, NY, USA, 4 pages. https://doi.org/10.
1145/3318464.3384678

1 COMPILING PL/SQL TO PLAIN SQL
Compilers for programming languages know a bag of tricks
that transform tail recursion into iteration. The aim is to save
stack space at run time and trade costly function calls for
simple control flow (i.e., loops, ultimately realized via goto).
For the language PL/SQL1, however, we argue that it is worth
to reconsider this strategy. In fact, we propose to turn around
180° and demonstrate that the opposing transformation from
iteration to tail recursion can greatly benefit the compilation
and evaluation of PL/SQL functions:
1The name PL/SQL has been coined by Oracle. This work extends to the lan-
guage’s variants known as PL/pgSQL (PostgreSQL) or T-SQL (MS SQL Server).

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. Copyrights for com-
ponents of this work owned by others than the author(s) must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to
post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
SIGMOD’20, June 14–19, 2020, Portland, OR, USA
© 2020 Copyright held by the owner/author(s). Publication rights licensed
to ACM.
ACM ISBN 978-1-4503-6735-6/20/06. . . $15.00
https://doi.org/10.1145/3318464.3384678

• We compile PL/SQL functions that feature—arbitrary, po-
tentially complex—iterative control flow into plain SQL
queries that build on the WITH RECURSIVE construct. This
compilation yields significant run time savings.

• Since the generated code does not rely on PL/SQL at all,
the transformation equips any RDBMS with PL/SQL capa-
bilities as long as the system implements WITH RECURSIVE
(this can be particularly interesting for RDBMSs that do
not implement user-defined functions at all, e.g., SQLite3).

The demonstration offers an in-depth look at the compila-
tion technique and makes the performance advantage tan-
gible using a live, interactive setup.
Complex computation close to the data.Unlike database-
external languages, PL/SQL bears the promise of performing
complex computation right inside the RDBMS kernel. The
source data is processed at its storage site and may remain

a b

c
d

(0,0) (8,0)

(0,8) (8,8)

e

f

g

w1

w2

?b

Figure 1: PlanewithBarnes-Hut
tree and walls wi superimposed.

in its original tabular
shape.

To exemplify, UDF
force of Figure 2 is
representative of the
PL/SQL functions we
can compile into plain
SQL. force(b,θ) com-
putes the gravitational
force that the bodies
populating a 2D plane
exert on a new body b
(see Figure 1). Bodies
that are separated by
any wall wi do not af-
fect each other. To forego the quadratic complexity of an
algorithm that considers the force between each individ-
ual pair of bodies, force employs a Barnes-Hut tree [1] to
organize the plane’s body population into a hierarchy of
ever smaller quadrants. Figure 3 shows tabular encodings
of the Barnes-Hut tree and walls of Figure 1. The function
descends the tree until it finds that the inner nodes approx-
imate the aggregate center of mass of the bodies in a quad-
rant good enough (parameter θ ∈ [0,1] controls the approx-
imation’s quality, with θ = 0 requesting full accuracy).
While the full details of force are less relevant here, we

note that the function’s body features the constructs that
characterize the imperative PL/SQL style of programming:



Q1

Q2

Q3

1 CREATE FUNCTION force(b body, theta float) RETURNS point AS
2 $$
3 DECLARE
4 force point := point(0,0); -- aggregated force on body
5 G CONSTANT float := 6.67e-11; -- gravitational constant
6 Q barneshut[]; -- Barnes-Hut nodes to visit
7 node barneshut; -- current Barnes-Hut node
8 children barneshut[]; -- children of current node
9 dist float; -- distance and direction
10 dir point; -- between body and node
11 grav point; -- grav. effect of node on body
12 BEGIN
13 -- enter Barnes-Hut tree at the root
14 node = (SELECT t
15 FROM barneshut AS t
16 WHERE t.node = 0);
17 Q = array[node];
18 -- iterate while there are Barnes-Hut nodes to consider
19 WHILE cardinality(Q) > 0 LOOP
20 node = Q[1];
21 Q = Q[2:];
22 dist = node.center<->b.pos;
23 dir = node.center - b.pos;
24 grav = point(0,0);
25 -- bodies separated by walls do not affect each other
26 IF NOT EXISTS (SELECT 1
27 FROM walls AS w
28 WHERE (b.pos <= b.pos ## w.wall) <>
29 (node.center <= node.center ## w.wall)) THEN
30 grav = (G * b.mass * node.mass / dist̂ 2) * dir;
31 END IF;
32 -- Barnes-Hut optimization: approximate effect of distant bodies
33 IF (node.node IS NULL) OR (width(node.bbox) / dist < theta) THEN
34 force = force + grav;
35 ELSE
36 -- inspect area at higher resolution: descend into subtrees
37 children = (SELECT array_agg(t)
38 FROM barneshut AS t
39 WHERE t.parent = node.node);
40 Q = Q || children;
41 END IF;
42 END LOOP;
43 -- return aggregated force on body
44 RETURN force;
45 END;
46 $$ LANGUAGE PLPGSQL STABLE STRICT;

Figure 2: Iterative UDF force, written in PostgreSQL’s
PL/pgSQL dialect (Q1...3: embedded SQL queries).

• iterative and conditional control flow (WHILE ···LOOP, IF ···
THEN ···ELSE) and blocks of sequential statements,

• embedded SQL queries (Q1...3) occuring in the role of ex-
pressions, as well as

• destructive update of variables. In the case of force, some
of these variables have complex types (e.g., row types,
geometric types, or arrays).

The cost of PL/SQL↔SQL context switches. Despite its
tight integration into the database kernel, PL/SQL perfor-
mance often disappoints and it has become common devel-
oper wisdom to “avoid PL/SQL if possible” [6]. The evalua-
tion of a query like SELECT force(b,0.5) FROM bodies AS b
indeed leads to a constant back and forth between set-orien-
ted SQL evaluation and iterative, statement-by-statement in-
terpretation of PL/SQL. Invocation of force hands over con-
trol from SQL to the PL/SQL interpreter (which needs to start
up or resume). On the first call to force, its embedded SQL

barneshut
node bbox parent mass center

a box((0.0,0.0),(8.0,8.0)) � 16 (5.0,4.5) a  inner
nodes

b box((4.0,4.0),(8.0,8.0)) a 11 (6.6,5.5) b
c box((6.0,4.0),(8.0,6.0)) b 6 (7.0,4.7) c
d box((7.0,4.0),(8.0,5.0)) c 3 (7.4,4.4) d
� box((1.5,2.3),(1.5,2.3)) a 5 (1.5,2.3) e 

bodies

� box((4.5,5.0),(4.5,5.0)) b 1 (4.5,5.0) f
� box((6.5,6.8),(6.5,6.8)) b 4 (6.5,6.8) g
� box((6.6,4.8),(6.6,4.8)) c 2 (6.6,4.8) h
� box((6.7,5.5),(6.7,5.5)) c 1 (6.7,5.5) i
� box((7.2,4.8),(7.2,4.8)) d 1 (7.2,4.8) j
� box((7.3,4.2),(7.3,4.2)) d 1 (7.3,4.2) k
� box((7.8,4.3),(7.8,4.3)) d 1 (7.8,4.3) l

walls
wall

lseg((3.5,0.0),(8.0,2.1)) w1
lseg((5.0,8.0),(6.3,1.3)) w2

Figure 3: Tabular encodings of the Barnes-Hut quad
tree, bodies, and walls in Figure 1 (� represents NULL).

queries Q1...3 are planned; on each subsequent call, these
plans need to be re-instantiated. When the interpretation of
force’s body encounters Qi , (1) PL/SQL is suspended, (2) SQL
evaluation for Qi ’s plan is performed, before (3) PL/SQL fi-
nally resumes. Iteration in SQL and PL/SQL—expressed in
terms of SELECT ···FROM and WHILE···LOOP, respectively—only
multiplies this effort. In fact, for PostgreSQL the bottom line
shows that the system invests more than 35% of its time into
PL/SQL↔SQL context switching [4].
PL/SQLwithout the PL. The primary goal of this work is to
entirely remove this costly friction between PL/SQL and SQL.
Given a PL/SQL function f, we compile its body into a plain
SQL query Qf. If f contains iterative control flow, Qf will be
recursive (and thus use SQL:1999’s standard WITH RECURSIVE
clause). InliningQf at the call sites of f yields pure SQL code:
the original PL/SQL function f will not be invoked at run
time (and has become obsolete, in fact). The system is able
to compile and plan the resulting SQL-only query once—
the repeated instantiation of embedded query plans (recall
the Qi ) is avoided. At plan execution time, the RDBMS stays
in its set-oriented query evaluation mode throughout, no
statement-by-statement interpretation is required.

Contemporary RDBMSs reward this compilation effort
with substantial performance improvements. It is common
to observe run times drop by 50% or more if we evaluate
function-heavy queries (see Section 2 and [4]).

2 FROM ITERATION TO TAIL RECURSION
The present research leans on compilation techniques de-
veloped by the programming languages community, even
if we apply established strategies “backwards,” as outlined
below.

Compilation is performed in a pipeline of stages that re-
ceive a PL/SQL function f as input and ultimately emit plain



PL/SQL SQL UDF plain SQL

iterative goto recursive recursive WITH RECURSIVE/ITERATE

f SSA ANF UDF SQL Qf

Figure 4: FromPL/SQL to plain SQL: compilation stages.

SQL queryQf ready to be inlined atf’s call sites. Refer to Fig-
ure 4 for an overview of these stages and the intermediate
query forms they consume and produce. The demonstration
makes all of these intermediate forms available for inspec-
tion in textual and/or graphical form (see Section 3).
From PL/SQL to goto. We begin by lowering the body of f

into static single assignment (SSA) form [3]. SSA preserves
the code’s imperative flavor but imposes restrictions on
variable assignment and usage that facilitate data flow anal-
ysis and a range of code simplifications. Expressions in
these SSA programs are regular SQL expressions (like the
embedded Qi ). Importantly, any PL/SQL iterative control
flow—e.g., LOOP, EXIT, CONTINUE, FOR, WHILE—is mapped to
SSA’s goto primitive. The resulting uniformity aids subse-
quent translation steps.
Note that the treatment of loops is a pivotal difference to
the related Froid effort in MS SQL Server [6]. Froid com-
piles PL/SQL conditionals and sequential statements into
plain SQL but will not admit any iterative control flow, ar-
guably a staple of the imperative programming paradigm.
We thus cover a significantly larger family of PL/SQLUDFs.

From goto to tail recursion. Unlike compilers for (functio-
nal) programming languages that pursue the reverse trans-
formation, we bring the imperative SSA program into the
restricted administrative normal form (ANF) [2]. Occur-
rences of goto are replaced by tail-recursive function calls.
We obtain a family of mutually tail-recursive pure func-
tions whose bodies are already free of any PL/SQL con-
structs. These functions could, in principle, be straightfor-
wardly transformed into plain SQL UDFs. We do not fol-
low this strategy here to avoid its substantial function call
overhead.

From tail recursion to WITH RECURSIVE. Instead, theseANF
functions are merged to yield a single body of code. Inside
that body, we locate non-recursive base cases as well as
the sites of tail calls and use these to complete the holes
in the generic SQL code template Qf of Figure 5 [4]. In
a nutshell, Qf uses a recursive common table expression
(CTE) to populate table runwhose rows track the evolving
state of f’s variables (also see Section 3). Since all recursive
calls are tail calls, the fixpoint computation performed by
the CTE [7] faithfully matches the semantics of the origi-
nalf [4].Qf exposes the innards of the “black PL/SQL box”f
and gives the RDBMS the opportunity jointly optimize Qf
(and the Qi it contains) with the residual SQL query.

Qinit

Qrec

⟨initialize variable states⟩

⟨compute variable state updates⟩

1 WITH
{

ITERATE
RECURSIVE

}
run("call"?", ..., force, Q, ..., result) AS (

2
3 UNION ALL

4

5 )
6 SELECT r.result
7 FROM run AS r
8 WHERE NOT r."call?";

Figure 5: Template for Qf. With the holes Qinit and Qrec
filled, this SQL code can be inlined at f’s call sites.

Compiling PL/SQL away is worth the effort. For func-
tion force, experiments on PostgreSQL 11.3 manifest that
Qforce only requires 43% to 66% of the run time of the PL/SQL
variant (see Figure 6awherewe vary the number of function
invocations as well as intra-function WHILE loop iterations
and thus control how many PL/SQL↔SQL context switches
occur). We observed similar substantial improvements for a
wide range of iterative PL/SQL functions [4].
Space-efficient tail recursion: WITH ITERATE. The more it-
erationsfperforms, the larger therunworking table built by
the recursive CTE in Qf becomes. The darker region in Fig-
ure 6a documents how this space burden affects the run time
of Qforce. Recall that run contains a trace of the state changes
of f’s variables. Any iteration (or equivalently, evaluation
of Qrec, cf. Figure 5) will only consult the most recent vari-
able states, however. An adaptation of WITH RECURSIVE that
only keeps the working table’s most recent row will thus
suffice—all other rows may be immediately discarded. Ear-
lier work [5] has coined the apt name WITH ITERATE for this
simple variant of recursive CTEs.We builtWITH ITERATE into
PostgreSQL 11.3 and indeed observe the expected additional
performance improvement over vanilla WITH RECURSIVE (see
Figure 6b). The effect is particularly pronouncedwhenmany
iterations are performed in scenarios of scarce buffer space

64 256 1024 8192
# bodies in plane (∼ iterations)

64
128
256
512
1024
2048
4096
8192

#i
nv

oc
at
io
ns

of
fo

rc
e

43 46 50 52 54 58 61 64
43 47 50 53 55 58 61 64
43 46 51 51 55 58 61 65
43 47 50 53 55 58 62 65
43 47 51 53 55 58 61 65
44 47 51 53 55 58 62 64
45 48 51 53 55 58 61 65
46 49 52 55 56 59 62 66

(a) Run time ratio Qf/f (in%),
# context switches varies.

64 256 1024 8192
# bodies in plane (∼ size of run)

1
2
4
8
16
32
64
128

PostgreSQL
buffersize

(M
B)

94 93 75 67 60 57 56 46
93 93 75 67 60 57 51 41
93 93 75 67 60 45 40 39
92 93 75 67 48 39 39 40
94 93 75 65 41 40 41 41
94 93 75 47 43 42 42 43
93 93 54 49 44 43 42 43
94 73 55 50 45 43 42 43

(b) Impact of WITH ITERATE
(ratio ITERATE/RECURSIVE in %).

Figure 6: Run time ratios (in %) on PostgreSQL 11.3.
Light colors indicate an advantage for compiled code.



Figure 7: PL/SQL functions may be edited while all intermediate forms and the final SQL code are updated live.

(lower right region of Figure 6b): WITH ITERATE allocates lit-
erally no working memory and thus fully delivers on the
space efficiency promise of tail recursion.

3 DEMONSTRATION SETUP
The compiler needs about 250ms to translate a PL/SQL func-
tion into its plain SQL variant. This enables an interactive
demonstration setup in which a PL/SQL function can be edi-
tedwhile it is compiled in the background and its SQL equiv-
alent is displayed live. We have built such a tight editor/-
compiler integration based on the widely known Compiler
Explorer (normally hosted at godbolt.org). Output win-
dows showing the pretty-printed intermediate forms—SSA,

run
force Q
(0,0) {a}
(0,0) {b,e}
(0,0) {e,c,f,g}
(0,0) {c,f,g}
(0,0) {f,g,d,h,i}
(0,0) {g,d,h,i}

(-2.4-10, 7.3-11) {d,h,i}
(-2.5-10,-2.3-11) {h,i}
(-2.8-10,-8.4-11) {i}
(-3.1-10,-1.2-10) {}
(-3.1-10,-1.2-10) {}

Figure 8: Traces disclose the
workings of functions.

ANF, plain SQL UDFs,
recursive CTE—as well
as diagrammatic render-
ings thereof (e.g., the
function’s control flow
graph from which the
SSA form is derived) up-
date live and can be
arranged at will. The
screenshot of Figure 7
shows this PL/SQL-spe-
cific Compiler Explorer.

This in-depth compile-
time account is comple-

mented by facilities that help to understand the compiled
function’s run-time behavior. Much like a single-stepping
debugger can provide, we output run tables that contain a
full history of variable state changes that explain how the

computation performed by the function body progressed.
To illustrate, the absence of nodes j, k, l in column Q of Fig-
ure 8 (≡ variable Q of Figure 2) indicates that the Barnes-Hut
optimization kept function force from inspecting these leaf
nodes of the quad tree (cf. Figure 3).
Since we pursue source-to-source compilation, changes to
the underlying RDBMS backend are not required. Code gen-
eration can indeed be adapted to target Oracle, for exam-
ple [4]. The live demonstration is based on PostgreSQL 11.3
(but any recent version will do). Since we emit plain SQL, a
rich dialect of PL/SQL functions can be compiled to also run
on SQLite3, a system that does not natively support UDFs at
all.

We further bring our PostgreSQL kernel that implements
WITHITERATE. The on-site audiencewill be able to experience
the additional speed-up that comes with space-efficient it-
eration.

REFERENCES
[1] J. Barnes and P. Hut. A Hierarchical O (N logN ) Force-Calculuation

Algorithm. Nature, 324(4), 1986.
[2] M. Chakravarty, G. Keller, and P. Zadarnowski. A Functional Perspec-

tive on SSA Optimisation Algorithms. Electronic Notes in Theoretical
Computer Science, 82(2), 2004.

[3] R. Cytron, J. Ferrante, B.K. Rosen, M.N. Wegman, and F.K. Zadeck. Ef-
ficiently Computing Static Single Assignment Form and the Control
Dependence Graph. ACM TOPLAS, 13(4), 1991.

[4] C. Duta, D. Hirn, and T. Grust. Compiling PL/SQL Away. In Proc. CIDR,
2020.

[5] L. Passing, M. Then, N. Hubig, H. Lang, M. Schreier, S. Günnemann,
A. Kemper, and T. Neumann. SQL- and Operator-Centric Data Analyt-
ics in Relational Main-Memory Databases. In Proc. EDBT, 2017.

[6] K. Ramachandra, K. Park, K.V. Emani, A. Halverson, C. Galindo-
Legaria, and C. Cunningham. Froid: Optimization of Imperative Pro-
grams in a Relational Database. Proc. VLDB, 11(4), 2018.

[7] SQL:1999. Database Languages–SQL–Part 2: Foundation. ISO/IEC 9075-
2:1999.


