PgCuckoo: Laying Plan Eggs in PostgreSQL’s Nest

Denis Hirn

Torsten Grust

University of Tiibingen
Tiibingen, Germany
[denis.hirn,torsten.grust]@uni-tuebingen.de

ABSTRACT

We demonstrate how to use PostgreSQL’s planner hook to
open a side entrance through which we can pass plan trees
for immediate execution. Since this reaches deep into Post-
greSQL, we implement plan detail inference and decoration
to ensure that externally crafted trees perfectly mimic regu-
lar plans. Plan trees may then (1) be generated by external
code generators that want to use PostgreSQL as a reliable and
efficient back-end for new (maybe even non-relational) lan-
guages, or (2) stem from experimental rewrites of SQL plans
that PostgreSQL itself does not implement (yet). The demon-
stration provides a live account of what becomes possible
once we let PostgreSQL hatch foreign plan eggs.

ACM Reference Format:

Denis Hirn and Torsten Grust. 2019. PgCuckoo: Laying Plan Eggs in
PostgreSQL’s Nest. In 2019 International Conference on Management
of Data (SIGMOD °19), June 30-July 5, 2019, Amsterdam, Netherlands.
ACM, New York, NY, USA, 4 pages. https://doi.org/10.1145/3299869.
3320211

1 POSTGRESQL HATCHES FOREIGN EGGS

From its inception as Berkeley Postgres in 1986 to this day,
the relational database management system PostgreSQL has
always been an ideal vehicle for database research and edu-
cation. The system’s internals are open for inspection not
only through the user-facing SQL EXPLAIN facility, but also
through an extensive logging mechanism, pretty printers for
syntax, plan, and executor trees, and a variety of performance
counters whose current values are exposed in queryable
form. Beyond read-only observation, essential aspects of
PostgreSQL may be extended or replaced. This begins with an

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights
for components of this work owned by others than the author(s) must
be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from permissions@acm.org.
SIGMOD 19, June 30-FJuly 5, 2019, Amsterdam, Netherlands

© 2019 Copyright held by the owner/author(s). Publication rights licensed
to ACM.

ACM ISBN 978-1-4503-5643-5/19/06...$15.00
https://doi.org/10.1145/3299869.3320211

updatable catalog of data types, built-in operators, or access
methods, and ends with user-supplied code that be may be
loaded and invoked at database engine runtime [6, 11].

PostgreSQL’s hooks are documented sparingly and are less
widely known but reach particularly deep into the system.
Hooks represent global code pointers which—once set—the
database kernel uses to invoke user-contributed C functions.
Passed to and from these functions are data structures that
allow to inspect and modify the RDBMS’s state as it runs.
Since PostgreSQL version 8.3 more than 20 such hooks have
been provisioned, allowing to intercept or alter a wide variety
of system behaviors, e.g., when users are authenticated, tables
or indexes are looked up in the catalog, queries are parsed,
plans are explained, access paths selected, joins reordered,
or before (or after) a query is executed [11, § H.4].

PgCuckoo. This demonstration builds on the so-called plan-
ner hook to significantly alter PostgreSQL’s operation: we use
the hook to inject query plan trees from outside the system
and have these foreign plans be executed by the system’s
query executor—like a cuckoo lays an egg in a victim bird’s
nest. Much like the avian parasite, we need to make sure that
our plans perfectly mimic the PostgreSQL originals. Once we
achieve that a number of exciting avenues open up:

e Given an external code generator for a foreign (maybe
even non-relational) query or data processing language,
we may count on PostgreSQL as a runtime and execution
back-end for that language (Section 2.1).

e We can stitch together several plan pieces to fully con-
trol the evaluation of subqueries (or query parts, in general)
in a fine-grained fashion (Section 2.2).

e We may improve original plan trees through rewriting
strategies—expressed on the surface query level as well
as on plan trees themselves—that are not present in Post-
greSQL itself (Section 2.3).

e We may quickly retrieve canned “plan favorites” based
on the original SQL query text and other system or en-
vironment parameters, foregoing costly (and sometimes
unpredictable) planning from scratch (Section 2.4).

The underlying PostgreSQL extension, dubbed PgCuckoo,
is made available at http://db.inf .uni-tuebingen.de/
PgCuckoo and we encourage everyone to peruse it as they
see fit.

https://doi.org/10.1145/3299869.3320211
https://doi.org/10.1145/3299869.3320211
https://doi.org/10.1145/3299869.3320211
http://db.inf.uni-tuebingen.de/PgCuckoo
http://db.inf.uni-tuebingen.de/PgCuckoo

®
SQL text Q

parse tree
Y

query tree
plan r

t
° ree éa

plan source (QO)

N

plan tree
~

PostgreSQL

m

Figure 1: PgCuckoo uses PostgreSQL’s planner hook to
inject plan trees from external sources.

~

2 A DEMONSTRATION OF
POSTGRESQL’S PLANNER HOOK

PostgreSQL invokes its planner hook [12, file planner. c] just
before query planning begins. The called user code receives
a representation of a parsed SQL query Q and is expected
to return a plan tree for Q. Plan trees are designed to be
complete in the sense that they carry all information needed
to drive the system’s query executor.

We build on this crucial completeness property and take
the liberty to return a plan tree that describes the evalu-
ation of an, in general, entirely different query Q of our
choosing. As long as this plan tree is correct and complete—a
significant challenge that we address in Section 2.1 below—
PostgreSQL’s executor will duly evaluate Q. and return its
tabular result instead. We thus “short-circuit” the standard
planner and effectively close down PostgreSQL’s query front
end—the executor does not depend on it (symbolized by @
in Figure 1).

This work explores the opportunities that arise when we
plug in different PostgreSQL-external plan sources. The live
demonstration will consider four such sources, all described
below. A wider variety is conceivable.

2.1 External Code Generation

The planner hook opens a side entrance for plan trees that
we can use to operate PostgreSQL as an execution-only back-
end for foreign front-end languages. We benefit from Post-
greSQL’s proven executor, table storage, and index support
and may focus on the development of the front-end itself.

1 SELECT c.c_name, o.o_orderkey, o.o_orderdate,
abs(o.o_totalprice -
SUM(1.1_extendedprice *

2
3
4 (1 - 1.1 _discount) * (1 + 1.1_tax))) AS deviation
5

FROM orders AS o, lineitem AS 1, customer AS c
6 WHERE o.0_orderkey = 1.1_orderkey
7 AND o.o_custkey = c.c_custkey
8 AND o.o_orderdate > date '1998-01-01'
9 GROUP BY o.o_orderkey, o.o_totalprice, o.0_orderdate, c.c_name

10 HAVING SUM(1.1_extendedprice *

(1 - 1.1 discount) * (1 +1.1_tax)) <> o0.o_totalprice

11
12 ORDER BY c.c_name, o.o_orderkey;

Figure 2: Sample SQL query (plan shown in Table 1).

Overall/Inferred Seed
Plan Properties Query Plan Properties
©0000 PLANNEDSTMT
2O0DEOEEOEOEBODDD LGROUP AGGGREGATE e@n0ee
GOBOOOOOODOOBI DD LsorT 200000
5OHOEEOEEEEEHD LHasH JoINn 600
5OHOOOOEEBOO HASH JOIN 200
20000000 SEQ SCAN 0
Llineitem
#0000 HASH 0
200000 Lseq scan ®
Lorders
@0 HASH @
® Lseq scan ¢
Lcustomer
@ expression (X30) @ intra-plan reference

meta data, misc. flags ® schema information (x10)
Table 1: Required plan tree properties overall (left),

seed from which PgCuckoo can infer the rest (right).

Numerous data-centric languages—some non-relational,
even—have been developed with PostgreSQL as the execu-
tion target in mind. These languages had to be compiled
into intermediate SQL code that is then fed into PostgreSQL,
often yielding (1) large or non-idiomatic queries that turned
out to be challenging for the back-end or (2) queries that
failed to fully exploit front-end language semantics. To ex-
emplify, the Pathfinder XQuery-to-SQL compiler had per-
fect information about the (non-)relevance of row order in
parts of a generated plan. This knowledge was largely lost
during SQL code generation [5]. Further examples of such
SQL-emitting systems include Database-Supported Haskell
(DSH) [13], Ferry [4], GProM [10], GraphGen [14], Links [2],
MayBMS [1], or Perm [3].

PgCuckoo, instead, admits the immediate generation of
algebraic code in the form of plan trees. Code generators
gain full control over plan shape (e.g., type of operations, in-
termediate materialization, row order preservation, or index
usage) and may assemble operator constellations that could
never be derived from intermediate SQL code.

Plan trees are PostgreSQL-internal data structures that need
to be assembled carefully since the system’s executor en-
tirely relies on their completeness and correctness to drive
query evaluation. For the moderately complex SQL query
shown in Figure 2, the operator nodes of its plan tree already
need to be adorned with 2114 parameters and properties,
like expression details, schema information, or intra-plan
references. The left column of Table 1 shows a breakdown
(note that a single @ represents 30 expression details).

To make external plan assembly feasible, PgCuckoo provides
a plan decorator through which code generators may route
skeleton plan trees before they are passed into PostgreSQL.
The decorator completes the skeleton through rule-based
property inference and queries PostgreSQL’s catalog to, e.g.,
infer expression types, resolve opera-
tor overloading, and establish node-to-
node references. With the plan decora-
tor in place, it suffices to provide about
500 seed properties to formulate the plan
above (see the right column of Table 1).
All in all, the combination of external
code generator and PgCuckoo’s plan dec-
orator (shown on the left) assumes the role of the plan
source ¢y in Figure 1.

The on-site demonstration will exploit that arbitrary plans
may be assembled. We will bring a prepared selection of un-
usual plan trees that do show interesting behavior but would
not be considered by PostgreSQL’s own SQL compiler (yet,
see Section 2.3 below). Additionally, thanks to PgCuckoo’s
plan decorator, ad-hoc plan trees may be proposed by the
audience and then submitted for execution. As long as these
plans fulfill basic constraints of consistency, there are count-
less possibilties to play with PgCuckoo.

2.2 Fine-Grained Plan Stitching

For the purposes of experimentation, benchmarking, but also
in educational settings, it is valuable to be able to exercise
precise control over the plan that the RDBMS generates for
a SQL query. Vanilla PostgreSQL provides few levers we can
pull to influence plan generation. One example are Boolean
switches like set enable_hashjoin=on/off which gov-
ern physical operator choice for the entire plan tree [11,
§19.7].

With PgCuckoo, we are able to control plan generation
at the granularity of individual expressions or subqueries.
Several such plan pieces may then be stitched together to
form a complete plan for a subject query. We make this func-
tionality available at the surface language level in terms of
a table-valued SQL function plan_execute(:) whose ar-
gument contains a textual representation of the plan piece.

® N R W N e

SELECT bills.c_name, bills.o_orderkey, bills.o_orderdate,
abs(bills.o_totalprice - total.price) AS deviation
plan_execute('{PLANNEDSTMT @1}') AS total,
plan_execute('{PLANNEDSTMT @}') AS bills,
total.l_orderkey = bills.o_orderkey

AND bills.o_totalprice <> total.price

AND bills.o_orderdate > date '1998-01-01' —— @

ORDER BY bills.c_name, bills.o_orderkey;

FROM

WHERE

Figure 3: A rewrite of the query of Figure 2 in which
two plan_execute(-) calls locally prescribe plans.

PLANNEDSTMT
SORT
HASH JOIN
FINALIZE HASH AGGREGATE @
GATHER
PARTIAL HASH AGGREGATE
PARALLEL SEQ SCAN
lineitem
HASH
FILTER ©
L MerGE JoIN @
INDEX SCAN
customer
SORT
SEQ SCAN
orders

locally exploit
parallelism

PostgreSQL-placed predicate

locally switch to
sorted/merge-based processing

Figure 4: Stitched plan for the query of Figure 3. The
sub-plans @ and ® have been prescribed by us through
plan_execute(-). The residual plan, eg., the place-
ment of predicate @, is decided by PostgreSQL itself.

plan_execute (t)

If we place invocations of plan_execute(-) at critical or
interesting spots in a SQL query, PostgreSQL will generate the
global shape of the plan for us while we control plan details
locally. Consider the SQL query of Figure 3 in which two
plan_execute(-) calls prescribe the sub-plans to be used
for the evluation of the total and bills subqueries. In this
example, we alter the plan of the original query (Figure 2)
to enforce the use of parallelism in plan piece @ and to
request sort-based (as opposed to hash-based) processing in
piece ®@—see the resulting stitched plan in Figure 4 which is
a reshaping of the original plan in Table 1.

The evaluation of that plan piece
constitutes the function’s result,
i.e., function plan_execute(:)
acts as a plan source.

While such fine-grained stitching facilitates plan manipula-
tion, debugging, and research, we further see its educational
value: plan_execute(-) provides an ideal tool to study the
impact of local planner decisions—the choice of join algo-
rithm or (non-)usage of an index, for example—in the context
of real query plans. This includes (more or less obvious) “bad”
decisions which are now easily enforced to demonstrate their

negative effect. Scenarios of this kind often create the most
effective lessons.

For the demo audience, we demonstrate the value of plan
stitching with the help of a family of different (yet equiva-
lent) plan fragments that may be “plugged into the holes”
of a larger plan tree. This admits the interactive experimen-
tation with sub-plan alternatives that exhibit varying costs,
a scenario that would also fit a lab or educational setting
well. Since the argument to plan_execute(-) is a plain (and
thus editable) string, live changes to these fragments may be
performed at any time during the demonstration.

2.3 New Plans for SQL

PostgreSQL is a role model of a long-running and well-mana-

ged project [6]. An ever-growing legacy of existing applica-

tions, however, forces the PostgreSQL community to adopt

a conservative development model that preserves “old” ex-

pected system behavior. Recent advances in, say, query trans-

formation and optimization thus often only slowly find their
way into the system (if at all).
PgCuckoo has been built
as a framework in which
T the experimentation with
advanced (or still only
half-baked) plan gener-
ation approaches may
be performed outside the
database kernel. Thus,

(1) a SQL query Q is submitted to PostgreSQL as usual,

(2) the planner hook is used to receive Q’s initial plan tree
(PgCuckoo helps to digest this PostgreSQL-internal data
structure, also see the demonstration details below),

(3) an external plan rewriter performs its task, before

(4) the rewritten plan is injected back into PostgreSQL for
regular execution.

In effect, we obtain an experimental version of the system

which explores portions of the plan tree space that an off-

the-shelf PostgreSQL would not consider to enter on its own.

PostgreSQL

The live demonstration showcases an external plan rewri-
ter that implements an adaptation of the advanced and com-
plete SQL query unnesting strategy employed by the HyPer
DBMS [9]. We further demonstrate how PostgreSQL’s plan
trees may be abstracted and understood as logical relational
algebra (for which the unnesting strategy had been designed
originally). The audience will witness execution performance
improvements up to multiple orders of magnitude.

2.4 Canned Plans for SQL

PgCuckoo has primarily been built to support the ingestion of
externally generated plans but also provides a foundation for
the construction of plan caches or Query Stores (Microsoft SQL

Server) [8]. Such caches may save repeated plan generation
effort and provide predictable performance for queries that
are hot-spots in a workload.

In one purely relational design of a plan cache, a table asso-
ciates a query ID (or hash) Q; with the best or designated plan
tree for that query. When Q; occurs in
the workload, its canned plan tree is re-
trieved from the cache and passed di-
rectly to the executor via the planner
hook. Alternatively, the cache may hold
more than one entry per Q; to record the query’s history
of plans and their performance measures. With PgCuckoo’s
ability to augment this history with plan trees that were not
hatched up by PostgreSQL itself, all building blocks are in
place for an implementation of learning-based plan modifi-
cation and generation [7] for PostgreSQL.

During the demonstration, a tabular plan cache is avail-
able for inspection and experimentation. We bring sample
scenarios for a swift first impression but, importantly, the
cache may also be manipulated using SQL DML (INSERT and
UPDATE) statements. Writability includes the plan column
which holds human-readable serialized plan trees: unlike
in Microsoft SQL Server’s Query Store, PgCuckoo allows for
cached plans to be modified or even created from scratch.

REFERENCES

[1] L. Antova, T. Jansen, C. Koch, and D. Olteanu. 2008. Fast and Simple
Relational Processing of Uncertain Data. In Proc. ICDE.

[2] J. Cheney, S. Lindley, and P. Wadler. 2014. Query Shredding: Effi-
cient Relational Evaluation of Queries Over Nested Multisets. In Proc.
SIGMOD.

[3] B. Glavic and G. Alonso. 2009. Perm: Processing Provenance and Data
on the Same Data Model Through Query Rewriting. In Proc. ICDE.

[4] T. Grust, J. Rittinger, and T. Schreiber. 2010. Avalanche-Safe LINQ
Compilation. In Proc. VLDB.

[5] T. Grust, J. Rittinger, and J. Teubner. 2007. eXrQuy: Order Indifference
in XQuery. In Proc. ICDE.

[6] J.M. Hellerstein. 2019. Looking Back at Postgres. In Making Databases
Work: The Pragmatic Wisdom of Michael Stonebraker. ACM, 205-224.

[7] T. Kraska, M. Alizadeh, A. Beutel, E.H. Chi, A. Kristo, G. Leclerc, S.
Madden, H. Mao, and V. Nathan. 2019. SageDB: A Learned Database
Systems. In Proc. CIDR.

[8] Microsoft SQL Server [n. d.]. Microsoft SOL Documentation. docs.
microsoft.com/en-us/sql.

[9] T. Neumann and A. Kemper. 2015. Unnesting Arbitrary Queries. In
Proc. BTW.

[10] X. Niu, R. Kapoor, B. Glavic, D. Gawlick, Z.H. Liu, V. Krishnaswamy,
and V. Radhakrishnan. 2018. Heuristic and Cost-Based Optimization
for Diverse Provenance Tasks. IEEE TKDE (2013).

[11] PostgreSQL [n. d.]. The PostgreSQL Relational Database System (Docu-
mentation). postgresql.org/docs.

[12] PostgreSQL Git Repository [n. d.]. Mirror of the Official PostgreSQL Git
Repository. github.com/postgres/postgres.

[13] A. Ulrich and T. Grust. 2015. The Flatter, the Better. In Proc. SIGMOD.

[14] K. Xirogiannopoulos and A. Deshpande. 2017. Extracting and Analyz-
ing Hidden Graphs from Relational Databases. In Proc. SIGMOD.

docs.microsoft.com/en-us/sql
docs.microsoft.com/en-us/sql
postgresql.org/docs
github.com/postgres/postgres

	Abstract
	1 PostgreSQL Hatches Foreign Eggs
	2 A Demonstration of PostgreSQL's Planner Hook
	2.1 External Code Generation
	2.2 Fine-Grained Plan Stitching
	2.3 New Plans for SQL
	2.4 Canned Plans for SQL

	References

