
cbe

Database-Supported Video Game Engines:
Data-Driven Map Generation

Daniel O’Grady1

Abstract: Video game engines can benefit greatly from being tightly coupled with database systems.
To make this point and exemplify the similarities in database and game engine technology, we
demonstrate a data-driven approach to generate maps for video games, expressed purely in SQL. The
demonstration will feature such a live database-supported game that is playable on-site.

1 A Marriage of Game and Database Engines

Early video games were conceived as little more than a pastime, but the video game industry
has grown immensely since its beginnings in the mid-twentieth century [Ke01]. Video
games have since seeped into many aspects of our lifes, such as education, simulations, and
serious gaming in our work life. Games further hold a significant economic impact on the
world, grossing billions of dollars every year, and employing thousands of workers [Fa18].
Contrasting the humble beginnings of video games, today’s games are becoming ever more
computationally demanding, with hundreds of players playing the game at once, huge
persistent worlds to explore, and large numbers of objects to interact with.
To avoid implementing common components over and over, numerous video game engines
have been developed throughout the years, which offer commonly required functionality
to game developers. Possible game engine components include, but are not limited to:
(1) Simulation of physics, (2) collision detection, (3) pathfinding, (4) control of non-
player characters (NPCs or “AI”), (5) network communication, (6) video and audio output,
(7) processing input from the player, (8) creating and managing game worlds and objects.
Most of these components have to deal with large amounts of information that has to
be processed rapidly – a true forte of database systems. Unfortunately, databases are
predominantly used as little more than dumbed-down persistent storage in the context of
video games. This strongly contrasts with the database community’s creed to move the
computation closer to the data. Indeed, in this paper we propose a stronger connection
between video games and database systems, by moving parts of a game’s internals to the
database system, to benefit from database system technology: (1) Selecting a subset of
objects is a task where databases excel. This is interesting for finding objects in close
vincinity to a player, visual clipping during rendering (“culling”), or collision detection.
1 University of Tübingen, Department of Computer Science, daniel.ogrady@uni-tuebingen.de

https://creativecommons.org/licenses/by-nc/3.0/
daniel.ogrady@uni-tuebingen.de


(2) Updating the state of many game objects in bulk, as proposed by Gehrke et al. [Wh07].
(3) Guaranteeing consistent state through transactions.

As we are aware that implementing algorithms in SQL may seem foreign to many game
developers, we aim to couple the database tightly with the video game engine while not
exposing developers to the intricacies of database internals.
To exemplify our claim, this demo showcases declarative map generation, which is the
automatic generation of a playing field for games. The generation either happens before the
player dives into the game or when they reach the border of the field to create the illusion of
an infinite world. This paper focuses on real-time strategy (RTS) games. In RTS games,
players control multiple game figures (so-called units) on a playing field, the map. Units
are instructed to collect resources, attack enemy units or just move to a new position. This
calls for large open spaces to maneuver units properly, so maps can not just be completely
random but need certain properties to be compelling to the player.

2 Data-Driven Iterative Map Generation

The maps we create are comprised of tiles, arranged in a two-dimensional grid. Each tile
represents a certain type of terrain specific for the game the map is generated for. Such a set
of tiles could be walkable �, wall �, coast ∵, and water ≈. Our approach combines these
into modules, which are predefined clusters of 3 × 3 tiles.2 Fig. 1 shows an example of a
module representing a piece of horizontal shoreline on the left. The map generation starts
with a seed of one module and then joins modules to the outer edges repeatedly. The input
for the algorithm is a tuple (T ,M,C,S) with

1. T : a set of tiles,
2. M: a relational representation of modules3, each consisting of 3 × 3 tiles ∈ T ,
3. a relation C ⊆ T × T describing the compatibility of tiles (explained below) and
4. S ∈ M: an initial seed module.

∵

≈

�

∵ ∵

≈ ≈

� ∵

→

≈

∵

∵

←

≈

∵

�

C

freq tile with
2 � �
1 � �
3 ∵ ∵
1 ≈ ≈
1 ∵ ≈

≈

≈

≈

≈ ≈

≈ ≈

≈ ≈

Fig. 1: Two compatible modules. Each pair of neighbouring tiles in the adjacent edges can be joined
on the compatibility table C after extracting the edges (only shown for two edges of the left module).

2 While those dimensions have turned out to be rather convenient for defining modules, any other rectangular
dimensions work as well.

3 Many tabular module encodings are conceivable and we abstract from these here.



1 WITH RECURSIVE map(x,y,tile) AS (
2 (SELECT S)
3 UNION ALL
4 (SELECT ...
5 FROM C, map, M
6 WHERE
7 C.tile = edge(map) AND
8 C.with = edge(M) AND
9 NOT(<termination condition>)
10 ))

Fig. 2: Pseudocode for the map generation. It
creates a table map of tiles tile positioned at
coordinates x,y. edge(...) is a function that
produces edges as shown in Fig. 1 on the left.

map
x y tile
1 1 ≈
1 2 ≈

... ... ...

n m ∵

./

properties
tile res_type res_dens . . .
≈ 'water' 100 ...
∵ 'sand' 45 ...
� NULL 0 ...
� 'stone' 100 ...

Fig. 3: Joining a map of size n × m on a table
of properties. Here, each tile type is associated
with a resource type, a resource density, and
possibly other information.

The algorithm selects the edges of all modules inM and of the outermost modules of
the map together with the direction they are facing. An edge is comprised of the three
adjacent tiles of either side on a module. Take Fig. 1, where two of the four edges of the left
module are extracted (denoted by and ). Each edge of the map is then joined with a
compatible module inM. Two modules are said to be compatible if their adjacent edges (the
ones facing opposite directions) are compatible in all neighbouring tiles. Tiles, in turn, are
compatible with each other if they can be joined on C, as is shown in Fig. 1. An additional
value freq per compatibility rule denotes the frequency, which allows us to control how
likely a rule is selected in ambiguous situations where more than one compatibility rule
qualifies. A formulation of this iterative map expansion in pseudo SQL is shown in Fig. 2.
Starting with a small seed S, the intermediate result is gradually expanded by recursively
joining matching modules to it. Usually, the termination condition limits the map size, but
can also be bound to other constraints. This type of iterative map generation is a perfect
match for a recursive common table expression.
The data-driven nature of this algorithm enables game developers to easily control this
process with their own modules and compatibilities. For example, adding a rule (5, ≈, �) to
C in Fig. 1 would allow water to be generated next to walls. In fact, this would occur more
often than, say, water next to water, because of the higher frequency of 5 of the rule.
To finalise the map, it is joined with a tile property table to attach additional semantics that
are required for a particular game. This is shown in Fig. 3, where the result of the recursive
CTE map is joined with a table properties which contains resource information for each
tile type. The map is subsequently converted into a format that is understood by the game
engine. Then, actual gameplay commences.

3 Demonstration Setup

The on-site demonstration will showcase the discussed map generation algorithm by tapping
into the OpenRA4 engine, an engine specifically tailored to RTS games. OpenRA is written

4 https://www.openra.net



in C#, and is still under active development since 2007. The map generation is implemented
in pure SQL and runs on a PostgreSQL 10 database system. The process of generating a
map is triggered from within a game implemented on top of OpenRA by sending a query to
the database and receiving a stream of tuples. Those are then used to create the native data
structure provided by the engine, just as if the map was read from disk.5

Fig. 4: Screenshot of a generated map with pools
of water with shores and enclosed walkable ter-
ritory. The game will be playable on site.

To demonstrate the capabilities of our ap-
proach, we will bring canned tilesets with us.
These tilesets will have realistic size in terms
of modules and compatibilities and will be
used to produce maps of typical dimensions
for OpenRA, between 40 × 40 and 200 × 200
tiles. But the audience is invited to propose
changes to the input data to explore how it
affects the generated maps. The generation
process takes about 60 milliseconds,6 which
allows for rapid re-generation of maps to com-
pare them with each other.7 We will also bring
the source code of the modified OpenRA en-
gine for interested audience members to in-
spect the details of our implementation and
convince themselves that the fingerprint we
left on the engine is rather small.

References
[Fa18] Facts, E.: Essential Facts About the Computer and Video Game Industry, http://www.

theesa.com/wp-content/uploads/2018/05/EF2018_FINAL.pdf, Accessed: 2018-09-13,
2018.

[Ke01] Kent, S. L.: The Ultimate History of Video Games: From Pong to Pokemon–the Story
Behind the Craze That Touched Our Lives and Changed the World. Prima Communications,
Inc., Rocklin, CA, USA, 2001.

[Wh07] White, W.; Demers, A.; Koch, C.; Gehrke, J.; Rajagopalan, R.: Scaling Games to Epic
Proportions. In: Proceedings of the 2007 ACM SIGMOD International Conference on
Management of Data. SIGMOD ’07, ACM, Beijing, China, pp. 31–42, 2007, isbn:
978-1-59593-686-8, url: http://doi.acm.org/10.1145/1247480.1247486.

5 In future work, we will seek to eliminate the need for native data structures alltogether.
6 In addition to the raw generation process, the current implementation takes about 10 seconds to translate the

generated data into a native OpenRA data structure. This additional times will disappear once we move more of
the game engine logic to the database system.

7 Tested on a MacBookAir with a 2,2 GHz Intel Core i7, 8 GB 1600MHz DDR3 RAM and a SM0512G SSD.

http://www.theesa.com/wp-content/uploads/2018/05/EF2018_FINAL.pdf
http://www.theesa.com/wp-content/uploads/2018/05/EF2018_FINAL.pdf
http://doi.acm.org/10.1145/1247480.1247486

	A Marriage of Game and Database Engines
	Data-Driven Iterative Map Generation
	Demonstration Setup

