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ABSTRACT

We advocate to express complex in-database computation

using a functional style in which SQL UDFs use plain self-

invocation to recurse. The resulting UDFs are concise and

readable, but their run time performance on contemporary

RDBMSs is sobering. This paper describes how to compile

such functional-style UDFs into SQL:1999 recursive common

table expressions. We build on function call graphs to build

the compiler’s core and to realize a series of optimizations

(reference counting, memoization, exploitation of linear and

tail recursion). The compiled UDFs evaluate efficiently, chal-

lenging the performance of manually tweaked (but often

convoluted) SQL code. SQL UDFs can indeed be functional

and fast.
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1 RECURSION CLOSE TO THE DATA

Move your computation close to the data! This age-old mantra

of the database community [34] asserts that we can expect

a SQL query engine with immediate access to the data and

its indexes to perform significantly better than an external

processor to which we have to ship the data first. Indeed,

if the computation exhibits a query-like style—and thus pri-

marily filters, recombines, groups, and aggregates data—the

lore holds up. But what if the computation is complex and

deviates from common SQL query shapes, in particular (iter-

ative or) recursive algorithms over tabular data as they
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(c)Matrix dtw(i, j).

Figure 1: Time series X = (xi ), Y = (yj ), and their tabular

encodings. The path of 0s in matrix dtw(i, j) indicates
how to warp the series (e.g., x4 warps to y

5
, shown as

in (a)) for an overall distance of dtw(5, 5) = 0.

are pervasive in, e.g., graph processing or machine learn-

ing [8, 13]?

As one example of such recursive computation, consider

dynamic time warping (DTW) which is widely used in ma-

chine learning approaches to time series classification [14]

and a variety of further domains. Given two time series

X = (xi )i=1...n and Y = (yj )j=1...m , DTW measures the dis-

tance between X and Y if we stretch (or compress) them along

the time axis to align both optimally [4]. Its textbook-style

recursive formulation reads:

dtw(0, 0) = 0

dtw(i, 0) = dtw(0, j) = ∞

dtw(i, j) =
��xi − yj

�� +min


dtw(i − 1, j − 1)
dtw(i − 1, j )

dtw(i , j − 1)

 .
(DTW)

Figure 1 shows tabular encodings of X, Y and also illustrates

how DTW maps (“warps”) the series’ elements onto each

other.

Functional-style UDFs.With tables X and Y of Figure 1(b)

in place, one possible in-database formulation of algorithm

DTW is the recursive SQLUDF dtw of Figure 2. The body of

UDF dtw resembles algorithm DTW as closely as SQL syntax

would allow it. In particular,

• the recursion in DTW directly maps to recursive calls of

dtw (the call sites are marked 1 to 3 in Figure 2), and

• the three-way case distinction in DTW manifests itself as

a SQL CASE expression in dtw.



1 CREATE FUNCTION dtw(i int, j int) RETURNS real
2 AS $$
3 SELECT CASE
4 WHEN i=0 AND j=0 THEN 40.0
5 WHEN i=0 OR j=0 THEN 5𝛿 -- 'Infinity'::real
6 ELSE (SELECT abs(X.x - Y.y)
7 +
8 LEAST(1dtw(i-1, j-1),
9

2dtw(i-1, j ),
10

3dtw(i , j-1))
11 FROM X, Y
12 WHERE (X.t,Y.t) = (i,j))
13 END;
14 $$ LANGUAGE SQL STABLE STRICT;

Figure 2: DTW as a recursive SQL UDF written in func-

tional style. 1 , 2 , and 3 mark the recursive call sites,

4 and 5 designate the non-recursive base cases.

Recursive self-invocation and function definition by case

distinction are staples of a functional style of programming as

it is used in, e.g., Haskell [20]. We thus refer to dtw in Figure 2

as a functional-style UDF.

Unfortunately, RDBMSs tend to penalize the functional UDF

style at query run time or make its use practically impossible.

PostgreSQL, for example, re-plans the body of a recursive

UDF anew every time the concrete arguments of its next

invocation are known [29, §38.5]. Even if body plans were

cached, plans would need to be re-instantiated on every func-

tion call and later teared down on function return [29, §43].

Microsoft SQL Server [35] and Oracle [27] restrict UDF re-

cursion depth to 32 and 50, respectively, which renders the

functional style impractical from the start. MySQL generally

disallows recursive self-invocation in SQL UDFs [23, § 24.2.1].

UDFs and their invocation can be such a pain point for con-

temporary DBMSs that it is common developer wisdom to

avoid them at all cost. Recent research has indeed aimed to

get rid of functions at run time altogether [11, 18, 33].

Yet, our recursion-centric style incurs lots of function

calls. The naive evaluation of a call dtw(i,i) with i > 0

leads to about 0.87 × (5.83
i
/
√
i) invocations of the function’s

body [15]. A trace of PostgreSQL 11.3 in fact finds dtw(2,2)
to plan and run the UDF’s body exactly 19 times; dtw(10,10)
does so 12,146,179 times. Given this, the steeply growing

evaluation time of dtw, shown as in Figure 3, does not

surprise. PostgreSQL spends 72 % of this time on query plan-

ning. (This and all following experiments were performed

with PostgreSQL 11.3 running on a 64-bit Linux x86 host

with 8 Intel Core™ i7 CPUs clocked at 3.66GHz and 64GB

of RAM, 128MB of which were dedicated to the database

buffer. Timings were averaged over 10 runs, with worst and

best run times disregarded.)

Compiling functional-style UDFs to recursive CTEs.

We tackle the disappointing performance of recursive SQL

UDFs and develop a compilation technique that translates
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Figure 3: Run time of implementations of dtw(i,i),
measured on PostgreSQL 11.3 (logarithmic scales).

This work aims for the grey area of low run times.

these functions into equivalent, efficient recursive common
table expressions (CTEs) [28, 36]. The function compiler is

realized as a SQL-to-SQL source translation that does not in-

vade the underlying RDBMS. The present work thus enables

SQL UDFs in functional style on all RDBMSs mentioned so

far, even if those systems do not natively support such recur-

sive functions or even lack any UDF facility. Once compiled,

no traces of the original UDF, say f , need to remain. The

emitted CTEs may either (1) serve as a replacement for the

recursive body of f or (2) be fully inlined into the SQL query

that invokes f such that both can be optimized and planned

in tandem.

For dtw, a basic implementation of this compilation strat-

egy can already generate code (see in Figure 3) that

surpasses the performance of a purpose-built CTE (see )

and rivals that of a specifically optimized variant of the same

( ). Hand-crafting and tweaking such CTEs tends to lead

to complex code that is far from the original algorithm (DTW

in this case).

Call graphs as data. Using function compilation to free

developers from the need to come up with hand-crafted

CTEs is a first step that we describe in Sections 2 and 3.

The ultimate goal is to improve the compiler such that the

execution times of generated CTEs fall into the area

of Figure 3. In Section 4, we develop such improvements all of

which rely on an explicit, tabular representation of the UDF’s

call graph. See Figure 4(a) for the call graph of dtw(2,2).
Sharing. An edge x ys in the call graph for recursive

function f indicates that the evaluation of f (x) has led
to a recursive call f (y) at call site s . Recursive calls that

are shared by multiple invocations of f —like (1,1), (0,1),
and (1,0) in Figure 4(a)—indicate the potential to avoid

repeated computation. Such sharing can drastically reduce

the call graph size and thus evaluation effort, in the case of

dtw(i,i) fromO(5.83i ) down toO(i2). The CTEs generated
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Figure 4: Call graphs for two invocations of UDF dtw.

by the UDF compiler build call graphs that exploit shar-

ing opportunities (Section 2 and Section 3.1) for speedy

evaluation and the early disposal of obsolete intermediate

results (Section 4.1). Implementations of recursive UDFs

in comtemporary RDBMSs do not take advantage of call

sharing as far as we can tell.

Memoization. If we keep the return values of invocations

of f in a table memo, we can use these memoized results to

further trim call graph size. See Figure 4(b) which shows

the trimmed call graph of dtw(3,3) after dtw(2,2) and its

recursive calls have been evaluated and memoized earlier.

Memoized recursive calls act much like base cases, immedi-

ately return a value, and thus prune entire call subgraphs.

Automatic memoization based on the trimming of an explic-
itly represented call graph is in contrast to programming

language implementations of memoization. The latter dy-
namically discover a function’s call graph through program

or interpreter instrumentation, typically realized in terms

of higher-order functions or macro facilities [17, 26]. Since

both are unavailable in an RDBMS, we opt for the first-

order call graph as data implementation (Section 4.2). No

changes to the RDBMS or its query evaluator are required.

The generated code operates in two phases in which the

construction and trimming of the call graph preceeds the

actual function evaluation.We quantify the impact of sharing

andmemoization whenwe introduce both in the sequel. If we

compile linear- or tail-recursive functions, the resulting

call graphs are branch-less chains. This presents additional

optimization opportunities which we explore in Section 4.3.

While we focus on DTW to illustrate our findings, Section 5

will discuss a wide variety of problems that all have compact

and efficient formulations as SQL UDFs in the functional,

recursion-centric style.

2 FUNCTION CALL GRAPH

CONSTRUCTION AND EVALUATION

Let f be a SQL UDF in functional style with scalar return

type τ (τ is real for our example dtw). Recursion is expressed
in terms of self-invocation of f at, in general, several call

sites (cf. 1 to 3 in the body of dtw in Figure 2).

The compilation of f replaces its body with SQL code that

will evaluate a call, say f (args), in two steps:

(1) Construct call graph д that originates in root args and
records the arguments of all recursive calls that f would

perform. Since we do not evaluate these calls yet, f ’s
recursive calls may only depend on args and any other

database-wide accessible data, but not on f ’s return val-

ues.
1
The leaves of д are the non-recursive base cases

entered by f (cf. 4 and 5 in the body of dtw).
(2) Traverse д bottom up, evaluating the body of f for the

recorded arguments. Evaluating the body for root args
yields the overall result for the original call f (args).

We elaborate on this two-step evaluation here and discuss

its efficient SQL implementation in the subsequent Section 3.

call_graph
in site fan out val

i j out i j
(2,2) 1 3 (1,1) �
(2,2) 2 3 (1,2) �
(2,2) 3 3 (2,1) �
(1,1) 1 3 (0,0) �
(1,1) 2 3 (0,1) �
(1,1) 3 3 (1,0) �
(1,2) 1 3 (0,1) �
(1,2) 2 3 (0,2) �
(1,2) 3 3 (1,1) �
(2,1) 1 3 (1,0) �
(2,1) 2 3 (1,1) �
(2,1) 3 3 (2,0) �
(0,0) � 0 (0,0) 0.0
(0,1) � 0 (0,1) 𝛿
(1,0) � 0 (1,0) 𝛿
(0,2) � 0 (0,2) 𝛿
(2,0) � 0 (2,0) 𝛿

Figure 5: Tabular call

graph for dtw(2,2).

The call graph provides us

with an explicit run-time rep-

resentation of the work that

needs to be performed to

evaluate f (args). Figure 4(a)
shows the graph we con-

struct for a call dtw(2,2).
Edges in outsite man-

ifest that an invocation with

arguments in leads f to

call itself at site site with

new arguments out. Refer
to Figure 2 for dtw’s origi-

nal body and its recursive

call sites 1 to 3 . Edges

in val towards a leaf val
indicate that f (in) enters a
non-recursive base case that

returns result value val of
type τ .
In anticipation of our plan to construct call graphs us-

ing SQL, Figure 5 shows a straightforward tabular encod-

ing call_graph of the graph in Figure 4(a). A call edge

in outsite is encoded as row (in, site, fanout, out,�) in
which fanout indicates that a call f (in) leads to a total of fanout
immediate recursive invocations; fanout = 3 characterizes

dtw’s three-fold recursion. Likewise, base case edge in val
maps to row (in,�,0, in, val). We use � to abbreviate SQL’s

NULL.

1
This is a syntactical restriction that may be sidestepped by writing f in

tail-recursive form. See Section 4.3 and Section 5.



Slices+Calls

Construct

Invoke

call_graph(f , in, graph):
1 calls← [ ]
2 for each call site site of f that would recursively

invoke f (out) if the arguments are in do
3 calls[site] ← out
4 edges← ∅
5 if calls , [ ] then
6 for each (site, out) in calls do
7 add in outsite to edges
8 else
9 val ← evaluate body of f for arguments in
10 add in val to graph
11 edges← edges \ graph
12 for each · out· in edges do
13 add call_graph(f , out, graph ∪ edges) to graph
14 return graph

Figure 6: Call graph construction (pseudo code). In-

voked via call_graph(f , in,∅), returns a set of edges.

Step 1: Call graph construction can be described as a gene-

ric recursive process that accepts a function f and argu-

ments in. The pseudo code routine call_graph(f , in, graph)
of Figure 6 does exactly that. Parameter graph, initially ∅, is

used to accumulate the set of edges for the call graph of f (in).
We have already formulated this and following routines in a

style that allows their direct transcription into SQL. You will

find corresponding pseudo and SQL code regions in Section 3

to carry identical labels :
Slices+Calls Given incoming argument in, we collect the
arguments out of all immediate outgoing calls of f (if any)

in associative array calls. To implement this, we embed

a sliced version of f ’s body into routine call_graph that

computes out but does not perform recursive calls. We

focus on slicing in Section 3.4.

Construct If we have found that f (in) leads to outgoing

calls, construct corresponding edges in outsite using

array calls. Otherwise, argument in led f into a base case:

compute f ’s return value val and add in val to the call

graph.

Invoke Continue call graph construction for any outgoing ar-

gument out we have not encountered earlier, accumulating

constructed edges in set graph.
Call sharing. Note that call_graph(f , args,∅) will con-
struct a directed acyclic graph (or DAG) if the original UDF

invocation f (args) terminates: a circular call graph would

indicate a lack of recursion progress in f (which would thus

loop indefinitely).

Most importantly, however, any node in (but the root) in

the call graph may have an in-degree greater than one (see

node (1,1) in Figure 4(a), for example). Since we assume f
to be a pure function void of side effects, any call f (in) will
yield the same computation. Node in, the sub-graph below

it, and all evaluation effort for the sub-graph may thus be

shared by all callers.

1 20 40 60 80 100
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i
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Figure 7: Sharing saves

function invocations.

Routine call_graph imple-

ments this sharing through the

accumulation of a set of edges.
The space savings can be sub-

stantial, as Figure 7 shows. Call

sharing leads the compiled SQL

code to construct a call graph of

(i + 1)2 nodes for a call dtw(i,i),
see in Figure 7. In contrast,

recall our discussion in Sec-

tion 1 in which we found Post-

greSQL to not share the evalu-

ation effort of individual calls

(this applies even if f is ex-

plicitly marked as being free of

side effects [29, §38.7]). Without

sharing, the nine inner nodes of the dtw(2,2) call graph

in Figure 4(a) would already unfold into a graph of 19 invo-

cations. In general, PostgreSQL’s built-in function evaluation

faces dtw call graphs of exponential size ( ) which ulti-

mately leads to disastrous function run times.

Step 2: Call graph traversal (evaluation). Under our new

regime, the generated SQL code finalizes function evalua-

tion via a traversal of f ’s call graph. Figure 8(a) depicts this
traversal for the sample call graph of dtw(2,2) shown in Fig-

ure 4(a).

The graph is traversed layer-by-layer, starting with the

bottommost layer in which the call graph’s base case edges

in val indicate that f (in) = val. We record these discov-

eries as rows (in, val) in the two-column table evaluation
(see Figure 8(b)). This table is initially empty but will hold

the results of all recursive function calls once evaluation is

complete.

A call graph node in with n recursive calls, in
out1
outnsn

s1
...

,

becomes available for evaluation in the next higher layer

once all n return values of these function calls are found

in table evaluation, i.e., if {(out1, val1), ... , (outn, valn)} ⊆
evaluation. We then evaluate f for argument in using a

simplified function body in which recursive call site si has
been replaced by vali (i = 1, ... ,n). Evaluation of the body

will return value val, which we enter as row (in, val) into
table evaluation.

Figure 8 shows that this iterative evaluation process parti-

tions the call graph for dtw(2,2) into four layers, traversed

upwards from the leaves (dark to light). After the fourth it-

eration table evaluation holds row ((2,2),1.0) which com-

pletes the evaluation with the final result dtw(2,2) = 1.0.

Routineevaluation(f , args, e, graph) of Figure 9 realizes this
traversal for call graph graph with root node args. While we

traverse graph, we use parameter e to accumulate the ta-

ble of result rows. Initially, we expect e to only hold the
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(a) Layer-wise call graph traversal.

evaluation
in val

(2,2) 1.0
(1,2) 1.0
(2,1) 0.0
(1,1) 0.0
(0,2) 𝛿
(0,1) 𝛿
(0,0) 0.0
(1,0) 𝛿
(2,0) 𝛿

(b) Results.

Figure 8: A bottom-up call graph traversal populates

table evaluation with the results of all recursive calls

performed during the evaluation of dtw(2,2).

Schedule

Body

Traverse

evaluation(f , args, e, graph):
1 go← [ ]
2 for each in ·· in graph such that e[in] = � do
3 ret ← [ ]
4 for each such call in outsite do
5 if e[out] = � then
6 continue at 2

7 ret[site] ← e[out]
8 go[in] ← ret
9 returns← [ ]
10 for each (in, ret) in go do
11 val ← evaluate body of f for arguments in

with the nth recursive call site replaced by ret[n]
12 returns[in] ← val
13 e ← e ∪ returns
14 if e[args] = � then
15 return evaluation(f , args, e, graph)
16 return e

Figure 9: Call graph traversal (pseudo code).

rows (in, val) derived from graph’s base case edges in val
(see above).

Schedule Populate associative array go with those unevalu-

ated nodes in (e[in] = �) that are now available for evalua-

tion since the return value of all outgoing recursive calls

can be found in e . In go[in], store array ret which maps f ’s
recursive call sites to their return value recorded in e .

Body For each scheduled node in, evaluate the body of f in

which recursive call sites have been replaced with their

return values found in go[in]. Use returns to record the

result val of the body evaluation for argument in.
Traverse Accumulate result rows in e . If graph’s root args
is not found in e yet, continue the traversal (on the next

higher layer). Otherwise, evaluation is complete. Return e .

Compiled UDF = call graph construction + traversal.

To compile functional-style UDF f , we replace its original
body with the composition of call graph construction and tra-

versal. Figure 10 shows the corresponding pseudo codewhich

we will transcribe into proper SQL in the upcoming Section 3.

Graph
Base

Eval

Result

f (args):
1 graph← call_graph(f , args,∅)
2 base cases← [ ]
3 for each in val in graph do
4 base cases[in] ← val
5 e ← evaluation(f , args, base cases, graph)
6 return e[args]

Figure 10: (Pseudo) code to replace the original body of

UDF f . A SQL formulation is developed in Section 3.

(Note how Base primes the result table using graph’s base
case edges as described above.)

Let us close with a few notes on the merits of this call graph-

centric approach to UDF compilation. Besides the opportu-

nity to share calls and thus evaluation effort, we find

• call graphs to be sufficiently general to represent n-way
recursion (like the three-way recursion in DTW). Some

functions lead to simpler, linear call graphs and we discuss

how to exploit this in Section 4.3.

• Layer-based node scheduling uncovers independent calls:

the for each in region Body of routine evaluation can

process all body evaluations of one layer in parallel.

• Further opportunities for parallel evaluation on a coarser

level present themselves as call graphs with independent

sub-graphs. (This is not pursued in the present paper.)

• Traversal-based evaluation creates a table filled with the

results of all intermediate recursive calls. Future calls to f
can benefit if this table is kept around (see Section 4.2).

3 COMPILING FUNCTIONAL-STYLE UDFs

TO RECURSIVE CTEs

We now describe the SQL-to-SQL compiler that translates a

given functional-style UDF f into recursive common table

expressions. The compiled code is assembled from

• two SQL code templates (transcriptions of the two rou-

tines call_graph and evaluation of Figures 6 and 9 from

pseudo code to SQL), and

• excerpts—so-called slices—of the original body of f which

we insert into those two templates.

The emitted code is entirely based on recursive CTEs and

does not contain self-invocations of f .

We pursue a SQL source-to-source translation and thus ex-

pect the input UDF f to adhere to the SQL dialect described

by the grammar of Figure 11. Start symbol udf restricts our

treatment to functions that

• are free of side effects (in PostgreSQL, such UDFs may be

tagged as STABLE or IMMUTABLE [29, §38.7], also see Sec-

tion 4.2), and

• return values of some scalar type τ .



udf F CREATE FUNCTION f (id, ... ,id) RETURNS τ
AS $$ q $$ LANGUAGE SQL STABLE STRICT;

q F ℓ SELECT e AS id, ... ,e AS id
[
ℓ FROM t AS id, ... ,t AS id (optional FROM

[
ℓ WHERE e ] ] and WHERE clauses)

e F ℓ 𝜇(e, ... ,e) (n-ary operator 𝜇)

| ℓ f (sql, ... ,sql) (recursive call site)

| CASE ℓ WHEN sql THEN e ELSE e END (conditional)

| ℓ (q) (scalar subquery)

| ℓ sql (arbitrary scalar expression)

t F ℓ (q) (tabular subquery)

| ℓ id (table name)

sql F any scalar SQL expression without recursive call sites

f F name of recursive SQL UDF to be compiled

id F SQL identifier (table, column, alias, parameter)

τ F scalar SQL type

ℓ , ℓ F unique expression labels

Figure 11: A grammar for functional-style SQL UDFs.

Expression labels ( ℓ , ℓ ) are internal to the compiler.

The UDF’s body is formed by a top-level SELECT-FROM-WHERE
block in which scalar and tabular subexpressions (cf. non-

terminals e and t ) may nest to arbitrary depth. The grammar

distinguishes scalar expressions that may and may not con-

tain self-invocations of f (non-terminals e and sql, respec-
tively). This already rules out some queries in which calls

to f depend on each other. Ultimately, slicing (Section 3.4)

will identify all queries that exhibit such problematic inter-

dependencies.

Unique labels ℓ and ℓ are used to identify subexpressions,

e.g., a function’s call sites. Labels are internal to the parse

tree only.

3.1 SQL Template: Call Graph Construction

The recursive common table expression of Figure 12 com-

putes the tabular encoding (recall Figure 5) of the call graph

for f(args). In SQL code templates, cursive type indicates

template text that needs to be replaced. We use overlines to

abbreviate comma-separated lists of columns. Further, for

f(args) ≡ dtw(i,j), f.args denotes dtw.i, dtw.j.
To illustrate their workings, regions in the SQL code

directly relate to those in the pseudo code of Figure 6:

Slices Compute two-column table slices in which a row

(i, outi ) indicates that the evaluation of f(args) reaches call
site si and would invoke f(outi ). If call site si is not reached
for arguments args, record (i, ⊺

) in slices instead.
2
Ta-

ble slices will carry n rows if f has n recursive call sites

(for dtw, n = 3 with si = i ).

2
Any distinguishable SQL value may be used to represent

⊺

(“bottom”).

Slices

Calls

Construct

Invoke

A

1 WITH RECURSIVE call_graph(in,site,fanout,out,val) AS (
2 SELECT ROW(f.args) AS in, edges.*
3 FROM
4 (WITH slices(site,out) AS (
5 SELECT 1 AS site, (slice(f, s1, [f.args ])) AS out
6 UNION ALL
7

...
8 UNION ALL
9 SELECT n AS site, (slice(f, sn, [f.args ])) AS out
10 ),
11 calls(site,fanout,out,val) AS (
12 SELECT s.site, COUNT(*) OVER () AS fanout, s.out, NULL AS val
13 FROM slices AS s
14 WHERE s.out <> ⊺

15 )
16 TABLE calls
17 UNION ALL
18 SELECT NULL as site, 0 AS fanout, ROW(f.args) as out,
19 (body(f, [NULL::τ,...,NULL::τ ], [f.args])) AS val
20 WHERE NOT EXIST (TABLE calls)
21 ) AS edges(site,fanout,out,val)

22 UNION -- recursive UNION

23 SELECT g.out AS in, edges.*
24 FROM call_graph AS g, LATERAL
25 ⟨ A with f.args replaced by (g.out).args ⟩
26 )

Figure 12: Call graph construction (SQL template, com-

pare with Figure 6). Note: code block A occurs twice.

To obtain outi , we evaluate slice(f, si , [f.args ]), the sliced
variant of the body of f in which all subexpressions have

been removed that are irrelevant to the evaluation of f’s
argument outi at call site si . Slicing [38, 41] is an estab-

lished code transformation technique that we adapt for SQL

in Section 3.4. The result of slice(dtw, 1 , [i,j]) is shown
in Figure 13.

Calls For each recursive call site si that has been reached,

collect (the tail of) its call graph edge outisi in ta-

blecalls. We use window aggregateCOUNT(*)OVER() [29,
§4.2.8] over the non-empty slices to find the number of

recursive calls performed by f(args) (recall our discussion
of column fanout in Section 2).

Construct If, instead, arguments args led to a base case (i.e,
table calls is empty), evaluate the body of f for args to

obtain return value val. Construct (the tail of the) base

case edge val. We use body(f, [e1, e2, ...], [x1, x2, ...]) to
reproduce the body of UDF f in which call sites and ar-

guments have been replaced by expressions ei and x j , re-
spectively. See Figure 14. Since the recursive call sites are

irrelevant in a base case, the template sets ei to NULL of

type τ .
Call and base case edges jointly form table edges that will

be added to the call graph.

Invoke Add edges to the existing call graph. Proceed with

call graph construction, now using the arguments out of
the just added graph edges g as arguments to f. As per



slice(dtw, 1 , [i,j]) =

1 SELECT CASE
2 WHEN i=0 AND j=0 THEN ⊺

3 WHEN i=0 OR j=0 THEN ⊺

4 ELSE ( SELECT ROW(i-1, j-1)
5 FROM X, Y
6 WHERE (X.t, Y.t) = (i, j))
7 END;

A B
C
D

E K 1
F G H
I

J

Figure 13: Slice of the body of UDF dtw for call site 1 .

Subexpressions irrelevant to the computation of the

arguments i-1, j-1 at call site 1 have been removed.

body(dtw, [e1,e2,e3], [i,j]) =

1 SELECT CASE
2 WHEN i=0 AND j=0 THEN 0.0
3 WHEN i=0 OR j=0 THEN 𝛿
4 ELSE (SELECT abs(X.x - Y.y)
5 +
6 LEAST( e1,
7 e2,
8 e3)
9 FROM X, Y
10 WHERE (X.t,Y.t) = (i,j))
11 END;

1
2
3

Figure 14: Body of UDF dtw with its call sites and argu-

ments replaced by e1,e2,e3 and i,j, respectively.

the semantics of a recursive CTE using UNION (see Line 22

in Figure 12), construction will terminate once no new

graph edges are discovered.

3.2 SQL Template: Call Graph Traversal

The SQL template of Figure 15 realizes the layer-by-layer call

graph traversal as introduced in Figure 9. Like the pseudo

code, it returns binary table evaluationwhose rows (in, val)
indicate that f(in) = val.

This SQL piece assumes that (1) f’s return values for base

cases are found in table base_cases(in,val), and (2) the tab-
ular encoding of the call graph is in found table call_graph:

Schedule Identify unevaluated nodes gwhose recursive calls

(of which there are g.fanout many) are all found in ta-

ble evaluation. Collect the calls’ return values in SQL ar-

ray ret.3

Body For each such node go, evaluate the body of f with its

call sites replaced by the return values found in go.ret.
Record the found results in table returns(in,val). (As
mentioned in Section 2, all of these body evaluations are in-

dependent andmay be evaluated in parallel by the RDBMS.)

Traverse Add returns to evaluation to form the overall

known results so far. The CTE will continue to iterate un-

til the result for argumentf.args is indeed found inresults.

3
For brevity, we use custom aggregate array_gather(v,i) which builds

array a with a[i] = v . Workarounds in standard SQL are easily defined.

Schedule

Body

Traverse

1 [WITH RECURSIVE] evaluation(in,val) AS (
2 TABLE base_cases
3 UNION ALL -- recursive UNION ALL
4 (WITH e(in,val) AS (TABLE evaluation),
5 returns(in,val) AS (
6 SELECT go.in,
7 (body(f, [go.ret[1],...,go.ret[n]],
8 [(go.in).args ])) AS val
9 FROM (SELECT g.in, array_gather(e.val,g.site) AS ret
10 FROM call_graph AS g, e
11 WHERE g.out = e.in
12 AND NOT EXISTS (SELECT 1 FROM e WHERE e.in = g.in)
13 GROUP BY g.in, g.fanout
14 HAVING COUNT(*) = g.fanout
15 ) AS go(in,ret)
16 )
17 SELECT results.*
18 FROM (TABLE e UNION ALL TABLE returns) AS results(in,val)
19 WHERE NOT EXISTS (SELECT 1 FROM e WHERE e.in = ROW(f.args))
20 )
21 )

Figure 15: Bottom-up call graph traversal (SQL tem-

plate, compare with Figure 9).

Graph

Base

Eval

Result

1 CREATE FUNCTION f(args) RETURNS τ
2 AS $$
3 WITH RECURSIVE call_graph(in,site,out,val) AS (
4 ⟨see Figure 12⟩
5 ),
6 base_cases(in,val) AS (
7 SELECT g.in, g.val
8 FROM call_graph AS g
9 WHERE g.fanout = 0
10 ),
11 evaluation(in,val) AS (
12 ⟨see Figure 15⟩
13 )
14 SELECT e.val
15 FROM evaluation AS e
16 WHERE e.in = ROW(f.args);
17 $$ LANGUAGE SQL;

Figure 16: Final compiled SQL code to replace the

functional-style UDF f. (Compare with Figure 10.)

We note that the code regions Schedule and Traverse
in Figure 15 contain non-monotonic SQL constructs—aggregates

and NOTEXISTS, in particular—that some RDBMSs rule out

syntactically if they appear in a recursive CTE. The CTEs

discussed here are accepted by PostgreSQL [29], HyPer [24],

or Umbra [25], for example. Section 4.3 presents simplified

evaluation templates for linear- and tail-recursive UDFs

that work across all systems that support WITHRECURSIVE.

3.3 Emitted SQL Code

The compiler completes its job by emitting the SQL functionf
of Figure 16 which glues the two SQL templates together.

Just like the pseudo code of Figure 10, Graph and Base pre-

pare the call graph and base case tables as expected by CTE

evaluation (see above). From this table evaluation, Result



ℓ f (sql
1
,...,sqln) •→ {[ ℓ ]}

ei •→ πi
��
i=1...n

ℓ 𝜇(e1,...,en) •→ {[ ℓ ]} ⊕
⋃

i=1...n
πi

ℓ sql •→ {[ ℓ ]}

q •→ π

ℓ (q) •→ {[ ℓ ]} ⊕ π ℓ id •→ {[ ℓ ]}

e1 •→ π1 e2 •→ π2

CASE ℓ WHEN sql THEN e1
ELSE e2

END
•→ {[ ℓ ]} ⊕ (π1 ∪ π2)

ei •→ π1i
��
i=1...n tj •→ π2j

��
j=1...k e •→ π

s SELECT e1 AS id11,...,en AS id1n
f FROM t1 AS id21,...,tk AS id

2k
wWHERE e

•→ {[ f ]} ⊕
⋃

j=1...k

π2j ⊕ {[w ]} ⊕ π ⊕ {[ s ]} ⊕
⋃

i=1...n
π1i

Figure 17: q •→ π derives the set π of evaluation paths for SQL query q. Operator ⊕ combines two path sets:

π1 ⊕ π2 = {p1 ∥ p2 | p1 ∈ π1,p2 ∈ π2} (∥ denotes path concatenation).

1 SELECT CASE
2 WHEN i=0 AND j=0 THEN 0.0
3 WHEN i=0 OR j=0 THEN '𝛿'
4 ELSE ( SELECT abs(X.x - Y.y)
5 +
6 LEAST( dtw(i-1, j-1),
7 dtw(i-1, j ),
8 dtw(i , j-1))
9 FROM X, Y
10 WHERE (X.t, Y.t) = (i, j))
11 END;

A B
C
D

4
5

E K M
L

N 1
2
3

F G H
I

J

Figure 18: (Prefix tree of) Evaluation paths of UDF dtw
superimposed on its body. [ A , B , ...] shown as A B ···.

extracts f’s return value for argument args to deliver the

function’s final result.

This purely CTE-based form of f serves as a drop-in re-

placement for the original functional-style UDF.

3.4 Slicing for SQL

With slice(f , si , ·) of Figure 12 we were after a “cut-down”

version of f ’s original UDF body in which only those expres-

sions are retained that are relevant to the evaluation of the

argument expression outi at call site si . It is crucial that outi
evaluates the same in both, the original as well as the sliced

body.

This closely resembles program slicing [41] in which a

program is reduced to contain only those statements that

are relevant to the execution of a given statement s (the

slicing criterion). Slicing has originally been introduced to

aid program analysis and debugging [38, 40]. Here, we adapt

slicing to functional-style SQL UDFs to aid their compilation

to CTEs.

Evaluation paths. In the statement-by-statement execution

of an imperative program, we can identify the trace of state-
ments [3] that have been executed before slicing criterion s .
In an expression-based language like SQL, an expression e1
is entered before e2 if an expression evaluator begins the eval-

uation of e1 before it starts to evaluate e2. This is the case
if

• e2 is a subexpression of e1 (in this case, the evaluation of

e2 finishes before e1), or
• e1 binds a variable that is in scope in e2, or
• e1 is a predicate that may inhibit the evaluation of e2.
Given a query q, we use q •→ {p1, . . . ,pn} to compute its set

of evaluation paths. Each path pi is a sequence of expression
labels [ ℓ , . . . ] (see Figure 11) which stand in for their associ-

ated expressions eℓ . Label 1 precedes 2 in pi (or: 1 <pi 2 ),

if e1 is entered before e2 in q. Figure 17 defines •→ in terms

of inference rules that inspect the syntax of q.

Figure 18 superimposes the evaluation paths of UDF dtw
on its body query. We see that evaluation path [ A , B , C , 4 ]

contains the expressions entered before base case literal 0.0
(label 4 ) is evaluated. One evaluation path leading to call

site 1 is p = [ A , B , C , D , E , F , G , I , J , K , L , N , 1 ]. We find

the FROM clause ( F ) and table X ( G ) in p as these bind row

variable X that is in scope in expression 1 . (There is a second

path to 1 that routes through table Y, label H .) Further, since

the WHERE clause ( I ) and its predicate J control whether 1

is evaluated for a given variable binding, we find I <p 1

and J <p 1 as well.

Note that evaluation paths reflect dependencies between

query subexpression prescribed by the SQL semantics [36]

and are independent of any particular order that a RDBMS

may choose to evaluate q.

Call site slices. We build on evaluation paths and define

slice(f , si , [x1, x2, ...]) as follows:
(1) Let q denote the body query of UDF f . Derive its set π

of evaluation paths via q •→ π . Let π [si ] ⊆ π hold the

subset of paths that contain call site label si .
(2) The labels in C = {si } ∪

⋃
p∈π [si ]{c | c <p si } represent

the expressions in q that are entered before si on some

evaluation path. To guarantee that the resulting slice

will not depend on other self-invocations of f , we impose

the syntactic restriction that C may not contain call site

labels other than si .
(3) Find the sliced query q− = q⇓C to remove expressions

not relevant to the evaluation of the arguments at call

site si . ·⇓C is defined in Figure 19 and discussed below.



(Rec) ℓ f (sql
1
,...,sqln)ww�

C
=

{
ℓ ROW(sql

1
, ... , sqln) if ℓ ∈ C

⊺

otherwise

(Op) ℓ 𝜇(e1,...,en)ww�
C
=

{
ei⇓C if E = {i}

⊺

otherwise

with E = {i ∈ 1 ...n | ei⇓C ,

⊺

}

(Sql) ℓ sqlww�
C
=

{
ℓ sql if ℓ ∈ C

⊺

otherwise

ℓ (q)ww�
C
= ℓ (q⇓C) (Sub)

ℓ idww�
C
=

{
ℓ id if ℓ ∈ C

⊺

otherwise

(Tbl)

CASE ℓ WHEN sql THEN e1
ELSE e2

END

wwwww�
C

=

CASE ℓ WHEN sql THEN e1⇓C
ELSE e2⇓C

END
(Case)

s SELECT e1 AS id11,...,en AS id1n
f FROM t1 AS id21,...,tk AS id

2k
wWHERE e

wwwww�
C

=



s SELECT ei⇓C AS id1i
f FROM t1 AS id21,...,tk AS id

2k
wWHERE e

if

{ s , f , w } ⊆ C,
E = {i}

(Select)

s SELECT DISTINCT e⇓C
f FROM t1 AS id21,...,tk AS id

2k
if { f , w } ⊆ C (Where)

tj⇓C if

f ∈ C,
T = {j}

(From)

s SELECT ⊺

f FROM t1 AS id21,...,tk AS id
2k

wWHERE e
otherwise (Sfw)

with E = {i ∈ 1 ...n | ei⇓C ,

⊺

}

T = {j ∈ 1 ...k | tj⇓C ,

⊺

}

Since the labels inC reflect

the evaluation order of

SELECT-FROM-WHERE blocks

(see Figure 17 for the •→

rule for such blocks), w ∈

C ⇒ f ∈ C and s ∈

C ⇒ { f , w } ⊂ C (i.e.,
WHERE is evaluated after

FROM and SELECT is evalu-

ated after WHERE). Rules Se-
lect, Where, From thus

cover the possible slicings

of the block.

Figure 19: q⇓C slices SQL query q to expose the arguments of the recursive call at the call site identified by C.

(4) [Post-processing only.] Return q− with f ’s arguments

replaced by expressions x1, x2, ....

SQL transformation q⇓C is, again, defined by syntactic case

analysis on q. Set C guides the slicing which replaces irrel-

evant subexpressions by

⊺

, an arbitrary yet distinguished

SQL value that SQL template call_graph uses to detect that

the evaluation of q has not entered call site si (Figure 12,

see Calls ). Notes on selected cases of q⇓C in Figure 19:

Rec If this is the call site we are after ( ℓ ∈ C), remove the

recursive call to f and package its n arguments using a

row constructor. Otherwise, the expression is irrelevant.

Op If the call site is found in the ith argument of n-ary op-

erator 𝜇 (ei⇓C ,

⊺

and thus E = {i}), keep slicing that

argument ei . Otherwise discard the operator entirely.

Sql Do not descend further into scalar SQL expression sql as
it will contain no call site (recall Figure 11).

Case Preserve the CASE to ensure that branches e1 and e2 are
(not) evaluated under the same conditions as in the origi-

nal query. Recursive application of ·⇓C replaces irrelevant

branches by

⊺

.

Select For a call site found in SELECT expression ei , keep
the FROM and WHERE clauses as these bind in-scope row

variables id21, . . . , id2k and guard expression evaluation

through predicate e , respectively.

Where To slice for a call site inside a WHERE predicate e ,
move e into the SELECT clause where we can slice e to

extract and observe the call’s argument values.

Figure 13 shows the result of slice(dtw, 1 , [i,j]). For that
example, set C is { A , B , C , D , E , F , G , H , I , J , K , L , N , 1 }.

Conditional on i and j, the resulting slice either returns

(a) the arguments ROW(i-1, j-1) of the call at site 1 , or (b)

⊺

if dtw enters a base case.

4 COMPILER OPTIMIZATIONS

As Figure 3 indicated for dtw, the performance difference be-

tween functional-style UDFs ( ) and their compiled coun-

terpart ( ) can already be drastic. Tweaks to the vanilla

compilation technique developed so far, let us enter the area

of run times that can surpass manually crafted recur-

sive CTEs. Below, we discuss three such tweaks and quantify

their run time impact.

4.1 Evaluation with Reference Counting

In each iteration of a recursive common table expression

WITH RECURSIVE t AS (q1 UNION ALL q2), query q2 finds in t
all rows that were produced in the CTE’s last iteration [36].

SQL implementations hold these newly found rows of t in
the so-called work table [29, §7.8], ready to be read by q2.

CTE evaluation of Figure 15 thus unions known and new

results (see Line 18 in Traverse ) to ensure that Schedule



sees all results found so far: the evaluation of a call graph

node may depend on a return value found in any lower layer

of the graph traversal (cf. node (1,2) in Figure 8(a) which

depends on nodes (0,2) and (0,1) two layers down, for

example). As evaluation goes on, this leads to monotonically

increasing work table sizes which negatively affects CTE run

time performance.

call_g
in ref

i j
(2,2) �
(2,2) �
(2,2) �
(1,1) 3
(1,1) 3
(1,1) 3
(1,2) 1
(1,2) 1
(1,2) 1
(2,1) 1
(2,1) 1
(2,1) 1
(0,0) 1
(0,1) 2
(1,0) 2
(0,2) 1
(2,0) 1

We observe that the in-degree of a call graph
node determines how often its return value

is referenced during the evaluation of parent

calls. This suggests the following adaptation

of the compilation scheme:

(1) To the tabular encoding of the call graph,

add extra column ref to hold the in-

degree of each node. For dtw(2,2), this
augmented call_graph table is shown

on the left (also see Figure 5).

(2) Modify CTE evaluation: if a known re-

turn value has been referenced to con-

struct a new result, place it in the work

table with a decreased ref value. Should

the ref value reach 0, drop the return

value from the work table entirely.

Figure 20(a) traces the work table size as CTE evaluation
traverses the call graph for dtw(100,100). The vanilla CTE
of Figure 15 indeed processes work tables of monotonically

increasing size, growing from 201 to 10,201 rows across the
200 iterations. This incurs a noticeable run time penalty for

evaluation processes that recurse deeply ( in Figures 20(a)

and 20(b)).With reference counting, the work table size never

exceeds 300 rows and decreases sharply as the traversal

approaches the ever-narrower layers at the top of dtw’s call
graph. These savings add up favorably at run time (see

in both figures).

1 50 100 150 200

10

100

1,000

10,000

vanilla

ref. counting

# of CTE iterations (i = 100)

work table size (# of rows)

(a) Work table shrinking.

5 20 40 60 80 100
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1,000

2,000

3,000
vanilla

ref. counting

i

t [ms]

(b) Run time reduction.

Figure 20: Evaluating dtw(i,i): Impact of reference

counting on work table size and CTE run time.

While sharing helps to keep work table sizes in check dur-

ing call graph construction, reference counting does the same

during evaluation. The evaluation of dtw(300,300) (see Fig-

ure 23) builds a work table that never exceeds 901 rows if

reference counting is performed. Even with a modest data-

base buffer size of 128MB (i.e., 0.2% of the host’s RAM of

64GB), no buffer read or write I/O operations are performed

by PostgreSQL.

4.2 Memoizing Return Values Across Calls

The result of call graph traversal is an entire table of function

return values (recall Figure 8(b)). From this evaluation table,

the compiled UDF f extracts the result associated with the

call graph’s root args (see Result in Figure 16). However,

the return values of all intermediate recursive calls are just
as precious, provided that

• we can expect f to be called many times (in a database

setting where UDF invocations are embedded in queries,

this would be the rule rather than the exception), and

• we know that f is referentially transparent [19], either

generally or at least within a defined context (e.g., inside
a transaction). In PostgreSQL, these degrees of referen-

tial transparency are declared via the function modifiers

IMMUTABLE or STABLE, respectively [29, §38.7].

Entries in table evaluation could then be used to accelerate

the evaluation of future calls to f.

To implement this style of memoization [22] for f, we follow
two simple steps:

(1) After an evaluation of f, add the contents of evaluation
to a table memo(in,val), discarding duplicate rows.

(2) Upon subsequent invocations f(args), treat the entries
in memo like additional base cases.
To implement this, use call_graph(f, args,memo) to con-
struct the call graph (we used call_graph(f,args,∅)
before, cf. Figure 6).

memo
in val

(2,2) 1.0
(1,2) 1.0
(2,1) 0.0
(1,1) 0.0
(0,2) 𝛿
(0,1) 𝛿
(0,0) 0.0
(1,0) 𝛿
(2,0) 𝛿 me
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e
n
t
r
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a
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Figure 21: memo
after dtw(2,2).

In the constructed call graph, each

such extra base case edge in val
replaces an entire subgraph (with

root in) whose recursive calls need

not be evaluated since val is already
available. Figure 4(b) shows the call

graph for dtw(3,3) which has been

constructed based on the return values

of an earlier dtw(2,2) invocation. In

this case, only the 7 calls at the fringes

of the graph fordtw(3,3) remain to be

evaluated (down from 16 calls without

memoization).

Note that this particular flavor of memoization already is

beneficial if the memo table holds the root(s) of any subgraph
of the current call graph [6]. In a sequence of invocations of f,
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Figure 22: Series of dtw(i,i) invocations: Re-using memo
table entries effectively cuts down call graph size.
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Figure 23: In-database vs. external processing: average

evaluation time of dtw(i,i) with random i ∈ {1,...,n}
(RDBMS: PostgreSQL 11.3, ext. processor: Python 3.7).

we can thus expect to start saving evaluation effort already

early on. This is in contrast to plain memoization which

only remembers the single return value at the root of an
evaluated call graph [26]. Figure 22 plots the call graph sizes

we observed during a sequence of 100 invocations of dtw(i,i)
with random i ∈ {1, ... , 100}. As expected, memoizing the

top-most root call reduces calls graph sizes over time ( ).

The memoization of subgraph roots ( ), however, is far

more effective, bringing call graphs down to size 1 already

after a dozen calls. (We repeated the random sequence of

invocations multiple times and report average call graph

sizes here.)

Memoizing non-root calls. Do functional-style SQL UDFs

pave a way to efficient recursive computation close to the

data? Our answer is the compiler of Section 3 with its ref-

erence counting and memoization optimizations enabled.

Figure 23 reports a significant run time advantage for the

compiled dtw ( ) over a hand-crafted CTE ( ). The latter

is slightly ahead for small time series lengthsnwhere its com-

paratively short planning time of 0.5ms pays off. The plan-

ning of the more complex SQL templates of the compiled dtw
clocks in at 2.5ms on PostgreSQL 11.3. Within reasonable

effort, however, memoization can be added only for the root

calls of this hand-crafted CTE: the return values of recursive

calls are not generally available in the work table populated

by a purpose-built CTE. Once we enter the area of calls with

sizable recursion depth, i.e., time series of length n > 70

for which the complexity of DTW’s three-fold recursion be-

comes relevant (recall Figure 7), the compiled dtw with memo
table thus has a much higher chance to benefit from ear-

lier evaluation work—even if only partially. The compiled

function scales to larger n ( ) in the same experiment.

In-database compiled UDF vs. external processor. For

DTW, a database-external Python 3.7 function barely keeps

up with the compiled recursive UDF. The Python-based im-

plementation pays the price for data serialization and con-

version to obtain access to the time series tables X and Y
(recall Figure 1(b)) before it can perform the actual DTW

computation (see in Figure 23). Interestingly, we are ab-

solutely required to write (or annotate) the recursive Python

code to use memoization: plain Python constitutes a hopeless

case ( ).

Wrapping memoization around recursive UDFs.Mem-

oization does not hinge on compilation. We can obtain fmemo
,

a memoizing variant of the recursive SQL UDF f, bywrapping
f’s body as shown in Figure 24, a first-order SQL implemen-

tation of the memoization scheme described by Norvig [26].

Wrapper Memoize extracts f’s return value from table memo
if present. Only if that fails, the original body of f is in-

voked (Body ). It is crucial that body recurses to fmemo
to en-

sure that non-root recursive calls, too, are served from memo.
INSERTINTO...RETURNINGval maintains table memo as a side-

effect of the evaluation of fmemo
but ultimately returns val

as expected by the caller. The function’s VOLATILE modifier

ensures that inserts into memo are immediately visible once a

recursive call returns [29, §37.7].

Memoize

Body

1 CREATE FUNCTION fmemo(args) RETURNS τ
2 AS $$
3 INSERT INTO memo(in,val)
4 SELECT m.* FROM memo AS m WHERE ROW(f.args) = m.in
5 UNION ALL
6 SELECT ROW(f.args), ⟨body of f, recurses to fmemo⟩
7 LIMIT 1
8 ON CONFLICT ⟨do not insert duplicates into memo⟩
9 RETURNING val;
10 $$ LANGUAGE SQL VOLATILE;

Figure 24: Wrapping recursive SQL UDF f to obtain its

memoization-based variant fmemo
.



min avg max min avg max min avg max

dtwmemo
7.9 11.5 1,246 7.9 12.6 8,082 7.8 50.1 47,298

compiled 3.4 13.6 150 3.4 14.8 655 3.4 23.0 15,409

50 100 300

time series length n

Table 1: Call times (in ms) for dtw(i,i) with random i ∈
{1, ... ,n}: memo-wrapped UDF vs. compiled UDF.

Table 1 reports on a comparison of call times for dtwmemo

(the wrapped variant of UDF dtw of Figure 2) and the com-

piled UDF. The memoization wrapper indeed delivers the

expected profound improvement over the vanilla UDF, avoid-

ing an exponential number of recursive calls. For smaller n,
the average call time over 1,000 calls now is comparable with

the compiled function. However, dtwmemo
still is a recursive

SQL UDF and thus exhibits the drawbacks discussed in the

introduction: the RDBMS needs to support recursive SQL

UDFs in the first place and has to permit recursion to signifi-

cant depth. Importantly, should memo not contain an entry

for arguments args (yet), recursive function calls remain the

major cost factor, as documented by the high maximum call

times (see columns max in Table 1).

4.3 Linear- and Tail-Recursive UDFs

Linear- and tail-recursive functions [1] exhibit common re-

cursion patterns that allow to notably simplify call graph

construction and evaluation. Such functions f may be char-

acterized by their (prefix tree of) evaluation paths (recall Sec-

tion 3.4 and Figure 18). Function f is

• linear recursive, if each subtree of paths rooted in a control

flow label ℓ contains at most one recursive call site (in

the grammar of Figure 11, dark control flow labels are

associated with CASE expressions),

• tail-recursive, if f is linear recursive and all recursive call

sites immediately follow their control flow label.

Linear recursion. Because any invocation of a linear-re-

cursive function f performs at most one recursive call, the

resulting call graph will be a chain. Graph traversal thus

does not need scheduling: exactly one node will be ready

for evaluation in each iteration. We thus can get by with the

simplified SQL template for evaluation in Figure 25 which

needs no Schedule code. In Traverse , exactly one node go
will be identified for body evaluation in Body as we walk the

call chain back towards its root.

Tail recursion.A tail-recursive function f does not perform

any computation after it returns from its (one) recursive tail

call [37]. Instead, computation is performed in accumulating

function arguments. The accumulators form the final result

once the function reaches its base case.

Traverse

Body

1 [WITH RECURSIVE] evaluation(in,val) AS (
2 TABLE base_cases
3 UNION
6 SELECT go.in,
7 (body(f, [go.ret,...,go.ret],
8 [(go.in).args ])) AS val
9 FROM (SELECT g.in, e.val AS ret
10 FROM call_graph AS g, evaluation AS e
11 WHERE g.out = e.in
15 ) AS go(in,ret)
21 )

Figure 25: Call chain traversal for linear-recursive f
(replaces the SQL template of Figure 15).

Graph
Base

Result

1 CREATE FUNCTION f(args) RETURNS τ
2 AS $$
3 WITH

{ ITERATE
RECURSIVE

}
call_graph(in,site,fanout,out,val) AS (

4 ⟨see Figure 12⟩
5 ),
6 base_cases(in,val) AS (

⟨see Figure 16⟩
10 )
14 SELECT b.val
15 FROM base_cases AS b;
17 $$ LANGUAGE SQL;

Figure 26: Complete SQL template for tail-recursive f.
The ITERATE variant allocates a single-row work table.

Since we record the values of these arguments in the call

chain’s nodes, the final return value of f is already known

once we have constructed the chain’s base case edge. Graph

traversal is not required: we can immediately read the result

off the base case edge. A separate evaluation step or SQL

template evaluation thus becomes obsolete. The complete
SQL template for the compilation of tail-recursive functions f
is reproduced in Figure 26. Note how Result simply extracts

the return value b.val from table base_cases as soon as

CTE call_graph has done its job.

WITH ITERATE. Beyond run time savings, tail recursion bears

the promise of being space-efficient (“tail recursion needs no
stack.” ) PostgreSQL fails to exploit this potential when it

executes non-compiled functional-style UDFs. In fact, Post-

greSQL’s recursion depth is limited: even with its maximum

stack depth increased to 16MB (default: 2MB), PostgreSQL

bails out with an overflowing stack after about 18,000 calls.
When we use WITHRECURSIVE to construct the call graph

of a function f, we effectively construct a trace of all invoca-

tions and their respective arguments. If f is tail recursive, ac-

cumulating this trace is wasted effort: no evaluation step ever

revisits the graph and the SQL template of Figure 26 indeed

only extracts its single base case edge (see Result ). Keep-
ing the most recently generated row in table call_graph



UDF Description Recursion Avg. Call Time [ms] Call Times Avg. Call Graph Size |memo|
UDF compiled 1,000 invoc.s UDF sharing+memo

comps test for connected components in a DAG 2-fold 357 26 (7.2%) 2,801 254 162,859

eval evaluate arithmetic expressions 2-fold 216 20 (9.2%) 1,675 13 7757

floyd find length of shortest path (Floyd-Warshall) 3-fold >8,000 14 (<1.8%�) 147,621 6 1,329

fsm parse molecule names using a state machine linear 659 102 (15.4%) 10 2 195,468

lcs find longest common subsequence of strings 2-fold 756 30 (3.9%) 14,865 95 50,038

mandel compute Mandelbrot set tail 280 27 (9.6%) 13 2 7,701

march trace border of 2D object (Marching Squares) linear 742 28 (3.7%) 391 4 27,018

paths reconstruct path names in a file system tail 474 46 (9.7%) 1,305 1,302 998

sizes aggregate file sizes in a directory hierarchy tail 144 67 (46.5%) 391 269 788

vm run a program on a simple virtual machine tail 207 9 (4.3%) 140 9 50

Table 2: A collection of SQL UDFs in functional style and their runtime performance before/after compilation.

thus would suffice. This is exactly the behavior of the hy-

pothetical WITHITERATE construct [28] which has been pro-

posed for inclusion in HyPer [24]. Adding the construct to

PostgreSQL 11.3 amounts to a modest local change [11]. If

WITHITERATE replaces WITHRECURSIVE in the template of Fig-

ure 26, the system indeed allocates a single-row work table

during the entire function evaluation process.

5 PERFORMANCE OF COMPILED UDFs

UDF compilation benefits a wide variety of recursive com-

putations. To make this point, we collected, compiled, and

evaluated 10 functions implementing a diversity of algo-

rithmic problems (see Table 2). Use cases include queries

over graphs (comps, floyd), expression/program interpre-

tation (eval, vm), string processing (fsm, lcs), traversal of
hierarchies (paths, sizes), generation of fractals (mandel),
and 2D graphics (march). Each UDF has been realized in the

recursive functional style, typically in about 5–15 lines of

SQL code.
4
The compiled variants of these functions employ

memoization of non-root calls. Linear- and tail-recursive

UDFs were compiled using the simplified templates of Sec-

tion 4.3, the reference counting optimization (Section 4.1)

has been applied to all others.

Table 2 lists the average call time in milliseconds across

1,000 random function invocations before and after compi-

lation (columns UDF/compiled under Avg. Call Time). For

fsm, mandel, and march the individual call times are so low

that we count batches of 500, 625, and 9 calls as a single

invocation, respectively.

• Compilation leads to a significant reduction in average call

time for all UDFs; some functions execute in less than 5% of

the time needed by their originals. We address particulars

below.

4
The PostgreSQL-compatible code for the original and compiled functions

is available at https://github.com/fsUDF/use-cases/.

• The execution of a whole series of function invocations

offers opportunities for memoization. The bars in the plots

under Call Times record how the evaluation time of sin-

gle invocations develops across the series. We see that

eval, floyd, or march can effectively reuse prior evalua-

tion efforts while paths and sizes fail to do so.

• The divergence of the call graph sizes for the original and

compiled UDFs is another indicator of the memoization

potential (columns under Avg. Call Graph Size). Mem-

oization turns entire call subgraphs into base cases and

can thus lead to a drastic reduction in the number of calls

performed. The price for memoization is the space used by

table memo. Column |memo| reports its size (in rows) after

all 1,000 invocations have been performed.

A closer look at some of these UDFs leads to interesting

observations about the functions’ behavior at run time:

eval: The two-stage compilation scheme effectively turns the

original top-down expression interpreter into a bottom-up

variant that processes all independent subexpressions in

one iteration step of CTE evaluation. Sharing and mem-

oization potential results from the evaluation of common

subexpressions in the input expression DAG.

floyd: Memoization brings the runtime of this textbook-style

(yet naive) purely functional implementation of the Floyd-

Warshall algorithm down to O(n3) fromO(3n)—in this par-

ticular case, it is compilation that enables a practical use

of the function in the first place. Table memo will ultimately

hold the matrix of shortest path lengths for the input graph.

This further brings down call times.

fsm: This deterministic finite state machine sees opportu-

nity for memoization if the parsed molecule names share

common suffixes. The runtime impact, however, is limited

since the number of recursive calls is small even for the

non-compiled UDFs (call graph sizes reflect the lengths of

the molecule names of about 10 characters).



All four tail-recursive UDFs have been translated using the

SQL code template of Figure 26. Use of WITHITERATE leads to

an evaluation in constant (single-row, even) work table space.

The presence of varying accumulating arguments, however,

limits these functions’ memoization possibilities (see mandel,
paths, and sizes).

sizes: The runtime of this function is dominated by a com-

plex array aggregate so that the overhead of recursive calls

plays a minor role only. An additional lack of memoization

opportunities explains the comparably modest gain in call

time performance.

vm: Memoization is possible for this simple virtual machine

since we run it on one program (computing Collatz’ 3n + 1
problem) and only vary the VM’s initial register contents.

Compilation lets the UDF interpret 16,665 VM instructions

per second (the non-compiled UDF runs at 690 instructions/s).

6 MORE RELATEDWORK

A division of complex computation between the database

system (where the data lives) and an external programming

language (where the processing takes places) is bound to

suffer from the DB/PL interface bottleneck. This fundamental

problem has been in focus for decades now but remains a

hard nut to crack to this day. DBridge, one notable and long-

running research effort initiated by Sudarshan, has developed

a variety of techniques to widen the bottleneck—the batching

of program-generated queries [31] and the compilation of

imperative PL into SQL code, for example [12]. We agree with

the colleagues that an answer to the challenge will be found

in a combination of techniques developed on both sides of

the DB and PL fence. Our take on computation close to the

data advocates to leave it in the hands of the RDBMS and to

apply PL-inspired compilation techniques [7, 26, 37] directly

to SQL, enabling a declarative and readable formulation of

recursive functions that can be efficiently evaluated by the

SQL processor itself.

In the face of computational workloads generated by ma-

chine learning [10, 39], we subscribe to “move the analysis,
not the data,” [8, 21] and expect the challenge of complex

in-database computation to become ever more pressing.

Recursive functions for SQL, specifically, have been on the ta-

ble again and again. R-SQL [2] translates SQL functions with

self-invocation into a sequence of SELECT and INSERT state-

ments. A generated external program—formulated in Python,

for example—then drives the iterative fixpoint evaluation

of this SQL core. As a consequence, R-SQL has to repeatedly

cross the DB/PL line at query run time, which is exactly what

we aim to avoid with our present work.

FunSQL [5] proposes a PL/SQL-like (functional) language

in static single assignment form that embeds SQL expressions.

The language is compiled into a data-flow graph of algebraic

operators—tail recursion is supported and leads to cycles

in the graph. We believe that SQL itself should be in focus

and try to use it to its fullest, both, as the language in which

computation is expressed and as the compilation target.

Recent work on RaSQL represents a pure-SQL approach

to recursion [16]. Algorithms are expressed in a generalized

recursive CTE form that can be evaluated efficiently, given

that the (aggregate functions in the) resulting queries have

the PreM property [42]. As we have observed in Section 4.2,

memoization is applicable to the arguments of the root call

only—the memoization of intermediate calls would need a

case-by-case treatment and only add to the complexity and

obfuscation of the CTEs.

To reduce the cost of function invocation to zero, Froid [32,

33] describes a conversion of (sufficiently simple) PL/SQL

functions into plain SQL code that can then be inlined in the

calling query. Although this has not been the focus of this

work, functional-style SQL UDFs that have been compiled

into recursive CTEs could be inlined as well: no recursive

self-invocations remain. (The most recent PostgreSQL 12

has indeed added support for such CTE inlining [30].) Once

inlined, the body of the compiled CTE can be optimized and

planned together with the enclosing query.

7 WRAP-UP

If an RDBMS implements recursive CTEs, then this work en-

ables that system to efficiently support functional-style UDFs

through SQL-to-SQL compilation. This applies to (1) Post-

greSQL, where compiled UDFs evaluate significantly faster,

(2) SQL Server and Oracle, where compiled UDFs lift strin-

gent restrictions on recursion depth, (3) MySQL and HyPer,

which forbid recursion in UDFs in the first place, and also

(4) systems like SQLite3, which do not implement UDFs at all

(inline the compiled body at the call site to obtain a function-

free query).

Recursive computation in SQL arises in user-defined func-

tions but can also occur in the translation of other advanced

query constructs. We are developing a compiler [11, 18] that

translates PL/SQL code, via an intermediate static-single as-

signment form, into tail-recursive functions in administrative

normal form [9]. In combination with the present results,

this enables truly efficient PL/SQL-to-SQL compilation on

all RDBMSs mentioned above, including those that have no

PL/SQL interpreter in the first place.

We argue that such democratization of efficient recursive

and imperative computation in SQL can be a core piece in

the in-database programming puzzle.
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