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ABSTRACT
“PL/SQL functions are slow,” is common developer wisdom
that derives from the tension between set-oriented SQL eval-
uation and statement-by-statement PL/SQL interpretation.
We pursue the radical approach of compiling PL/SQL away,
turning interpreted functions into regular subqueries that
can then be efficiently evaluated together with their em-
bracing SQL query, avoiding any PL/SQL↔SQL context
switches. Input PL/SQL functions may exhibit arbitrary
control flow. Iteration, in particular, is compiled into SQL-
level recursion. RDBMSs across the board reward this com-
pilation effort with significant run time savings that render
established developer lore questionable.

1. NOW IS NOT A GOOD TIME
TO INTERRUPT ME

Frequent changes |The required|of context |context switch-
ing effort |can turn|may even outweigh|otherwise tractable
tasks |the cost | into real challenges. |of the tasks themselves.
If you have found those two sentences hard to comprehend,
you were struggling with the context switches—occurring at
every | bar—needed to process a piece of one sentence before
immediately turning focus back to the other.
SQL evaluation in relational DBMSs can face such frequent
context switches, in particular if bits of the query logic are
implemented using PL/SQL,1 the in-database scripting lan-
guage. Whenever a SQL query Q invokes a PL/SQL function,
say f,
• the DBMS switches from set-oriented plan evaluation to
statement-by-statement PL/SQL interpretation mode (re-
ferred to as switch Q→f in the sequel).
• Execution of f’s statements then switches query evalua-
tion back to plan mode—possibly multiple times—to eval-
uate the SQL queries Qi embedded in f (switch f→Qi).

1We refer to the language as PL/SQL as coined by Oracle.
Our discussion extends to its variants known as PL/pgSQL
in PostgreSQL or T-SQL in Microsoft SQL Server.
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Context switches will be abundant. If f’s call site is lo-
cated inside a SELECT-FROM-WHERE block of Q, each row pro-
cessed by the block will invoke f. Likewise, if f embeds
multiple queries or employs iteration, e.g., in terms of FOR
or WHILE loops, we observe repeated plan evaluation for the Qi.
Unfortunately, both kinds of context switches are costly.
Each switch Q→f incurs overhead for PL/SQL interpreter invo-
cation or resumption. A switch f→Qi leads to overhead due
to (1) plan generation and caching on the first evaluation
of Qi or (2) plan cache lookup, plan instantiation, and plan
teardown for each subsequent evaluation of Qi. Iteration in
both, Q and f, multiplies the toll.
Let us make the conundrum concrete with PL/pgSQL func-
tion walk() of Figure 3. The function simulates the walk of
a robot on a grid whose cells hold rewards (see Figures 1a
and 2a). On cell (x, y) the robot follows a prescribed policy
(e.g., move down ↓ if on cell (3, 0), see Figures 1b and 2b).
This policy has been precomputed by a Markov decision pro-
cess which takes into account that the robot may stray from
its prescribed path: a planned move right from (3, 2) will
reach (4, 2) with probability 80% but may actually end up
in (3, 3) or (3, 2), each with probability 10% (see Figures 1c
and 2c). A call walk(o,w,l,s) starts the robot in origin cell o
and performs a maximum of s steps; walk returns early if the
accumulated reward exceeds w or falls below l.
Each execution of PL/SQL function walk leads to the iterated
evaluation of the embedded SQL queries Q1...3. The run time
profile on the rightmost edge of Figure 3 identifies these em-
bedded queries to use the lion share of execution time (e.g.,
Q2 accounts for 54.02% of walk’s overall run time). While we
expect such embedded queries to dominate over the evalua-
tion of simpler expressions and statements, the profile also
shows that a significant portion of the evaluation time for the
Qi stems from walk→Qi context switch overhead (see the black
section of the profile bars). For PostgreSQL, this cost is
to be attributed to the engine’s ExecutorStart and Executor-
End functions. These prepare the Qi’s plans (i.e., copy the
cached plan into a runtime data structure and instantiate
the query’s placeholders) and free temporary memory con-
texts, respectively. The FOR loop iteration in walk multiplies
this effort. The bottom line shows that PostgreSQL invests
more than 35% of its time in walk→Qi overhead during each
invocation of walk. Section 3 shows similar or worse bad
news for more PL/pgSQL functions.
Two worlds of interpreters. We stress that the roots of this
tension between SQL and PL/SQL lie deep. We do not
merely observe a deficiency of the languages’ implementa-
tion in a specific RDBMS, say, PostgreSQL.
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(a) Cell rewards.
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(c) Random straying.

Figure 1: Controlling an unreliable robot to collect rewards.

cells
loc reward

(2,0) -2
(3,0) 0
(4,0) -1
(0,1) -2
...

...
(4,4) -2

(a) Rewards.

policy
loc action

(2,0) ↓
(3,0) ↓
(4,0) ↓
(0,1) ↓
...

...
(4,4) ↑

(b) Policy.

actions
here action there prob
...

...
...

...

(3,2) → (4,2) 0.8
(3,2) → (3,3) 0.1
(3,2) → (3,2) 0.1
...

...
...

...

(c) Actions and straying.

Figure 2: A tabular encoding of the robot control scenario.

Once a (pure) SQL query has been translated into an
internal tree of algebraic operators, its evalution is driven
by a very specifically tuned plan interpreter: (1) a limited
set of operators of known interface and behavior are or-
chestrated such that operator fusion or transitions between
row-by-row and batched evaluation are feasible. Further,
(2) the interpreter realizes a rigid evaluation discipline—in
Volcano-style, for example—following predetermined paths
of control. The deliberate control flow inside an PL/SQL
function calls for a different imperative-style of interpreter
whose progress is determined by the then current state of
updateable variables. The function body is assembled from
arbitrary blocks of statements whose behavior (“will it loop,
will it exit early?”) is not known a priori.
A merger of the SQL and PL/SQL interpreters thus ap-

pears to be elusive. We regard the friction between both and
the resulting context switch costs to be fundamental. (The
situation may be different in DBMSs that compile SQL and
PL/SQL into a common intermediate form that is then eval-
uated by a single interpreter or even the CPU if the IR is
native to the host machine. The present work is concerned
with interpreted query evaluation.)
Froid. PL/SQL has long been identified as a culprit for
disappointing database application performance and it is
common developer wisdom to “avoid PL/SQL functions alto-
gether if possible” [11]. The situation is dire and has led to
recent drastic efforts—coined Froid [11]—by the Microsoft
SQL Server team: if function f is simple enough, compile its
statements into a regular SQL subquery Qf that can be in-
lined into the containing SQL query Q. Queries Q and Qf may
then be planned once and executed together in set-oriented
fashion, avoiding any Q→f or f→Qi overheads. SQL Server
with Froid indeed enjoys noticeable performance improve-
ments and has been recognized as a major step forward by
both, the developer as well as the database research com-
munities [9].
In a nutshell, Froid transforms sequences of PL/SQL assign-
ment statements into subqueries that are chained together

with SQL Server’s OUTER APPLY [6, 11]. The technique is el-
egant and simple but comes with severe restrictions: fore-
most, the just mentioned chaining will only work for func-
tions f that exhibit loop-less control flow. This rules out
PL/SQL functions like walk that build on WHILE or FOR iter-
ation, arguably core constructs in any imperative program-
ming language.
Compile PL/SQL away. We, too, subscribe to the drastic ap-
proach of Froid. However, we also believe that efforts that
aim to host complex computation inside the DBMS and thus
close to the data, need to support expressive programming
language dialects. Control flow restrictions will be an im-
mediate show stopper for the majority of interesting com-
putational workloads. The present research thus sets out
1. to completely compile PL/SQL functions f away, trans-

forming them into regular SQL queries Qf. The PL/SQL
functions may feature iteration—in fact any control flow
is acceptable. If f indeed contained iteration, Qf will em-
ploy a recursive common table expression (CTE, WITH RE-
CURSIVE) to express this in pure SQL. No changes to the
underlying DBMS are required (although modest local
changes can provide another boost, see Section 3).

2. We study and quantify the run time impact of this com-
pilation approach and the benefit of getting rid of Q→f and
f→Qi context switches, in particular.

3. As a by-product, the approach enables in-database pro-
gramming support for DBMSs like SQLite3 that previ-
ously lacked any PL/SQL support at all.

Section 2, the core of this paper, elaborates on the compi-
lation technique that turns iterative PL/SQL into recursive
SQL. We hope to show that the transformation is systematic
and practical. Along the way, we point out several opportu-
nities to make the approach even more efficient. Section 3
reports on experimental observations we made once we com-
piled PL/SQL away.

2. COMPILING PL/SQL AWAY
The following structures the compilation into a series of

transformation steps. We will use the PL/SQL function walk
of Figure 3 as a running example and show interim results
after each step. These intermediate forms of walk reveal fur-
ther optimizations and simplifications we could apply under-
way. The four forms are (also see Figure 4):
SSA Turn PL/SQL function f into static single assign-

ment (SSA) form. This maps the diversity of PL/SQL
control flow constructs to the single goto primitive.

ANF From the SSA form derive a functional administra-
tive normal form (ANF) for f which expresses itera-
tion in terms of (mutually tail-)recursive functions.

UDF Flatten mutual recursion and map the ANF func-
tions into one tail-recursive SQL user-defined function.

SQL Identify recursive calls and base cases in the body of
this UDF and embed the body into a template query
based on WITH RECURSIVE. This yields the SQL query Qf

we are after.
Query Qf may then be inlined into Q at the call sites of the
original function f.

SSA Explicit Data Flow and
Simple goto-Based Control Flow

Lowering the PL/SQL input into its static single assign-
ment (SSA) form [1] preserves the function body’s impera-



Q1[·]

Q2[·, ·, ·]

Q3[·]

1 -- move robot following a precomputed Markov policy
2 CREATE FUNCTION walk(origin coord, win int, loose int, steps int)
3 RETURNS int AS $$
4 DECLARE
5 reward int = 0;
6 location coord = origin;
7 movement text = ’’;
8 roll float;
9 BEGIN
10 -- move robot repeatedly
11 FOR step IN 1..steps LOOP
12 -- where does the Markov policy send the robot from here?
13 movement = (SELECT p.action
14 FROM policy AS p
15 WHERE location = p.loc);
16 -- compute new location of robot,
17 -- robot may randomly stray from policy’s direction
18 roll = random();
19 location =
20 (SELECT move.loc
21 FROM (SELECT a.there AS loc,
22 COALESCE(SUM(a.prob) OVER lt, 0.0) AS lo,
23 SUM(a.prob) OVER leq AS hi
24 FROM actions AS a
25 WHERE location = a.here AND movement = a.action
26 WINDOW leq AS (ORDER BY a.there),
27 lt AS (leq ROWS UNBOUNDED PRECEDING
28 EXCLUDE CURRENT ROW)
29 ) AS move(loc, lo, hi)
30 WHERE roll BETWEEN move.lo AND move.hi);
31 -- robot collects reward (or penalty) at new location
32 reward = reward + (SELECT c.reward
33 FROM cells AS c
34 WHERE location = c.loc);
35 -- bail out if we win or loose early
36 IF reward >= win OR reward <= loose THEN
37 RETURN step * sign(reward);
38 END IF;
39 END LOOP;
40 -- draw: robot performed all steps without winning or losing
41 RETURN 0;
42 END;
43 $$ LANGUAGE PLPGSQL;

% of run time
walk→Qi overhead

28.40

0.03
54.02

12.44

0.03

0.01

Figure 3: Original PL/pgSQL function walk. Black sections of the profile bars quantify f→Qi context switch overhead.

tive style but introduces the invariant that any variable is
now assigned exactly once (see Figure 5). Variable reassign-
ment in the original function leads to the introduction of a
new variable version (e.g., step2 in Line 15) in SSA form.
φ functions model that an assignment might be reached via
different control flow paths. The SSA invariant facilitates a
wide range of code simplifications, among these the tracking
of redundant code, constant propagation, or strength reduc-
tion. Others have studied these in depth [5]. Let us note
that PL/SQL code is subject to the same optimizations as
any imperative programming language.
Statements in SSA programs are deliberatly simple, fea-

turing assignments, conditionals, gotos, and return only.
In the PL/SQL case, expressions in these SSA programs
are regular SQL expressions. The SSA program contains
the original walk’s embedded queries Q1...3, with their query
parameters instantiated by the appropriate SSA variables
(see Q1[location1] in Line 11, for example).
Importantly, the zoo of PL/SQL control flow constructs—

PL/SQL SQL UDF pure SQL

iterative goto recursive recursive WITH RECURSIVE

f SSA ANF UDF SQL Qf

Figure 4: Intermediate forms on the way from f to Qf.

1 function walk(origin, win, loose, steps)
2 {
3 L0: goto L1;
4 L1: reward1 ← φ(L0:0,L2:reward2);
5 location1 ← φ(L0:origin,L2:location2);
6 movement1 ← φ(L0:’’,L2:movement2);
7 step1 ← φ(L0:0,L2:step2);

8 if step1 <= steps then
9 goto L2
10 else return 0;

11 L2: movement2 ← (Q1[location1]);
12 roll ← random();
13 location2 ← (Q2[location1,movement2,roll]);
14 reward2 ← (Q3[location2]);
15 step2 ← step1 + 1;

16 if reward2 >= win OR reward2 <= loose then
17 return step1 * sign(reward2);
18 goto L1;
19 }

Figure 5: Iterative SSA form of PL/SQL function walk.

including LOOP, EXIT (to label), CONTINUE (at label), FOREACH,
FOR, WHILE— are now exclusively expressed in terms of goto
and jump labels Lx. While verbose (the original FOR loop is
now implemented by the conditional goto in Lines 8 to 10,
the assignment of Line 15, and the goto L1 of Line 18, for
example), this homogeneity aids subsequent steps that trade



1 function walk(origin, win, loose, steps) =
2 letrec L1(reward1, location1, movement1, step1) =
3 letrec L2(reward1, location1, movement1, step1) =
4 let movement2 = (Q1[location1])
5 in
6 let roll = random()
7 in
8 let location2 = (Q2[location1,movement2,roll])
9 in
10 let reward2 = reward1 + Q3[location2]
11 in
12 let step2 = step1 + 1
13 in
14 if reward2 >= win OR reward2 <= loose then
15 step1 * sign(reward2)
16 else
17 L1(reward2,location2,movement2,step2)
18 in
19 if step1 <= steps then
20 L2(reward1,location1,movement1,step1)
21 else 0
22 in
23 L1(0, origin, ’’, 0)

Figure 6: Tail-recursive ANF variant of function walk.

control flow for function calls.

ANF Turning Iteration Into Tail Recursion
Despite its imperative appearance, the single-assignment re-
striction renders SSA already quite close to the functional
administrative normal form (ANF) [2]. To translate from
SSA to ANF we adapt an algorithm by Chakravarty and
colleagues [3]. The resulting programs are purely express-
ion-based and are composed of—besides basic subexpres-
sions which, as for SSA, directly follow SQL syntax and
semantics—let(rec)·in and if·then·else expressions only.
Put briefly, we arrive at the ANF of function walk (shown

in Figure 6) by
• translating each jump label Lx and the statement block
it governs into a separate function Lx(),
• turning goto Lx into calls to function Lx(), while
• supplying the values of φ-bound variables in Lx() as pa-
rameters to these function calls (we additionally perform
lambda lifting and supply free variables as explicit param-
eters).

If we follow this strategy, iteration (i.e., looping back to a
label) will turn into recursion. Any such recursive call will
be in tail position (since control does not return after a goto;
see the calls to L1() in Lines 17 and 23 and L2() in Line 20)
which will be crucial in the final translation to SQL’s WITH
RECURSIVE.
Finally, note how sequences of statements have turned

into chains of nested lets which nicely prepares the tran-
scription to a SQL UDF in the upcoming step.

UDF Direct Tail Recursion in a SQL UDF
We take a first step towards SQL and transcribe the in-
termediate ANF into a user-defined SQL function (UDF).
See Figure 7 (ignore the annotations for now). The mu-
tual recursion between functions L1() and L2() is flattened
using an additional parameter fn whose value discerns be-
tween the two call targets. This conversion into direct re-
cursion follows standard defunctionalization tactics [7, 12],
but inlining would work as well.
We follow Froid and compile ANF constructs let·in and

if·then·else into SQL’s table-less SELECT and CASE·WHEN, re-
spectively. Nested let bindings translate into SELECTs that

1 CREATE FUNCTION walk(origin coord, win int, loose int, steps int)
2 RETURNS int AS $$
3 SELECT walk*(L1, 0, origin, ’’, 0, win, loose, steps);
4 $$ LANGUAGE SQL;

5 CREATE FUNCTION walk*(
6 fn int, reward1 int, location1 coord, movement1 text, step1 int,
7 win int, loose int, steps int)
8 RETURNS int AS $$
9 SELECT
10 CASE
11 WHEN fn = L1 THEN
12 CASE
13 WHEN step1 <= steps THEN
14 walk*(L2,reward1,location1,movement1,step1,
15 win,loose,steps)
16 ELSE 0
17 END
18 WHEN fn = L2 THEN
19 (SELECT
20 CASE
21 WHEN reward2 >= win OR reward2 <= loose THEN
22 step1 * sign(reward2)
23 ELSE walk*(L1,reward2,location2,movement2,step2,
24 win,loose,steps)
25 END
26 FROM
27 (SELECT (Q1[location1])) AS _0(movement2)
28 LEFT JOIN LATERAL
29 (SELECT random()) AS _1(roll)
30 ON true LEFT JOIN LATERAL
31 (SELECT (Q2[location1,movement2,roll])) AS _2(location2)
32 ON true LEFT JOIN LATERAL
33 (SELECT reward1 + (Q3[location2])) AS _3(reward2)
34 ON true LEFT JOIN LATERAL
35 (SELECT step1 + 1) AS _4(step2)
36 ON true)
37 END
38 $$ LANGUAGE SQL;

a
b
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f
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j
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Figure 7: Recursive SQL UDF walk* and its wrapper walk.
The overlaid AST ( ) becomes relevant in step SQL .

are chained using LEFT JOIN LATERAL. If JeK denotes the SQL
equivalent of ANF expression e, we have

Jlet v =e1 in e2K =
SELECT Je1K AS _(v) LEFT JOIN LATERAL Je2K ON true .

LATERAL, introduced by the SQL:1999 standard, implements
the dependency of e2 on variable v. In a sense, LATERAL thus
assumes the role of statement sequencing via ; in PL/SQL.
Here, Froid relied on the Microsoft SQL Server-specific OUTER
APPLY instead [6, 11]. The resulting LATERAL chains may look
intimidating but note that these joins process single-row ta-
bles containing bindings of names to (scalar) values.
This translation step emits a regular SQL UDF which fea-

tures direct tail recursion—in the case of walk* of Figure 7
we find two recursive call sites at Lines 14 and 23. DBMSs
that admit such recursive UDFs could, in principle, evaluate
this function to compute the result of the original PL/SQL
procedure. We observe, however, that
• some DBMSs—among these MySQL, for example—forbid
recursion in user-defined SQL functions, and that
• the direct evaluation of these UDF has disappointing per-
formance characteristics. This is, again, due to significant
Q→f and f→Q overhead: the plan for UDF f*’s body needs to
be prepared and instantiated anew on each recursive in-
vocation. Additionally, we quickly hit default stack depth
limits, e.g., in PostgreSQL or SQL Server.



1 WITH RECURSIVE run("call?", args, result) AS (
2 -- original function call
3 SELECT true AS "call?", in AS args, CAST(NULL AS τ) AS result
4 UNION ALL
5 -- subsequent recursive calls and base cases
6 SELECT iter.*
7 FROM run AS r,
8 LATERAL (body(f*,r)) AS iter("call?", args, result)
9 WHERE r."call?"

10 )
11 -- extract result of final recursive function invocation
12 SELECT r.result
13 FROM run AS r
14 WHERE NOT r."call?"

Figure 8: SQL CTE template that evaluates tail-recursive f*.

SQL Inlinable SQL CTE (WITH RECURSIVE)
Instead, we bank on a SQL:1999-style recursive CTE [13,
§ 7.12] as an evaluation strategy for recursion, ultimately
compiling any use of PL/SQL or SQL user-defined functions
away. The CTE constructs a table run(call?,args,result)2

that tracks the evaluation of the recursive UDF f*:
• call? Does the UDF perform a recursive call (true) or

evaluate a base case (false)?
• args In case of a call, what arguments are passed to f*?
• result In a base case, what is the function’s result?
Recall that we are dealing with tail recursion: once we reach
a base case, the UDF’s result is known and no further re-
cursive ascent is required. The obtained result may thus be
returned as the original function’s outcome.
The evaluation of call f(in) is expressed by the simple WITH
RECURSIVE SQL code template of Figure 8:
• Line 3: Start evaluation with the original invocation of
the UDF for argument list in. f*’s result (of type τ) is yet
unknown and thus encoded as NULL.
• Line 9: Continue evaluation as long as new recursive calls
are to be performed.
• Line 8: Evaluate the body of f* for the current arguments
held in r.args. This either leads to a new call or the
evaluation of a base case.
• Lines 12 to 14: Once we reach a base, extract its result.
Done.

The code template of Figure 8 is entirely generic. It is to
be completed with a slightly adapted body—body(f*,r)—of
the UDF f* for f. In this adaptation,
• a recursive call f*(args) is replaced by the construction
of row (true,args,NULL) which encodes just that call in
simulation table run,
• a base case expression with result v of type τ is replaced
by row (false,NULL,v).

Figure 9 depicts the resulting body body(walk*,r) for the
recursive UDF of Figure 7. The construction of body(f*, ·)
calls for a simple abstract syntax tree (AST) traversal of
the body of UDF f*. Selected fragments of the AST for
function walk* are shown in an overlay of Figure 7. This
traversal identifies the leaves of the computation—i.e., the
recursive call sites f , o and base case expressions h , m—and
performs the local replacements described above.

2args abbreviates the list of UDF arguments. For walk*,
args = fn,reward1,location1,movement1,step1,win,loose,steps.

9 SELECT
10 CASE
11 WHEN r.fn = L1 THEN
12 CASE
13 WHEN r.step1 <= r.steps THEN
14 ROW(true,

ROW(L2,r.reward1,r.location1,r.movement1,r.step1,
r.win, r.loose, r.steps),

NULL)
16 ELSE ROW(false, NULL, 0)
17 END
18 WHEN r.fn = L2 THEN
19 (SELECT
20 CASE
21 WHEN reward2 >= r.win OR reward2 <= r.loose THEN
22 ROW(false,NULL,r.step1 * sign(reward2))
23 ELSE ROW(true,

ROW(L1,reward2,location2,movement2,step2,
r.win, r.loose, r.steps),

NULL)
25 END
26 FROM
27 ( -- code of Figure 7...) -- (binds reward2,location2,movement2,step2)
37 END

f

h

m
o

Figure 9: Adapted UDF body body(walk*,r). At f , o , and
h , m row construction replaces recursive calls and base cases.

Finalization. A merge of body(f*,r) with the SQL code tem-
plate yields a pure SQL expression which may be inlined
at f’s call sites in the embracing query Q. Any occurrence
of PL/SQL has been compiled away. The DBMS will be
able to compile the resulting SQL query into a regular plan
and jointly optimize the formerly separated code of Q, the
transformed body of f, and the embedded queries Qi. Most
importantly, the evaluation of Q instantiates this joint plan
once and will proceed without the need for Q→f or f→Qi con-
text switches. The upcoming section quantifies the benefits
we can now reap.
Beyond tail recursion. Let us close this discussion by not-
ing that the WITH RECURSIVE-based simulation of a recursive
function extends beyond tail recursion. Table run can be
generalized to hold a true call graph that then does support
recursive ascent. While this is not needed in the context
of the present work, this paves the way for an intuitive,
functional-style notation for SQL UDFs that may employ
linear or general n-way recursion. The run time savings can
be—again, due to the absence of plan instantiation effort—
significant. We are actively pursuing this idea in a parallel
strand of research that aims to leave more complex recursive
computation in the hands of the DBMS itself.

3. ONCE PL/SQL IS GONE
Function walk() is not the exception. The described over-

heads are pervasive [11] and we, too, observed them across
a variety of PL/SQL functions.
Context switching overhead. Table 1 contains a sample of
iterative functions and reports the run time for repeated
plan instantiation and deallocation to evaluate their em-
bedded queries. Columns Exec·Start and Exec·End embody
the f→Qi context switch overhead present in PostgreSQL (re-
call Section 1). Across the functions, we find overall f→Qi

overheads of up to 38%. Only the columns Exec·Run and In-
terp represent productive evaluation effort: the execution of
embedded queries and PL/SQL interpretation, respectively.
Function fibonacci, an iterative computation of the nth Fi-
bonacci number, evaluates arithmetic expressions only and



Table 1: Run time spent (in%) during PL/SQL evaluation.
Bold entries indicate context switch overhead of kind f→Qi.

PL/pgSQL Function Exec·Start Exec·Run Exec·End Interp
walk 30.89 55.13 4.36 9.63

see Figure 3

parse 13.84 68.52 2.20 15.62
via finite state automaton

traverse 31.80 35.82 6.03 26.35
directed graph traversal

fibonacci 0 90.45 0 9.55
iteratively compute fib(n)

does not execute embedded queries. PostgreSQL evaluates
such simple expressions using a fast path that already fore-
goes plan instantiation. Compiling PL/SQL away does not
promise much in this case. Still, turning query-less iterative
functions into pure SQL can uncover opportunities for paral-
lel evaluation—this is a direction we have not yet explored.
Iterative PL/SQL vs. Recursive SQL. For PL/pgSQL func-
tion walk(), Table 1 indicates potential run time savings of
about 35% ≈ 30.89%+4.36% should we manage to get rid of
context switching overhead. The translation from iterative
PL/SQL to pure SQL built on a recursive CTE can indeed
realize this advantage. Figure 10 shows the wall clock time
of one invocation of walk() for a growing number of FOR loop
iterations (which is controlled by parameter steps, see Fig-
ure 3). Throughout the experiment, the recursive SQL vari-
ant consistently shows an even greater run time savings of
approximately 43%. Beyond saved context switches, this
suggests that the evaluation of pure SQL expressions gener-
ally undercuts the interpretation of PL/SQL statements.
We have found the underlying RDBMSs to cope well with

the resulting SQL queries and their associated plans. The
SQL equivalent of function walk() accounts for a translation
and optimization time of about 25ms on PostgreSQL. As ex-
pected, the plans feature their share of LATERAL joins. Since
these come with a prescribed order of evaluation (from left to
right) and process single-row tables, the joins do not present
a challenge to plan enumeration, however. We further ob-
served that the sub-plans associated with the Qi before and
after compilation did not diverge, essentially.
(The measurements of Figure 10 have been taken on a
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Figure 10: Iterative vs. recursive: wall clock time for walk()
on PostgreSQL 11.3 across varying intra-function iterations.

PostgreSQL 11.3 instance hosted on a Linux-based x86 box
with 8 Intel CoreTM i7 CPUs running at 3.66GHz with 64GB
of RAM. We report the average as well as the window of
minimal/maximal measurements of ten runs.)
Scaling the number of context switches. We can quite con-
sistently observe these savings of > 40% across a wide range
of scenarios. Figure 11a varies the number of invocations
of walk() as well as the intra-function FOR loop iterations to
obtain a heat map of run time improvements. Only very
small numbers of invocations and/or iterations fail to com-
pensate the one-time cost to optimize and evaluate the tem-
plate query of Figure 8 (see the heat map’s lower left). Be-
yond 32 invocations and/or iterations, the transformation
to recursive SQL always is a clear win.
Beyond PostgreSQL. Modulo syntactic details, we were able
to apply the function transformation of Section 2 imme-
diately to Oracle, MySQL, SQL Server, and HyPer. As an
example, Figure 11b shows how the evaluation of parse() on
Oracle can significantly benefit once PL/SQL is traded for re-
cursive SQL (measurements in the lower left appeared to be
close to 100 ; we have omitted them here due to the DBMS’s
coarse timer resolution). SQLite3 lacks support for LATERAL,
but a simple syntactic rewrite brought the functions to run
on a system that formerly lacked any support for PL/SQL at
all. Compiling PL/SQL away could, generally, pave the way
to provide scripting support for more database engines.
When WITH RECURSIVE does toomuch. Exploiting tail recursion.
The transformation from SSA to ANF compiles goto into
tail recursion which obviates the need for recursive ascent:
any activiation of a tail-recursive function already contains
its complete evaluation context—typically held in the func-
tion’s arguments. Tail recursion, thus, needs no stack (fra-
mes). Vanilla WITH RECURSIVE, however, collects a trace of all
function invocations and their respective arguments (recall
table run of Figure 8). For our purposes, accumulating this
trace is wasted effort and the template of Figure 8 indeed
uses the predicate NOT r."call?" in Line 14 to dispose of the
trace and hold on to the function’s final activation only.
Here, a hypothetical “WITH TAIL RECURSIVE” that keeps the

most recent run row only would be a better fit. Interestingly,
earlier work on the evaluation of complex analytics in HyPer
has described just this construct, coined WITH ITERATE in [10].
To assess the benefit in the context of PL/SQL elimination,
we implemented WITH ITERATE in PostgreSQL 11.3. The re-
sulting space savings can indeed be profound, in particular
for functions with potentially sizable arguments. One such
example is function parse() which receives its input text as
an argument. Table 2 lists the number of buffer page writes
performed by PostgreSQL when inputs of growing length are
parsed. WITH ITERATE realizes the promise of tail recursion
and requires no space at all, while WITH RECURSIVE exhibits

Table 2: Eliminating buffering effort via WITH ITERATE.

#Iterations #Buffer Page Writes
(= input length) WITH ITERATE WITH RECURSIVE

10 000 0 6 132
20 000 0 24 471
30 000 0 55 016
40 000 0 97 769
50 000 0 152 729
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Figure 11: Relative run time (in %) of recursive SQL vs. iterative PL/SQL. Light colors indicate an advantage for SQL.

quadratic space appetite (both, the number of required iter-
ations that consume one input character each as well as the
lengths of the residual strings left to parse, do grow).
In an age of complex in-database computation, we step

forward and propose that a construct like WITH ITERATE should
find its way into the SQL standard.

4. (TOO EARLY FOR) CONCLUSIONS
This marks the beginning of a thread of research in which

we aim to explore fresh ways to support complex in-database
computation, preferably without turning existing engines on
their head.
Current coverage of PL/SQL. The compilation strategy does
not restrict the control flow used to express the imperative
f and admits, for example, deep loop nesting (this is not
showcased in the present paper). Exceptions and their as-
sociated handlers constitute more of a challenge in this re-
spect: raising an exception is readily expressed in terms of
SSA’s goto, but the detection of exception conditions from
within a SQL query appears difficult. PL/SQL variables of
non-atomic types (e.g., row values, arrays, or geometric ob-
jects) seamlessly fit with the compilation scheme as long as
the underlying RDBMS supports their storage in table cells.
A positional array update a[i]=e as permitted by PL/SQL
translates into a less efficient replacement of array a. We are
currently underway to devise a compilation scheme for cur-
sors that range over the result rows of an embedded query Qi.
Dynamic SQL (PL/SQL’s string-based EXECUTE) will probably
never compile to SQL.
Here, we have assumed the return type τ of PL/SQL func-

tion f to be scalar but this is not an inherent restriction. A
generalization to set-returning functions (the RETURN NEXT of
PL/SQL) has already been found to integrate elegantly.
Directions waiting to be explored include at least the follow-
ing:
• With its recent Version 12, PostgreSQL will offer hooks
that enable merging of CTEs with their containing queries.
Inlining compiled functions into their calling query then
opens up additional optimization opportunities.
• Flattening nested iteration into flat recursion facilitates
efficient evaluation through partitioning and parallelism.
• If f is to be invoked n > 1 times (since it is embedded
in a SQL query Q) and the arguments in of these calls are

known beforehand, the proposed compilation scheme is
able to perform all of these calls in terms of a single eval-
uation of the template of Figure 8: instead of the single-
row recursive seed set up in Line 3 of the template, supply
an n-row table of all arguments in. All else remains as is.
The query will return a table of n result rows without
ever leaving the context of the WITH RECURSIVE block. Such
batching [4,8] has been identified to provide a substantial
boost in the iterative evaluation of function calls and we
should be able to benefit, too.
• Since the compilation discloses the formerly opaque inter-
nals of a function’s body to the SQL query optimizer, we
can expect a significantly better estimation of its eval-
uation cost (instead of the all too common default or
fixed cost). Exactly how this improves plan quality for
function-rich workloads remains to be quantified.
• Beyond PL/SQL: With its ability to compile arbitrary SSA
programs, this provides the groundwork required for the
compilation and evaluation of expressive imperative lan-
guages within regular DBMSs and thus close to the data.
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