PgCUCkOO EBERHARD KARLS
Denis Hirn, Torsten Grust UNIVERSITAT

Laying Plan Eggs in PostgreSQL’s Nest TUBINGEN

QE::} Generating Code Externally External Plan Sources for PostgreSQL QED Stitching Together Individual Plan Pieces

Numerous data-centric languages are compiled into intermediate SQL text that is then fed PgCuckoo. We build on on the so-called planner hook to significantly alter . o) For experimentation, benchmarking, but also in educational set-
into PostgreSQL. The resulting queries are often large or non-idiomatic and fail to fully PostgreSQL's operation: we use the hook to inject query plan trees from outside Lol _GRECHELE l \ tings it is valuable to be able to exercise precise control over
exploit front-end language semantics. the system and have these foreign plans be executed by the system'’s query executor the plan that the RDBMS generates for a SQL query.

— like a cuckoo lays an egg in a victim bird’s nest. Several opportunities arise:

Instead, algebraic code in the form of skeleton plan trees allows us to: » Vanilla PostgreSQL provides few levers we can pull to influence plan generation.

code gen
» gain full control over the plan shape, 0 Given an external code generator for a foreign (maybe even non-relational) > SWchhes like set enable_hashjoin=on/off govern physical operator choice for the
» assemble operator constellations not derivable from SQL, query or data processing language, we may count on PostgreSQL as a runtime entire plan tree.
» use PostgreSQL's executor, table storage, and index support and execution back-end for that language. With PgCuckoo, we are able to control plan generation at the granularity of individual
‘ he £ q1 devel _ _ expressions or subqueries:
e i > focus on the tont-end language development. @ We can stitch together several plan pieces to fully control the evaluation 5 saL e olobal <h e o)
, - - - : - - ostgre enerates the global shape or the plan.
PgCuckoo's plan decorator completes the skeleton plan trees through of subqueries (or query parts, in general) in a fine-grained fashion. > & 5 & P P
rule-based property inference. » plan_execute(-) is a table-valued SQL function whose argument is a plan piece. This
e We may improve original plan trees through rewriting strategies—expressed allows to control plan details locally.

SELECT c.c_name, 0.0_orderkey, o.0_orderdate, on the surface query level as well as on plan trees themselves—that are not

abs(o.0_totalprice - 0 P | itself
SUM(1.1_extendedprice * present in PostgreSQL itself.

(1 - 1.1 discount) * (1 + 1.1 tax))) AS deviation

1 | |
? » Stitch together several plan pieces to form a complete plan.
3

’ ' : 6é . yy . .

s FROM orders AS o, lineitem AS 1, customer AS c @ We may quickly retrieve canned “plan favorites” based on the original

6

7

8

9

SELECT bills.c_name, bills.o orderkey, bills.o_orderdate,
abs(bills.o totalprice - total.price) AS deviation

FROM plan execute(’ {PLANNEDSTMT @@}’) AS total,

plan_execute(’{PLANNEDSTMT @)}’) AS bills,
WHERE total.l orderkey = bills.o_orderkey
AND bills.o totalprice <> total.price

AND bills.o orderdate > date *1998-01-01’ — (@
ORDER BY bills.c_name, bills.o_orderkey;

—

N

WHERE 0.0 orderkey = 1.1 orderkey SQL query text and other system or environment parameters, foregoing costly

AND 0.0 custkey = c.c_custkey (and sometimes unpredictable) planning from scratch.

AND 0.0 orderdate > date ’1998-01-01’
GROUP BY o.0 orderkey, o.0 totalprice, 0.0 orderdate, c.C name
1o HAVING SUM(1.1 extendedprice *

18 (1 - 1.1 discount) * (1 + 1.1 tax)) <> 0.0 _totalprice
1> ORDER BY c.c name, 0.0 orderkey;

w

N

o

(0))

\]

Closing Down PostgreSQL’s Query Front End

0

@
PLANNEDSTMT
Overall /Inferred Seed SQL text @ LSORT
Plan Properties Query Plan Properties LHASH JOIN
©6066 PLANNEDSTMT . FINALIZE HASH AGGREGATE &)
ABEREABREARBABAEARMOMOVIINDONDD LGROUP AGGGREGATE 6080&000) I—GATHER
GEAGEEAEEABBEODIINVODNOD LSORT (e EF R RAMUM] locally exploit
6eeAeeEAee®) LHASH JOIN (EF e M T‘gigiﬁ;ﬁ‘ ngggiﬁGATE > parallelism
E_EF EF EFFF(FF U M -HASH JOIN £ E MM parse tree B : 4
BOGROERO SEQ SCAN @00 lineitem /
Llineitem -HASH :
BOBOODO HASH o0 e FILTER @ PostgreSQL-placed predicate
ETEE B E) LSEQ SCAN (EX (B 8
Lorders
(e TR MUY -}LIASH (ElR A query tree locally switch to
o0 %EQ SCAN ew olan sorted /merge-based processing
customer
@ expression (x30) @ intra-plan reference C\}VL\} tree >
() meta data, misc. flags @ schema information (x10) ’
e o | 1 (1ot <eed frorm which PaCuck _— - plan source (Q-) . - .
equired plan tree properties overall (left), seed from which PgCuckoo can infer the rest (right). O plan tree Alter the plan of the original query to enforce the use of parallelism in plan piece @ and
to request sort-based (as opposed to hash-based) processing in piece €).
(fm Improving Original Plan Trees
PgCuckoo is a framework in which the experi- PostgreSQL @::J Saving and Retrieving Canned Plan Favorites
mentation with advanced plan generation ap- rewrite planner m PoCyck o _) ! 1 ol] I
. ()
proaches may be performed outside the database) 4 query plan g _uc 00 supports.t e Ingestion o extern.a y generated plans but also
ernel Thus 0 provides a foundation for the construction of plan caches or Query
| . .) PostgreSQL PostgreSQL invokes its planner hook just before query planning begins. The called L IEE- ®—> Storesas in MS SQL Server. Such caches may save repeated plan generation
» a SQL query Q is submitted to PostgreSQL,
_ _ o user code receives a representation of a parsed SQL query @ and is expected to @] effort and provide predictable performance for queries in a workload:
» the planner hook is used to receive @'s initial plan tree, return a plan tree for Q. | | |
» an external plan rewriter performs its task, before » Associate a query ID (or hash) Q; with the best or designated plan tree.

» Plan trees are self-contained and carry all information needed for execution.

» the rewritten plan is injected back into PostgreSQL for regular execution. » Retrieve the plan tree of Q; from the cache and pass it to the executor.

» We return a plan for a query Q@ of our choosing.

We obtain an experimental version of the system which explores portions of the plan tree » Multiple entries per (); may be present to record the query’s history of plans.

space that an off-the-shelf PostgreSQL would not consider to enter on its own. Examples: > PostgreSQL's executor will evaluate QO and return its tabular result.

» The cache can be augmented with plan trees not hatched up by PostgreSQL.
» Implement the query unnesting strategy employed by the HyPer DBMS We thus “short-circuit” the standard planner and effectively close down PostgreSQL's

» Plan trees may be abstracted and understood as logical relational algebra query front end—the executor does not depend on it (symbolized by ®)

SIGMXD/
A0S PXDS

Visit us at http://db.inf.uni-tuebingen.de
D AM 2)(19 p g

» All building blocks are in place for a learning-based plan generator for PostgreSQL.

