Datenbank Spektrum
https://doi.org/10.1007/s13222-020-00362-8

SCHWERPUNKTBEITRAG

®

Check for
updates

From Blackboard to Green Screen

Delivering a Semester of In-Depth Database Lectures via YouTube

Torsten Grust'

Received: 9 October 2020/ Accepted: 8 December 2020
© The Author(s) 2020

Abstract

We report on the conversion of two advanced database courses from their classical in-lecture-hall setup into an all-digital
remote format that was delivered via YouTube. While the course contents were not turned on their heads, throughout
the semester we adopted a video style that has been popularized by the live coding community. This new focus on
the live interaction with the underlying database systems, led us (1) to adopt the idea of SQL probe queries that are
specifically crafted to reveal database internals and (2) a study of database-supported computation that treats SQL like
a true programming language. We are happy to share videos, slides, and code with anyone who is interested.

Keywords Database course - YouTube - Live coding - SQL

1 From Blackboard to Green Screen

To help keep the COVID-19 pandemic at bay, during the
summer semester of 2020 all lectures at the University of
Tiibingen were held in an online-only format. This also
applied to the two courses “Implementation of Database
Systems” (referred to as DB2 in the following) and “Ad-
vanced SQL” which I read during that term. Foregoing the
established in-lecture-hall teaching and going fully digital
affected all aspects of these courses. Throwing the exist-
ing course material overboard simply was no option due to
limited preparation time. Instead, I opted to strike a middle
ground based on existing slide sets and code examples: de-
livering the material in terms of YouTube videos required
a shift of focus and reshuffling but did not turn the courses
on their heads. The end result were two variants of DB2 and
Advanced SQL which I consider the best I have yet deliv-
ered—depth was gained (not lost) and an extensive archive
of video and code material was created that I am happy to
share with everyone.

>4 Torsten Grust
torsten.grust @uni-tuebingen.de

Department of Computer Science, Database Systems
Research Group, University of Tiibingen, Tiibingen, Germany

Published online: 29 December 2020

The present article shines a light on what it meant to read
the courses in front of a green screen instead of a blackboard
(Sect. 2) and zooms in on details that made DB2 (Sect. 3)
as well as Advanced SQL (Sect. 4) work on YouTube.

2 Lecturing and Live Coding on YouTube

The backbones of both courses have always been two ex-
tensive slide decks, deliberately designed to be heavy on
illustrations and light on text. Since around 2016, I author
all slide decks via (1) Markdeep [13], a Markdown variant
that renders quite intricate drawings directly from textual
descriptions that are placed inline with all other slide text,
and use (2) PragmataPro, a font whose 9000+ characters
support to lay out code, tables, trees, graphs, and other reg-
ular structures (see Fig. 1). Markdeep-based slides render
instantly in any Web browser. The purely text-based input
facilitates slide versioning and collaborative authoring (e.g.,
via git), encourages hot fixes, and allows to keep slide text
as well as associated code samples together. We will see that
the latter was crucial. These slide decks were largely kept
unchanged, yet bugs were fixed and adaptations to the then
current versions of the database systems (PostgreSQL v12
and MonetDB 5) in use were applied.

Resting on the foundation of these slide sets provided
a good start. Still, an online course entirely based on these

@ Springer


https://doi.org/10.1007/s13222-020-00362-8
http://crossmark.crossref.org/dialog/?doi=10.1007/s13222-020-00362-8&domain=pdf
http://orcid.org/0000-0002-8279-0493

Datenbank Spektrum

Table parse

Layer 4 Expr lhs |from|to

Layer 3 -Sum Expr
/ \ Sum
Layer 2 — - —Tern— Term

| ( \ Prod
— Prod- Expr

- iteration #4
- iteration #3
- iteration #2
- iteration #1
Layer 1
found in

| (\ Plus
J iteration #0

|
Layer 0 Expr-Plus-Term-Mult-Fact Term
L I Hult
+ 1 x 1 Fact

hawr s pnciao

1 2 3 4 s

o To establish Term at Layer 2 (iteration #2), we need Prod 4 L
(Layer 1, iter #1 v) and Term (Layer 0, iter #0 4). o

Fig.1 Slide-only scene with talking head. The (parse) tree and table
on the slide are exclusively typeset using PragmataPro characters

decks, essentially consisting of hour after hour of narrated
slides in a series of YouTube videos, was a dire prospect
for both, students and myself. A closer look at the core
contents of both courses turned things around:

o DB?2 explores the internals of database systems through
the submission of probe (SQL) queries and subsequent
study of which system components interacted exactly
how to respond to these probes.

® Advanced SQL treats SQL like a true programming lan-
guage that can be used to express (very) complex com-
putation close to the data.

Both courses naturally lend themselves to a lecture format
that uses code extensively (predominantly SQL, but also
C, the systems’ implementation language) to develop and
express the central ideas, formulate examples, and devise
experiments. A focus on code and the delivery via YouTube
led to a course redesign that revolved around live coding.
There is a vibrant YouTube subculture on live coding in
many forms, and I entirely banked on its success from the
first to the last lecture video. The approach held the promise
that it would be far more engaging than the slide-only lec-
tures. The evaluation of both courses by my students—most
of which were a experienced live coding audience, it turned
out—showed that that promise was kept (see Sect. 5). Truly
live coding also kept me on my toes during the semester, in
the best possible sense.

Canned video, live coding. Given the nature of the
courses, live coding happened in the interactive read-
eval-print-loops (or REPLs) psgl and mclient of
PostgreSQL and MonetDB, respectively. Less often, the
UNIX shell was used to compile and run C code or initiate
benchmarking runs. To save time and not bore viewers
with the authoring and mistyping of larger code fragments,
I used a text editor with a split view: code was rearranged
and completed in the split’s top half, marked for evalua-
tion, and (on key press) submitted to the bottom half which
hosted the current REPL (see Fig. 2 showing a SQL query

@ Springer

85 EXPLAIN (ANALYZE, COSTS false)

SELECT COUNT(m-b)
FROM ~ many AS m
WHERE m.a > 42;

)
Rows Removed by Filter: 2461
Planning Time: 0.463 ms
Execution Time: 5221.182 ms

(8 rows)

Time: 5222.584 ms (00:05.223)
scratch=#

Fig.2 Scene with a split-editor view (SQL code in the top half, the
PostgreSQL REPL at the bottom). Code was edited and run live

on the top and the [tail of] its EXPLAIN output in the
bottom psgl shell). In the Markdeep source, these code
fragments live right next to the slide text they relate to. This
helps to keep both in sync and provides welcome context
for a piece of code that may have been written months
or years ago. Before shooting the video, I cut&pasted the
relevant fragments out of the Markdeep source into a blank
file such that (1) viewers could focus on the code alone and
(2) a code-only file could be distributed to the students:
everyone was able to replay the code experiments on their
own machines without the need to copy verbatim code
from slides (or, let alone, YouTube streams). Call-outs in
the videos explicitly named the current code file in use,
making it immediate for viewers exactly which piece of
the distributed material currently was in focus.

During the video shoot itself, I constantly switched from
slides to code and back. It was absolutely instrumental that
this switch was instant and seamless. Video recording and
streaming software supports such multi-scenario setups; we
come back to these at the end of this section. To tie slide
contents and code samples tighter together, I used the Prag-
mataPro font to typeset and edit both, leading to identifiers
and symbols on the slides that were instantly recognizable
in the live code. PragmataPro is highly legible yet narrow
which ensured that code fragments remained readable even
if the YouTube streams were watched at lower resolutions.
At the same time, this allowed slides as well as editor win-
dows to show reasonably-sized portions of code despite my
deliberate use of large fonts throughout.

While videos were recorded in advance and then up-
loaded to YouTube (see below), the coding during the shot
itself was truly live: I edited and ran code, applying mod-
ifications and extensions to it when they crossed my mind
during the shoot. Such ad-hoc code changes led to some
of the most insightful experiments during the semester but,
inevitably, also conjured syntactic or logic errors here and
there. I fixed these during the shoots while commenting on
my interpretation of error messages. Quite quickly student



Datenbank Spektrum

feedback made it clear that this was seen as insightful rather
than a nuisance. In consequence, I relied on pre-recorded
coding footage only once during the semester, when an
experiment based on CPU caching and branch prediction
behavior turned out to be so time-sensitive, that the simul-
taneously running video recording process would ruin all
measurements.

As intimidating and daunting the live coding sections
felt at first, the more I enjoyed them towards the end of the
semester. Knowing that true boo-boos could be removed
through post-shoot video editing helped but was seldomly
necessary. The frequent switches from slide to code and
back led to changes of pace, structured the video’s narrative,
and allowed for interactive bits of content that slides could
never contain. Sects. 3 and 4, respectively, discuss how the
DB2 and Advanced SQL courses were laid out to emphasize
the live coding parts.

Push and pull: weekly assignments. The prevalence of
code and the time spent to develop, modify, and discuss
fragments of SQL and C during the videos, also set the
tone for the weekly assignments that accompanied the en-
tire semester: students outright expected to read and write
significant chunks of code during these assignments. With
essential support by my assistants, we made sure that the
coding style (e.g., code formatting and choice of identifiers)
in the assignments matched those in the lecture videos. Af-
ter a while we found that many students submitted code that
mimicked the lectures’ style, leading to well-structured sub-
missions that were easy to grade by assistants and tutors.

For the DB2 course, the availability of the source code
for both, PostgreSQL and MonetDB, facilitated new kinds
of assignments. Once a lecture had identified an algorithm
or data structure as a central database kernel concept, we
asked the students to locate its implementation in the sys-
tems’ source. Invariably, this turned up variations or sim-
plifications of the original textbook concept, which helped
to appreciate the complexity of a true and tested DBMS.

Just like the lecture slides and associated code, we pub-
lished the assignments on GitHub. Students pulled the as-
signment text along with code skeletons and completed
the latter to build their solutions in teams of two, using
GitHub’s collaboration features (e.g., pull requests). Tutors
then annotated the solutions, pushing the graded submis-
sions back to GitHub from which the students pulled and
reviewed the tutors’ comments. The tutors’ ability to place
annotations right next to or inline with the students’ code
led to very specific and actionable feedback, sometimes in
the form of actual code snippets that would improve or
correct the students’ original solution. GitHub’s push-pull
model turned out to be a very fitting two-way communica-
tion channel that helped to establish a connection between
students and their tutors, making up at least partly for the
lack of face-to-face meetings.

Throughout the entire semester and beyond, we operated
a Discourse-based forum that served as a hub for discus-
sion of the video lectures and the weekly assignments. Any
new posting in that forum would trigger a notification such
that my research assistants and myself were able to re-
spond immediately, typically within less than 30 minutes.
This led to a lively atmosphere of back-and-forth in the
forum with several hundreds of postings during the overall
semester. While even a bustling forum is hardly a replace-
ment for live interaction, polls among the students showed
that, taken together, (1) a forum with quick turnaround, (2)
the around-the-clock availability of YouTube, and (3) the
ability to pause/rewind lecture videos as needed, formed an
acceptable replacement for in-class tutorial sessions.

Think like a YouTuber. Staying alert and attentive
throughout a 90-minute in-hall lecture is challenging.
To expect the same from viewers of a video stream at
home-where distraction is abundant—is straight out wishful
thinking. From the get go, I thus aimed for brief lecture
videos that averaged about 25 to 30 minutes in length
(looking back, I now regard this as the absolute maxi-
mum). While this payed respect to limited attention spans
and helped to blend with the “YouTube culture,” there also
were ample practical benefits:

o The resulting video recordings were of manageable file
size, typically less than 1 GB. This simplified file man-
agement operations and backup.

e Video editing software faced manageable file sizes and
remained snappy. In effect, video post-production time
shrank.

o Video upload to YouTube was a matter of seconds.
YouTube’s own encoding process for HD video com-
pleted in mere minutes.

Further, limited video length enforced a bite-sized presen-
tation of the course contents: it helped to entirely focus on
the B*tree leaf level now, take a breath, and zoom into in-
ner nodes only later instead of tackling a monolithic all-
embracing B*tree discussion. Student feedback was unani-
mously positive.

For DB2, the entire course contents was split up into
83 videos; for Advanced SQL, 58 videos were shot.
YouTube’s play lists turned out to be ideal to organize
these collections: viewers let their video players walk the
list from front to back to take in the entire contents. In
addition, I was disciplined in numbering all videos, gave
descriptive titles, and added keywords which facilitated to
hop and search through the play lists at will. Weekly as-
signments then referred to these video numbers ( “Relevant
videos for this assignment: #n to #m”). Students used these
hints to adjust the rate at which they consumed the play
lists.

@ Springer



Datenbank Spektrum

hi=$§ |
4?- & g y 4y
See? All values < 5 contiguous —» { ®
coinns I
6 ¢ TG es e
B 2 ce 8 S
AS 1S <e S
13 13 e 43
y ce 1 N
A2 & e 2. 7

Fig.3 An overhead camera captures quick scribbles on a blank sheet.
The temporary call-out was added during video post-processing

Not least important, a video length of about half an hour
helped me to keep my concentration throughout the shoot.
The intricacies of the upcoming slides (way less than 10 in
one video, typically) and code fragments to be discussed
in that time frame, were easily remembered. As a conse-
quence, almost all videos were shot in one take from start
to finish, a process that would not last much longer than
the 30-minute target. Still, close attention and care was re-
quired. After about four to five video shoots, I started to
feel exhausted and adjusted my daily pensum accordingly.

Video post-processing was kept to be very light and
typically required less than 15 minutes per video. Occas-
sionally, one of the above-mentioned boo-boos needed cut-
ting—the ability to insert fluid frame-to-frame transitions
made most of these cuts next to invisible. Whenever that
appeared helpful, I overlayed call-outs onto a sequence of
frames (see Fig. 3). These call-outs pointed out details I
forgot to mention during the shoot, contained corrections,
or directed viewer attention to a particular portion of the
frame. Used sparingly, these can be effective tools to touch
up an already canned recording. Call-outs also worked great
to sprinkle the videos with the occasional joking remark.

The video recording itself was performed with OBS',
a piece of free (in the beer as well as the GNU sense)
software that I cannot recommend highly enough. To set
the stage, I defined multiple screen layouts (scenes) between
which OBS could switch on a key press: intro as well as
outro screens, slides, and editor + REPL. I additionally set
up a scene for an overhead camera that would film my hand
while I was scribbling on a blank DIN A4 sheet (Fig. 3).
Now and then I used this additional camera to capture quick
sketches or examples that would benefit from a stepwise
development in front of the viewers.

Most of the scenes were configured to insert a camera
picture of my head and upper waist into the frame’s lower-
right corner as shown in Figures 1 and 2. Since such an

' Open Broadcaster Software, https://obsproject.com.

@ Springer

insertion unavoidably obscures parts of the slide or REPL
contents, I tried to minimize its impact and removed the
background behind me using a vanilla green screen. I am
fully aware that the value of falking heads is up for debate.
Over the course of the semester, I found myself to make
more and more use of the feature, though: it was essen-
tial that my arms and hands were captured which allowed
me to pinpoint caveats (ﬁ), rate a specific behavior of the
database system /D), or use similar gestures. The talking
head definitely helped to keep myself engaged and student
feedback suggests a similar effect on the viewers’ side.

Let me not close this section without stressing the im-
portance of good lighthing and audio recording. Two LED
light panels with adjustable white/yellow tint allowed me to
continue shooting even if exterior light was dim, e.g., due
to weather or time of day. The face and overhead cameras
definitely benefited from consistent and homegenous illumi-
nation. However, the key piece of the equipment puzzle has
been a professional microphone. Installed on an extendible
arm, I adjusted the microphone to be next to my mouth,
just outside the camera frame. Regarding audio quality, the
microphones built into off-the-shelf computers are simply
no match: in comparison to the studio mic, you sound as
if you were sitting in a tin can, honestly. If you can invest
into a single piece of recording equipment only, make it the
microphone.

3 DB2: Exploring Database Systems
Internals Through Query Probes

( Play list: http://tiny.cc/DB2-summer-2020.)

As its name already suggests, DB?2 is the second install-
ment in a tandem of courses on relational database tech-
nology. DBI introduces students to a variety of data mod-
els with the relational model being front and center. These
data models are never discussed without their associated
languages. Indeed, the lion share of DBI revolves around
SQL. While the language itself is a subject of core interest,
SQL is also used to explore other fundamental concepts of
the relational model-functional dependencies, say—in terms
of queries.

DB2, then, is meant to look behind the scenes and ex-
plore the internals of systems that implement the relational
data model. With an audience in mind that has heard DB,
the design of DB2 builds on a working knowledge of SQL:
the SQL language is used to formulate a series of queries
and updates that are crafted to exercise the individual
components of a database system. The system’s built-in or
tacked-on monitoring facilities are then used to observe the
database kernel’s response. This naturally leads to a study
of the kernel’s algorithms and data structures involved in
generating the result of our queries.


https://obsproject.com
http://tiny.cc/DB2-summer-2020

Datenbank Spektrum

This series of SQL probe queries replaces the com-
monplace walks through architectural “boxes-and-arrows”
diagrams that determine the structure of most DB2-like
courses. Instead, we bank on the natural curiosity felt by
novice and not-so-novice users of SQL: “How did that
query execute in only 5 milliseconds?”, or “Table size only
doubled but the query now used significantly more buffer
space—why?” 1f the series of probe queries is arranged
carefully, students will encounter database components in
a gradual fashion. Importantly, the presence and function of

the components is motivated by the probe query itself. Jug-
gling with probe queries further provides essential training
for database practice beyond the course: posing the right
inquisitive queries can disclose lots about any RDBMS’s
internals. The overarching rationale here is that the imme-
diate application of existing knowledge (SQL) is more en-
gaging and satisfying than the confrontation with the over-
whelmingly complex architecture of database components,
the operation of which is (initially, at least) opaque.

Table 1 Excerpt of probe queries used in the DB2 course. Each Q; represents a family of concrete, executable SQL queries

Components triggered/Concepts explained

MonetDB

Heap files and sequential scan, block I/O
on secondary storage, HDD/SSD access
time, free space management

Row storage, heap file page layout

Row layout and field access, padding
and alignment, NULL (non-)storage

Plan operators Seq Scan, Update, ...,
row versions (MVCC), row visibility
and timestamps, VACUUM

Temporal and spatial locality, buffer
cache, page replacement

Expression representation and interpre-

Predicate evaluation, selectivity, predi-

Index support, Index Scan, ordered
indexes (B*tree), inner/leaf nodes, clus-
tered indexes, Bitmap Scan, Bftree

Indexes on expressions, composite
indexes, matching queries and indexes,
string  pattern
matching, partial indexes, index-only
query evaluation, sorting with B*trees

Blocking plan operators, external merge
sort, replacement sort, sorting vs. hash-
ing, parallel grouping/aggregation

Join algorithms (nested loops, indexed
nested loops, merge, hash, hybrid hash)

Operator orchestration, Volcano-style
on-demand evaluation, pipelined opera-

Q SQL probe query (excerpt)
PostgreSQL
Q, SELECT u.* FROM unary AS u
@O, SELECT t.x FROM ternary AS t
Q; SELECT t.a,t.c FROM ternary AS t
Q4 INSERT INTO/UPDATE/DELETE FROM ...
Qs  (sequences of queries, e.g.,Q3; Q1; Q3)
Qs SELECT (complex expression)
tation, JIT compilation
FROM ternary AS t
Q; SELECT ... FROM ternary AS t
cate simplification
WHERE (predicate)
Qg SELECT ... FROM ternary AS t
maintenance
WHERE (indexed predicates)
Qo9 SELECT ... FROM ternary AS t
partitioned B*trees,
WHERE (complex predicates)
Q19 SELECT ... FROM ternary AS t
GROUP BY .../ORDER BY ...
Q11 SELECT ... FROM one AS o, many ASm
WHERE (join predicate)
Q1 (complex multi-clause SQL query)
tors, SQL cursors
Q13 (complex TPC-H join query)

Reading complex EXPLAIN plans,
query normalization, query unnesting,
join tree optimization, cost model, cost
of plan operators

Simple MAL programs, memory map-
ping (mmap () ), positional access into
vectors

Full vertical table fragmentation, posi-
tional BAT joins

Column vector (non-)access, cache pol-
lution

Delta tables, visibility of changes, de-
layed changed propagation

CPU cache hierarchy, predictable mem-
ory access, prefetching

Sequential evaluation vs. data flow, tight
loops, loop unrolling, SIMD parallelism

Selection vectors, control flow, branch
(mis-)prediction, branch-less selection

BAT properties (ordering), tactical opti-
mization, order indexes, cracker indexes

Order indexes, tactical optimization,
TIM sort, sort refinement

Join indexes, BAT partitioning, radix
cluster join

Full materialization, MAL instruction
scheduling, data dependencies and par-
allelism

@ Springer



Datenbank Spektrum

The DB2 material has been derived from a variety of
scientific papers, few textbook excerpts, developer blogs
and mailing list postings, Stack Exchange Q&As, SQL ref-
erences and standards, RDBMS documentation and ker-
nel source code, as well as experience and best practices.
A dedicated chapter on the choice of indexes that fit a given
set of queries was inspired by Markus Winand’s book SQL
Performance Explained [20]. This book is remarkably to-
the-point, uses clever notation to illustrate the value distri-
bution inside index pages, and is ripe with practical advice
on index definition and usage in contemporary SQL. A free
edition is available on the Web [21].

3.1 SQL Probe Queries

A course design based on the probe query idea necessarily
emphasizes (1) the formulation of numerous, typically brief,
SQL snippets and (2) the collection and analysis of the sys-
tem’s monitoring output. Both made DB2 a great match for
the live coding style of the YouTube-based lecture format.

In the edition of Summer 2020, DB2 put the spotlight on
PostgreSQL and MonetDB, two RDBMSs that implement
the relational data model, but occupy almost diametrically
opposed points of the design spectrum. PostgreSQL [14]
is a classical representative of page-based row storage for
wide tables over which a Volcano-style query engine evalu-
ates a rich dialect of SQL. MonetDB [3] holds binary tables
(BATs, column vectors) in main memory and relies on the
operating system to page memory in and out as required.
Query evaluation materializes all intermediate results and
is tailored to suit modern multi-level cache and CPU archi-
tecture.

If possible at all, we submitted the same query probes
to both PostgreSQL and MonetDB. This nicely highlighted
the consequences of the systems’ fundamentally different
design decisions. I am convinced that the probe query
paradigm is particularly good fit for a course that explores
multiple RDBMSs in parallel.

A selection of SQL probe queries. Table 1 reviews
an excerpt of the probe queries and the RDBMS compo-
nents that were triggered upon execution. In this overview,
MAL refers to the MonetDB Assembly Language, the sys-
tem’s internal query representation. Identifiers unary and
ternary refer to single- and three-column tables, respec-
tively. Likewise, one and many denote a pair of tables
whose rows are in a one-to-many relationship.

The course defines an entire family of such “playground
tables” whose deliberately simple and column and row sets
are tuned to support particular probe queries. A similar
remark appplies to the probe queries themselves. You will
find that query complexity grows as you walk down Table 1:
the queries aim to use the minimal number of constructs
and complexity required that already triggers the RDBMS

@ Springer

component in focus. The simpler the queries, the easier can
the system’s response be interpreted.

The probe query set is subject to extension, obviously.
In Summer 2020, regrettably, there was little time to ad-
dress transaction management. An upcoming DB2 edition
will likely employ pairs of probe updates that refer to the
same database objects to demonstrate the effects of isolation
levels, locks, or recovery logs.

The focus on code in DB2 suggested a hands-on style
even if SQL was of no immediate help in exploring specific
system internals and phenomena. Examples include:

o The manual construction of MonetDB MAL programs,
providing a sense of how close query compilation and
compiler construction, code generation in particular, re-
ally are.

o The development of C code that mimics MonetDB’s tight
core loops, an ideal scenario to experiment with the ef-
fects of branch prediction or memory prefetching in mod-
ern CPU and memory architectures.

o The browsing of PostgreSQL and MonetDB C source
code fragments. The quality of the former, in particular,
is remarkable: well-documented, consistently layed out,
with several algorithms implemented in their original,
almost textbook-style, form. PostgreSQL source would
make for a worthy subject of study in any software engi-
neering course.

3.2 “X-Ray Imaging” of RDBMSs

Database systems are not as black a box as they are often
perceived. Most come equipped with a number of moni-
toring and logging facilites off the shelf. PostgreSQL, in
particular, is to be applauded for its countless extensions
that open up additional sideways entries and provide new
views of its internals. It is commonplace for these exten-
sions to offer an API that is directly accessible from ad-hoc
SQL queries. Here, too, students are able to put acquired
SQL skills to good use. I regard PostgreSQL as the ideal
vehicle for a DB2-like course for this reason. (PostgreSQL
also is a perfect host for Advanced SQL as we will elaborate
on in Sect. 4.)

To make this point, the DB2 edition captured on YouTube
used the following means to study PostgreSQL’s response
to the probe queries:

Extension pageinspect: Renders detailed page layout
in heap (data) and index files. Provides all means required
to re-enact B*tree root-to-leaf traversal. Exposes internal
organization of individual rows, including NULL bitmaps
and storage of variable-width columns.



Datenbank Spektrum

Extension pg_ freespacemap: Displays available space
on heap file pages. Explains allocation of rows on INSERT.

Extensionpg_visibility: Makes row visibility map of
heap files accessible. Contains vital information used to
guide optimizer decisions for/against index-only scans.

Extension pg_buffercache: Provides tabular view of
buffer cache contents, along with details that guide the sys-
tem’s page replacement strategies (dirty bits, page usage
counters). Makes behavior of LRU and ring buffering tan-
gible.

Extension pg_stat_statements: Tracks execution
statistics for all SQL statements executed. Includes blocks
read/written/dirtied, rows touched, invocation counts, de-
tailed timings, efc.

Extension pgstattuple: Page-level statistics of row
size, fraction of invisible rows, and free space.

SQL's EXPLAIN facility: Arguably the central tool. DB2 in-
vested extra time to make sure that students learned to read
the finer details of query plans, including repeated execu-
tion (Loop) or non-execution of sub-plans, estimated row
size (width), buffer allocation, buffer hits and misses, di-
vergence of response and evaluation time, and JIT code
dumps (LLVM bitcode).

Planner control (enable_«): Disable specific plan op-
erators to influence optimizer decisions. e.g., enforce/
forbid Index Scan to illustrate its impact on plan per-
formance, affect query unnesting, prescribe join order. To
take full control over plan generation, we have developed
PgCuckoo [9] which admits the manual construction and
injection of sub-plans into PostgreSQL. (This was not used
during Summer 2020.)

Cost model control: Turn tuning knobs of the cost model
(like seq_page_cost or cpu_tuple_cost) to study
its impact on plan generation and simulate specific system
configurations. e.g., in-memory operation.

Hidden table columns: Expose system-maintained row de-
tails for inspection in regular SQL queries, including row
IDs (ctid) or MVCC row validity timeframes (xmin,
Xmax).

Config file postgresqgl.conf: PostgreSQL’s sizable
configuration file affects all core system aspects, from
buffer size to fine-grained control over plan parallelism.

The list is shorter on the MonetDB side, but the system
still provides essential looks behind the curtains:

1 SELECT i -- unary table of three rows
2 FROM generate_series(1,3) AS i —withi € {1,2,3}

3 UNION ALL -—  append tables

4 SELECT i -- unary table of 10° rows

s FROM generate_series(1000003,4,~1) AS i —- (in reverse i order)

6 ORDER BY i —- bring rows into order

7 LIMIT 3; —— restrict toi € {45.6}

Fig.4 Listing — SQL query that reveals the presence

SQL’s EXPLAIN facility: MonetDB exposes the MAL pro-
grams that implement SQL queries. MAL code may be
authored and submitted for execution via the mclient
REPL.

SQL's PLAN facility: As an intermediate form between SQL
and MAL, the system generates rather conventional alge-
braic plans which PLAN renders in the REPL.

mserverb5 runtime options: The MonetDB server process
can be instructed to verbosely log details on a variety of
runtime aspects. Option - -algorithms makes tactical
optimization decisions explicit, for example.

The stethoscope: Attaches to the server process to pro-
vide fine-grained MAL profiling information and instruc-
tion traces. (Not used during Summer 2020.)

Beyond these facilities, a little creativity can go a long
way to lay bare RDBMS internals and make them tangible
at the SQL prompt. The timing of successive SQL cursor
operations, for example, lets students experience the effects
of Volcano-style on-demand pipelining [8] or blocking plan
operators. To illustrate, timing the first five FETCH NEXTs
on a cursor defined over the SQL query of Fig. 4, will reveal
ORDER BY (and thus plan operator Sort) to be blocking.

As a last resort, both PostgreSQL and MonetDB were
subject to code instrumentation and subsequent recompila-
tion. We used this to inject logging instructions that revealed
the sets of access paths maintained by the PostgreSQL’s op-
timizer during join plan generation.

At the end of the semester, we found that the extensive
use of these monitoring hooks made the students signifi-
cantly more confident in dealing with the formerly black
boxes. Some “RDBMS magic” was lost underway, but this
is a price we were happy to pay.

4 Advanced SQL: Teaching SQL Like a True
Programming Language

(Play list: http://tiny.cc/AdvSQL-summer-2020.)

“Can you express (computational problem P) in SQL?”
For arbitrary P and for more than 20 years now, since
the advent of SQL:1999 [16], the answer to this question is
a definite “yes”: the introduction of recursive common table

@ Springer


http://tiny.cc/AdvSQL-summer-2020

Datenbank Spektrum

expressions (CTEs) has turned SQL into a Turing-complete
language. The question remains whether P indeed should
be tackled using SQL. The knee-jerk answer goes along the
following lines:

(1) Use SQL if P is “query-like,” i.e., if the iteration/
filtering/aggregation of data collections is prevalent in
the computation.

(2) Otherwise, rather use a real programming language.

The course Advanced SQL has been designed to chal-
lenge this far too common point of view. We set out to
use SQL in earnest and consider a substantially larger sub-
set of problems P to be in its reach. Advanced SQL does
not advocate to replace general purpose programming lan-
guages, but treats SQL as a true programming language
with very specific strengths (and, not the least, terseness
and style). The course is ripe with scenarios and use cases
that would not be considered “query-like” by most, but still
have elegant and efficient SQL solutions. A variety of these
problem scenarios is listed below. We pursue the goal to
boost the students’ ability to think and write in SQL, cer-
tainly way beyond the SELECT-FROM-WHERE class of
problems.

A division of complex computation between the database
system (where the data lives) and an external programming
language (where the processing takes place) is bound to suf-
fer from the infamous DB/PL bottleneck [5]. In the face of
ever more workloads that are data-intensive and computa-
tionally complex—think database-supported machine learn-
ing [2]-I do think that Advanced SQL is a timely course
offering: move your computation close to the data [15] has
never been a more important credo.

Straight in line with the overarching theme of this arti-
cle, Advanced SQL promotes to read and write lots of SQL
code. Since some of the computational problems we tackle
are algorithmically complex, the associated SQL text may
indeed be substantial in size. At points, Advanced SQL de-
votes entire series of slides to develop a single query. The
course thus discusses techniques to author large queries,
predominantly based on the use of common table expres-
sions (WITH) in which, helpfully, the reading and evaluation
order of SQL aligns. Much like for DB2, this code-centric
approach in the lectures also determines the style for the ac-
companying assignments: students author many-line SQL
statements and the lectures slides and videos offer methods
to organize the resulting code.

The focus of Advanced SQL deliberately is on the syn-
tax, semantics, pragmatics, and—first of all-practical use of
SQL. Aspects of the language’s implementation or opti-
mization are not on the table: this is the realm of DB2.
We aim for efficient formulations but, for once, this takes
the back seat behind expressiveness, readability, and good
style. By the end of the course, some may argue that we

@ Springer

have crossed the borders of what should be expressed in
SQL-this may apply to the use of non-linear recursion
which is perfectly expressible and usable in PostgreSQL,
for example. Here, our rationale is to bend the language
until it breaks: knowing SQL’s limits helps to assess its
applicability.

Advanced SQL uses PostgreSQL’s dialect of SQL. The
system offers a stable, well-documented, and complete im-
plementation of SQL:2003 [17] that is constantly being
modernized. In particular, recursive CTEs in PostgreSQL
come with less restrictions than their counterparts in Ora-
cle or Microsoft SQL Server. 1 used PostgreSQL v12.1 in
the videos of the Summer 2020 course, but any version 11
or beyond would have been workable.

SQL beyond SELECT-FROM-WHERE. True to its de-
nomination, the course only spends the first few lectures
to remind students of the basics of the relational model and
the SELECT-FROM-WHERE backbone of SQL. The course
then dives deep into advanced ideas in SQL, among these:

e SQL binds row variables to row values of row types.
More core rather than an advanced fact, remembering it
is key to appreciate concepts like subquery correlation or
LATERAL bindings.

o Table cells may hold values of complex type 7 (e.g.,
arrays or JSON objects) and SQL is equipped with func-
tions that convert between such cell contents and tables
of simple values. This suggests a general methodology to
turn a SQL into a processor for t-typed data:This multi-
staged approach naturally leads to the use common table
expressions early on in the course.

1. Unfold t values into regular tables. If ¢ = array, then
this is readily performed via table-valued function
unnest() jointly with WITH ORDINALITY.

2. Use SQL constructs to process these tables.

3. Fold the resulting table back into t values, carefully
re-establishing the complex stucture of t. For 7 =
array, use an ordered array_aqgg () aggregate.

e For any row, window functions provide fine-grained ac-
cess to its immediate or even remote row neighborhood.
This admits the elegant expression of a whole family of
algorithms based on scans or parallel-prefix computa-
tions [1].

e Common table expressions can express iterative or re-
cursive computation [6]. SQL’s fixpoint-based seman-
tics is a perfect fit for many algorithms—if it is not, book-
keeping can be introduced systematically to maintain
algorithm state and ensure termination. This discussion
constitutes the course’s core part.

e PLSQL interleaves set-oriented SQL evaluation with
the statement-by-statement execution of side-effecting
commands. Most developers are well-versed in this im-
perative style of programming. However, it comes with



Datenbank Spektrum

Compress image by identifying pixel runs of the same color: WITH RECURSIVE

cells(iter,x,y,state) AS (

Table original Table encoding

X —
1234567

x|y [pixel run | length |pixel FRON

Y
1
11 1 1
211l l—= ] 2 5 1
66| 0 12? 5 ]
— 706 13 1

run: 51 WHERE c0.iter < <iterations>

)

1
7
3]
4
S
3

o Here: assumes a row-wise linearization of the pixel map.
e In b/w images we may omit column pixel in table encoding.

SELECT c0.iter + 1 AS iter, c0.x, c0.y,
cO.state ® COALESCE(agg.Astate, <z>) AS state
cells AS cO LEFT OUTER JOIN

(%////%) AS agg(x,y,bstate)

ON (c0.x, c0.y) = (agg.x, agg.y)

o Design: no agg(x,y, ) if cell @ x,y doesn't change state.
o Assume that z is neutral element for : s ® z = s.

c
T S —_—
s enn e
Tl TBem T"TERe "
Tl s "Em " =

Fig.5 Excerpt of the slide material (focus on window functions and recursion) developed for the Advanced SQL course. a Run-length encoding of
a pixel image. b Piecemeal construction of a complex query. ¢ States of a SQL-based liquid simulation

the substantial cost of a constant back and forth between
the SQL and PL/SQL execution modes [4]. PL/SQL thus
cannot provide a general one-stop answer to database-
supported computation.

Complex computation close to the data. Coverage of
the above SQL concepts, however, is not what primar-
ily determines the flavor of Advanced SQL. Rather, the
course focuses on algorithmic challenges and then iden-
tifies the SQL constructs required for their solution. To
frame these challenges, extra effort was invested to de-
vise scenarios off the beaten paths—not the least, this fa-
cilitated the production of slides and varied assignments.
I made a point to never use scenarios like the well-trod-
den employees-departments-projects: these are
overused, uninspired, and hardly suited to engage students
in deep thinking and query authoring.

A selection of the algorithmic problems discussed in Ad-
vanced SQL is found below [in brackets, we point at SQL
constructs that helped tackle these problems]:

Shape scanner: Given an unknown shape in the two-di-
mensional plane, perform a scan to trace its border. Use
these traces to render the shape. [Non-recursive CTEs, it-
eration via table-valued function generate_series (),
geometric objects and operations.]

Finding seats: In a partially occupied cinema seating plan,
find a group of close seats that can host a group of friends.
This problem was lifted straighted out of ACM’s ICPC
annual programming contest [10], a source of inspiration
that I highly recommend. [Table-valued functions, WITH
ORDINALITY, LATERAL.]

Visibility in the hills: Perform a maximum-scan across the
two-dimensional plane to determine object visibility in
a hilly landscape. [Non-recursive CTEs, window func-
tions. ]

Expression parsing: Use scans along an input expression
to check whether its subexpressions are properly parenthe-
sized. [unnest (), WITH ORDINALITY, LATERAL, win-
dow functions.]

Sessionization: Given a log of system activity, try to iden-
tify sessions that can be attributed to legitimate users/
intruders. [Non-recursive CTEs, window functions.]

Run-length encoding: Compress the pixel-based represen-
tation of an image using run-length encoding. Decompress
the encoded image to restore the original. See Fig. 5a for
a slide that introduces this problem scenario. [Non-recur-
sive CTEs, window functions, string processing.]

Landscape features: Given a sequence of altitude measure-
ments, identify peaks and valleys. This is a variant of a time
series scenario. [Non-recursive CTEs, window functions.]

Consecutive ranges: Reorder a series of integers (e.g., bib-
liographic references) to identify and compress consecutive
numbers ranges. [Window functions, row numbering.]

Linear approximation: Partition points in a set of measure-
ments, locally approximating sets of point values by lines.
[Non-recursive CTEs, complex window functions.]

Bulk tree traversal: Traverse a given family of array-en-
coded trees, constructing an entire set of paths in one go.
[Recursive CTEs, array operations.]

Connected components: Identify and label the connected
components in an undirected graph. [Recursive CTEs, win-
dow functions.]

Finite state machines: Simulate the operation of a finite
state machine derived from a regular expression. Parse en-
tire batches of input strings (here: chemical formul®) in
parallel. [Recursive CTEs, window functions, string pro-
cessing.]

@ Springer



Datenbank Spektrum

Sudoku solver: Implement a brute force generate-and-test
Sudoku solver. Derived from an example in the documenta-
tion of SQLite3 [18]. [Recursive CTEs, array processing.]

Loose index scan: Perform super-efficient duplicate elimi-
nation through repeated B*tree traversals. Adapted from the
PostgreSQL wiki [19]. [Recursive CTEs, indexes.]

K-means clustering: Identify K clusters in a set of points
through iterated point-to-cluster assignment [11]. The core
SQL query is a mere 10-liner. [Recursive CTEs, geometric
operations.]

Marching squares: Walk the border of an unknown two-di-
mensional object. A classic algorithm in computer graphics
and rendering [12]. Illustrates the tabular encoding of case
distinction. [Recursive CTEs, LATERAL.]

Game of Life: Implement John Horton Conway’s classic
Game of Life [7]. [Recursive CTEs, complex window func-
tions. ]

Liquid flow simulation: Simulate the flow of liquid in
a tank. Based on a two-dimensional cellular automaton.
Among the more complex scenarios which require the au-
thoring of truly complex queries, typically across an entire
series of slides. Fig. 5b depicts the construction of the asso-
ciated recursive CTE of which the part marked 7% is only
developed on a subsequent slide. Fig. 5c shows a rendering
of various simulation time steps. [Recursive CTEs (non-
linear recursion), complex window functions, LATERAL.]

Context-free parsing: Parse sentences of a given context-
free grammar, based on the Cocke-Younger-Kasamai (or
CYK) algorithm [22]. Leads to a discussion of preserving
memory during recursion. [Recursive CTEs (binary recur-
sion), string processing.]

Spreadsheet evaluation: Based on a tabular encoding of
a spreadsheet and its formule, derive cell dependencies and
then perform sheet evaluation. [PL/SQL, array processing,
JSON processing.]

It is foreseeable that the majority of students will never
be required to build parsers or simulate cellular automata
with SQL. With the above computational tasks success-
fully implemented, however, students built confidence in
both, the potential of SQL and their own ability to express
these problems in a declarative, set-oriented fashion. I am
positive that most students who completed the course will
understand RDBMSs as capable data processors rather than
mere keepers of piles of tabular data.

@ Springer

5 Students’ Teaching Evaluation
(Summer 2020)

As I write this in October 2020, the videos in the DB2 and
Advanced SQL play lists have a cumulative view count of
26200+ (more than 3300 hours of watch time). Viewers
predominantly are from the Tiibingen area, but YouTube
analytics data and e-mail feedback indicate that the videos
have a global reach.

With the summer semester of 2020 drawing to a close in
late June, the Computer Science department at University
of Tiibingen contacted its students to conduct the regular
teaching evaluation. Survey forms were sent to the 80+
and 90+ students of Advanced SQL and DB2, respectively.
A sample of their responses (in German) has been repro-
duced below. Based on the students’ evaluation, among the
37 courses that were evaluated by the department in that
semester, DB2 and Advanced SQL ranked in the two top
spots.

Die Qualtitit der Videos ist wunderbar, gerade das
Unterteilen der Themen in kleinere Videosegmente ist
eine sehr gute Idee. Der Mix aus Theorie (Folien) und
Praxis (Shell/Queries) ist genau das was ich brauch
um ein Thema gut zu durchblicken.

Die Veranstaltung wurde optimal digital umgesetzt.
Die Videos von Herrn Grust haben eine extrem hohe
Qualitdit.

Die Videos haben eine angemessene Linge und mit
den grofien Folien und dem kleinen Greenscreen-
Grust ein sehr vorlesungsnahes Feeling - und es ist
auch schon, dass sie auf YouTube im Prinzip fiir Alle,
die es interessiert, verfiigbar sind. ... Wie immer wird
gut erkldrt und es gibt viele Beispiele, Folien mit
stylischen ASCII-Grafiken (Hut ab!), ...

Auch das Aufteilen einer Vorlesung in mehrere kleine
Videos finde ich sehr gut. Im Vergleich zu anderen Vor-
lesungen, die ihre Inhalte immer am Stiick hochladen
ist es in dieser Vorlesung einfacher, den einzelnen
Gedankengdngen zu folgen und spezielle Themen zu
wiederholen. Auch dass die Ubungsbliitter angeben
bis zu welchem Video sie den Stoff abfragen, macht die
Leistungsanforderung sehr transparent und man weif3
genau welche Teile der Vorlesung man wiederholen
sollte, ....

Dass die Vorlesung aufgezeichnet wird, statt live
stattzufinden finde ich sehr erfreulich, da die Videos
zu personlich gut passenden Zeiten geschaut werden
konnen, auch mitten in der Nacht. Auflerdem kann



Datenbank Spektrum

man die Vorlesung pausieren um nachzudenken oder
einer anderen Titigkeit nachzugehen, die Wieder-
gabegeschwindigkeit bei Bedarf verdindern und sich
Inhalte wiederholt ansehen. Die Videos speziell zu
dieser Veranstaltung haben auflerdem eine sehr gute
Liinge, sodass sie sich gut einteilen lassen und kurze
Erholungspausen einfach ermoglichen.

[Positiv war] Aufbau und Struktur der Vorlesung,
Ubersichtlichkeit der Videos in der Playlist ....

Prof. Grust erkldrt in seinen Videos wirklich sehr gut
und man merkt, dass er dieses Thema sehr gerne lehrt!
Das motiviert natiirlich nochmal ein bisschen mehr.
Er ist einer der einzigen Dozenten, die sehr schnell
die Umstellung auf digitale Medien (toll) hinbekom-
men hat,

On Demand Videos in Top Qualitit und aufwendig
erstellt. Gut erklirte Sachverhalte. Anschauliche
Beispiele.

Ich finde die Veranstaltung sehr gut und setze mich
gerne mit dem Stoff auseinander. Mir gefillt die Lehre
mittels asynchroner Videos. Gerne immer so!

Auch wenn es wieder Prisenzlehre gibt, sollten die
Videos fiir zukiinftige Generationen auf youtube erhal-
ten bleiben.

Massives Lob auch dass Ubungen iiber Github laufen,
falls Fehler/Unklarheiten in Aufgabenstellungen sind,
werden Changes gepusht, das ist super! Falls dann
etwas unklar wire, [sind] die Reaktionszeiten und
Antworten im Forum sehr gut.

Acknowledgements I consider myself extraordinarily lucky that I was
able to count on the support by my research assistants Benjamin Diet-
rich, Christian Duta, and Denis Hirn. The summer semester of 2020
was special in many ways and I do sincerely thank the three of them
for being a dependable team.

Funding Open Access funding enabled and organized by Projekt
DEAL.

Open Access This article is licensed under a Creative Commons At-
tribution 4.0 International License, which permits use, sharing, adapta-
tion, distribution and reproduction in any medium or format, as long as
you give appropriate credit to the original author(s) and the source, pro-
vide a link to the Creative Commons licence, and indicate if changes
were made. The images or other third party material in this article are
included in the article’s Creative Commons licence, unless indicated
otherwise in a credit line to the material. If material is not included
in the article’s Creative Commons licence and your intended use is not

permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder. To view
a copy of this licence, visit http://creativecommons.org/licenses/by/4.
0/.

References

1. Blelloch G (1989) Scans as primitive parallel operations. IEEE
Trans Comput 38(11):1526-1538
2. Boehm M, Kumar A, Yang J (2019) Data management in machine
learning systems. Synthesis lectures on data management. Morgan
& Claypool, San Rafael, CA, USA
3. Boncz P, Kersten M, Manegold S (2008) Breaking the memory wall
in MonetDB. Commun ACM 51(12):77-85
4. Duta C, Hirn D, Grust T (2020) Compiling PLSQL away. In: Proc.
CIDR Amsterdam, The Netherlands
5. Emani K, Ramachandra K, Bhattacharya S, Sudarshan S (2016) Ex-
tracting equivalent SQL from imperative code in database applica-
tions. In: Proc. SIGMOD San Francisco, CA, USA
6. Finkelstein S, Mattos N, Mumick I, Pirahesh H (1996) Expressive
recursive queries in SQL. Joint Technical Committee ISO/IEC
JTC 1/SC 21 WG 3, document X3H2-96-075r1. https://kirusa.com/
mumick/pspapers/ansiRevisedRecProp96-075rl.ps.Z.  Accessed
9 Dec 2020
7. Gardner M (1970) The fantastic combinations of John Conway’s
new solitaire game “life”. Sci Am 223:120-123
8. Graefe G (1994) Volcano—an extensible and parallel query evalu-
ation system. IEEE TKDE 6(1):120-135. https://doi.org/10.1109/
69.273032
9. Hirn D, Grust T (2019) PgCuckoo-laying plan eggs into Post-
greSQL’s nest. In: Proc. SIGMOD Amsterdam, The Netherlands
10. ICPC (2020) The international collegiate programming contest.
https://icpc.global. Accessed 9 Dec 2020
11. MacQueen J (1967) Some methods for classification and analysis
of multivariate observations. In: Proc. Symposium on Mathematical
Statistics and Probability Berkeley, California. vol 1
12. Maple C (2003) Geometric design and space planning using the
marching squares and marching cube algorithms. In: Proc. Geo-
metric Modeling and Graphics London, UK
13. McGuire M (2015) The Markdeep markdown processor. https://
casual-effects.com/markdeep/. Accessed 9 Dec 2020
14. Postgre SQ (2019) PostgreSQL 12 documentation. http://www.
postgresql.org/docs/12/. Accessed 22 Dec 2020
15. Rowe L, Stonebraker M (1987) The POSTGRES data model. In:
Proc. VLDB Brighton, UK
16. ISO/IEC 9075-2:1999 (1999) SQL:1999 Standard. Database Lan-
guages—SQL—Part 2: Foundation
17. ISO/IEC 9075-2:2003 (2003) SQL:2003 Standard. Database Lan-
guages—SQL—Part 2: Foundation
18. SQLite3 (2020) SQLite 3 documentation. http://sqlite.org/. Ac-
cessed 22 Dec 2020
19. The PostgreSQL Wiki (2019) Loose index scan. https://wiki.
postgresql.org/wiki/Loose_indexscan. Accessed 22 Dec 2020
20. Winand M (2012) SQL performance explained. Self-published, Vi-
enna
21. Winand M (2015) Use the index, Luke! https://use-the-index-luke.
com. Accessed 22 Dec 2020
22. Younger D (1967) Recognition and parsing of context-free lan-
guages in time #’. Inf Control 10(2):189-208. https://doi.org/10.
1016/S0019-9958(67)80007-X

@ Springer


http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://kirusa.com/mumick/pspapers/ansiRevisedRecProp96-075r1.ps.Z
https://kirusa.com/mumick/pspapers/ansiRevisedRecProp96-075r1.ps.Z
https://doi.org/10.1109/69.273032
https://doi.org/10.1109/69.273032
https://icpc.global
https://casual-effects.com/markdeep/
https://casual-effects.com/markdeep/
http://www.postgresql.org/docs/12/
http://www.postgresql.org/docs/12/
http://sqlite.org/
https://wiki.postgresql.org/wiki/Loose_indexscan
https://wiki.postgresql.org/wiki/Loose_indexscan
https://use-the-index-luke.com
https://use-the-index-luke.com
https://doi.org/10.1016/S0019-9958(67)80007-X
https://doi.org/10.1016/S0019-9958(67)80007-X

	From Blackboard to Green Screen
	Abstract
	From Blackboard to Green Screen
	Lecturing and Live Coding on YouTube
	DB2: Exploring Database Systems Internals Through Query Probes
	SQL Probe Queries
	“X-Ray Imaging” of RDBMSs

	Advanced SQL: Teaching SQL Like a True Programming Language
	Students’ Teaching Evaluation (Summer 2020)
	References


