
Denis Hirn, Torsten Grust
PgCuckoo

Laying Plan Eggs in PostgreSQL’s Nest

1 Generating Code Externally

Numerous data-centric languages are compiled into intermediate SQL text that is then fed
into PostgreSQL. The resulting queries are often large or non-idiomatic and fail to fully
exploit front-end language semantics.

code gen

decorator

PgCuckoo

Instead, algebraic code in the form of skeleton plan trees allows us to:
I gain full control over the plan shape,
I assemble operator constellations not derivable from SQL,
I use PostgreSQL’s executor, table storage, and index support,
I focus on the font-end language development.
PgCuckoo’s plan decorator completes the skeleton plan trees through
rule-based property inference.

1 SELECT c.c_name, o.o_orderkey, o.o_orderdate,
2 abs(o.o_totalprice -
3 SUM(l.l_extendedprice *
4 (1 - l.l_discount) * (1 + l.l_tax))) AS deviation
5 FROM orders AS o, lineitem AS l, customer AS c
6 WHERE o.o_orderkey = l.l_orderkey
7 AND o.o_custkey = c.c_custkey
8 AND o.o_orderdate > date ’1998-01-01’
9 GROUP BY o.o_orderkey, o.o_totalprice, o.o_orderdate, c.c_name

10 HAVING SUM(l.l_extendedprice *
11 (1 - l.l_discount) * (1 + l.l_tax)) <> o.o_totalprice
12 ORDER BY c.c_name, o.o_orderkey;

Overall/Inferred Seed
Plan Properties Query Plan Properties

S S S S S plannedstmt
E E E E E E E E E E E E E E R R R R M M M M M M M M group agggregate E E R R R R M M

E E E E E E E E E E E E E E R R M M M M M M M M M sort E E E E R R M M M M

E E E E E E E E E E E E E E M M hash join E E E E M M

E E E E E E E E E E E E E M M hash join E E E M M

E E E E E E E E M seq scan E E M

lineitem
E E E E R M M hash E R M

E E E E E R seq scan E M

orders
E R M M hash E R M

E M seq scan E M

customer

E expression (×30) R intra-plan reference
M meta data, misc. flags S schema information (×10)

Required plan tree properties overall (left), seed from which PgCuckoo can infer the rest (right).

3 Improving Original Plan Trees

PostgreSQL

plannerrewrite
PgCuckoo is a framework in which the experi-
mentation with advanced plan generation ap-
proaches may be performed outside the database
kernel. Thus,
I a SQL query Q is submitted to PostgreSQL,
I the planner hook is used to receive Q’s initial plan tree,
I an external plan rewriter performs its task, before
I the rewritten plan is injected back into PostgreSQL for regular execution.
We obtain an experimental version of the system which explores portions of the plan tree
space that an off-the-shelf PostgreSQL would not consider to enter on its own. Examples:
I Implement the query unnesting strategy employed by the HyPer DBMS
I Plan trees may be abstracted and understood as logical relational algebra

External Plan Sources for PostgreSQL

PgCuckoo. We build on on the so-called planner hook to significantly alter
PostgreSQL’s operation: we use the hook to inject query plan trees from outside
the system and have these foreign plans be executed by the system’s query executor
– like a cuckoo lays an egg in a victim bird’s nest. Several opportunities arise:

1 Given an external code generator for a foreign (maybe even non-relational)
query or data processing language, we may count on PostgreSQL as a runtime
and execution back-end for that language.

2 We can stitch together several plan pieces to fully control the evaluation
of subqueries (or query parts, in general) in a fine-grained fashion.

3 We may improve original plan trees through rewriting strategies—expressed
on the surface query level as well as on plan trees themselves—that are not
present in PostgreSQL itself.

4 We may quickly retrieve canned “plan favorites” based on the original
SQL query text and other system or environment parameters, foregoing costly
(and sometimes unpredictable) planning from scratch.

Closing Down PostgreSQL’s Query Front End

PostgreSQL

SQL text Q

parse tree

query tree
plan
tree

plan tree

parser

analyzer

planner

executor

plan source (Q )

PostgreSQL invokes its planner hook just before query planning begins. The called
user code receives a representation of a parsed SQL query Q and is expected to
return a plan tree for Q.

I Plan trees are self-contained and carry all information needed for execution.
I We return a plan for a query Q of our choosing.
I PostgreSQL’s executor will evaluate Q and return its tabular result.

We thus “short-circuit” the standard planner and effectively close down PostgreSQL’s
query front end—the executor does not depend on it (symbolized by ).

2 Stitching Together Individual Plan Pieces

plan_execute(• )
For experimentation, benchmarking, but also in educational set-
tings it is valuable to be able to exercise precise control over
the plan that the RDBMS generates for a SQL query.

I Vanilla PostgreSQL provides few levers we can pull to influence plan generation.
I Switches like set enable_hashjoin = on/off govern physical operator choice for the

entire plan tree.
With PgCuckoo, we are able to control plan generation at the granularity of individual
expressions or subqueries:
I PostgreSQL generates the global shape of the plan.
I plan_execute(·) is a table-valued SQL function whose argument is a plan piece. This

allows to control plan details locally.
I Stitch together several plan pieces to form a complete plan.

1 SELECT bills.c_name, bills.o_orderkey, bills.o_orderdate,
2 abs(bills.o_totalprice - total.price) AS deviation
3 FROM plan_execute(’{plannedstmt A }’) AS total,
4 plan_execute(’{plannedstmt B }’) AS bills,
5 WHERE total.l_orderkey = bills.o_orderkey
6 AND bills.o_totalprice <> total.price
7 AND bills.o_orderdate > date ’1998-01-01’ -- C
8 ORDER BY bills.c_name, bills.o_orderkey;

plannedstmt
sort
hash join

hash
filter C

finalize hash aggregate
gather
partial hash aggregate
parallel seq scan
lineitem

merge join
index scan
customer

sort
seq scan
orders

A

B

locally exploit
parallelism

locally switch to
sorted/merge-based processing

PostgreSQL-placed predicate

Alter the plan of the original query to enforce the use of parallelism in plan piece A and
to request sort-based (as opposed to hash-based) processing in piece B .

4 Saving and Retrieving Canned Plan Favorites

query plan
Q1

Q2

PgCuckoo supports the ingestion of externally generated plans but also
provides a foundation for the construction of plan caches or Query
Stores as in MS SQL Server. Such caches may save repeated plan generation
effort and provide predictable performance for queries in a workload:

I Associate a query ID (or hash) Qi with the best or designated plan tree.
I Retrieve the plan tree of Qi from the cache and pass it to the executor.
I Multiple entries per Qi may be present to record the query’s history of plans.
I The cache can be augmented with plan trees not hatched up by PostgreSQL.
I All building blocks are in place for a learning-based plan generator for PostgreSQL.

Visit us at http://db.inf.uni-tuebingen.de


