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ABSTRACT
XQuery has an order-sensitive semantics in the sense that it requires
nodes to be sorted in document order without duplicates (or in
Distinct Document Order, DDO for short). This paper shows that
for a given XQuery expression and a nested-relational DTD, the
input expression can be transformed into an expression that can be
evaluated without—potentially costly—ordering operations even
if the input query requires its result to be in DDO. To this end,
we propose an XQuery transformation algorithm that consists of
simple rewriting rules. The basic idea is inspired by a generate-and-
test approach as commonly used for solving search problems. We
apply this approach when constructing the transformed expression:
first, a skeleton query is prepared for the generate phase. This
skeleton query can be evaluated without DDO, but it has the ability
to return all nodes in DDO for all XML documents that conform
to the input DTD. Second, an output expression is generated by
injecting conditions for the test phase, which are extracted from the
input expression, into the skeleton query. The key to performing
both the extraction and injection of conditions in a systematic way
is to utilize XQuery transformations that preserve equivalence up to
DDO.
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1 INTRODUCTION
XQuery is a functional query language for processing ordered trees,
XML documents in particular. Order is, indeed, central to the seman-
tics of XQuery and its sublanguage XPath. In an XML document,
the document order is a total order defined over all nodes in the
tree, determined by a preorder tree traversal. Reflecting this, the
semantics of XQuery/XPath step expressions requires the resulting
nodes to be sorted in document order without duplicates (or in Dis-
tinct Document Order, DDO for short): for a given step expression
e/α ::τ , the semantics of the step expression is defined using the
distinct-doc-order (ddo) function, which performs sorting in
document order and eliminates duplicates based on node identity
[22]:

e/α ::τ = ddo(for $fs:dot in e return α ::τ )
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where the variable $fs:dot binds an implicit context node and the
return part, α ::τ , is evaluated over this context node.

One of the typical use cases of XQuery is the so-called twig
queries. A twig query extracts subtrees that satisfy tree patterns
described in terms of XQuery or XPath [19]. Since we particularly
focus on the order-based semantics here, let us make this aspect
explicit in the following definition:

Definition 1 (Twig query with DDO). For a given XQuery expres-
sion e, a twig query with DDO specified by e extracts nodes that
satisfy e and are sorted in DDO. To obtain the results of such a query,
ddo(e) is evaluated.

In the context of XQuery/XPath, twig queries with DDO are the
norm and not the exception: the generation of DDO-sorted results is
the default behavior in these language (that can be explicitly disabled
using the fn:unordered function).

Since DDO is so central to the semantics of XQuery, it is impor-
tant to be aware of its cost. Chains of step expressions—or: paths—
require multiple applications of the ddo function. The repeated
node sorting and deduplication effort is a source of inefficiency in
XQuery processing. Indeed, to date, a variety of optimization tech-
niques have been proposed to avoid the need for DDO operations
[5, 6, 9, 13, 15, 21].

Moreover, DDO hinders the application of classical techniques
for query rewriting. For example, consider the following expression:

for $v in doc(“foo.xml”)/�ild ::a return ($v, $v)/�ild ::b

One might suppose that the underlined return part of this expres-
sion could be rewritten as ($v/�ild ::b, $v/�ild ::b) by pushing the
axis access into the sequence construction (“projection pushdown”).
However, this rewrite is not valid because the semantics of step ex-
pressions requires DDO. The underlined return part should instead
be rewritten as $v/�ild ::b.

In the present work, we study a class of XQuery expressions,
DDO-free XQuery, which may be correctly evaluated without invok-
ing DDO operations at all:

Definition 2 (DDO-free XQuery). A step expression e/α ::τ is DDO-
free if the following equation holds:

[[e/α ::τ ]] = [[for $fs:dot in e return α ::τ ]].
An XQuery expression e is DDO-free if all step expressions con-
tained in e are DDO-free. Note that DDO is required only in the
semantics of step expressions.

The decision problem of DDO-freeness would be hard to solve
because of the above semantic definition. We can, however, use the
following syntactic restriction which we share with a whole family
of theoretical work on XQuery [4, 7, 17]:

Definition 3 (Single-node child-traversal expression). A step ex-
pression $v/�ild ::τ is a single-node child-traversal expression if
variable $v is bound through a for-expression.
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A single-node child-traversal expression $v/�ild ::τ is DDO-free:
for binds variable $v to a single node at a time and navigating to
�ild nodes from a single node does not require DDO: under the
assumption that XML documents are stored in a serialized (i.e.,
preorder-based) fashion, evaluation will encounter the children in
document order. XML document storage in serialization order is,
indeed, prevalent among XPath and XQuery implementations: Ba-
seX [8], MonetDB/XQuery [3], or DB2/pureXML [2], among a
variety of others. The same is true for streaming XQuery proces-
sors [18]. These systems take advantage of guaranteed node order
and evaluate �ild axis steps in a single scan over the document,
avoiding any DDO overhead [11, 14, 18]. The present work enables
such systems to operate in this particularly efficient DDO-free mode,
even if the original input query suggests otherwise. The experiment
in Appendix A provides a taste of the—indeed substantial—runtime
savings that we can expect from DDO-freeness.

Now, let us consider the following tree pattern in a twig query:

for $b in doc(“foo.xml”)/�ild ::a/�ild ::b return
for $a in $b/ancestor :: ∗ return ($b, $a)/�ild ::c (A)

Suppose that an XML document stored as “foo.xml” has a root
element “a”, which has several “b” children and several “c” children.
To extract nodes that satisfy (A) with DDO, evaluation of ddo(A)
suffices. However, naı̈ve evaluation of ddo(A) requires multiple
applications of ddo (once per step expression) and may lead to
significant sorting overhead. Can we use schema information—as
given for the “a”, “b”, and “c” elements above—to obtain a DDO-
free expression equivalent to ddo(A)?

The objective of this paper is to prove the following theorem:

Theorem 1 (Main Theorem). For given schema information (a
nested-relational DTD) and an XQuery e over an XML document
that conforms to the schema, e can be transformed into e ′ such that
e ′ = ddo(e) and e ′ is DDO-free.

Our basic idea to prove the main theorem is inspired by two-phase
generate-and-test strategies, as they are commonly used in search
problems. We adapt this approach to construct a DDO-free XQuery
for given schema information (a nested-relational DTD, see below)
and an input XQuery, which may not be DDO-free. Conceptually,
our approach is as follows:
• Generate phase:

Prepare a DDO-free skeleton query s, which has the ability
to generate all nodes in DDO for any XML document that
conforms to the schema.

• Test phase:
Formulate s[cond] by injecting node test conditions cond ex-
tracted from the input query e into the skeleton query s.

This leaves three questions to answer: (1) how to prepare the skeleton
query s, (2) how to extract appropriate conditions from the input
query, and (3) how to inject those conditions into the skeleton query.
In the sequel, we offer the following solutions:
• We show that the skeleton query s can be derived if schema

information is given as a nested-relational DTD, which is a
type of DTD that is often used in practice [1] (as presented in
Section 2.2).

• We show that the input query e can be transformed into e ′, which
has a structure similar to that of the skeleton query. Keys are

transformations that preserve equivalence up to DDO, that is,
ddo(e) = ddo(e ′) (as presented in Sections 3 and 4).

• Since e ′ has a structure similar to that of the skeleton query s,
we can obtain the query s[cond] by injecting the conditions cond
from e ′ into s in a systematic way (as presented in Section 5).

The obtained query s[cond] is DDO-free because of the definition
of s. In addition, s[cond] is equivalent to e up to DDO because
the distinct nodes generated by s[cond] are also generated by e.
The converse is also true since cond is extracted from e ′, which is
equivalent to e up to DDO.

Our main contributions are summarized as follows:

• We design an approach to proving the main theorem inspired by
generate-and-test strategies.

• We develop a method of implementing our approach that con-
sists of the following three phases:

– The split phase, in which an input XQuery expression is
split into a flat sequence expression such that each com-
ponent of the sequence expression does not itself contain
sequence expressions.

– The map phase, in which each component expression of
the sequence expression obtained above is transformed
into a for-expression with a structure similar to that of the
skeleton query to allow conditions to be extracted from the
transformed expression.

– The inject phase, in which the conditions extracted above
are injected into the skeleton query to obtain a DDO-free
expression that is equivalent to the input expression up to
DDO.

• XQuery transformation rules up to DDO are developed. The
most interesting rule among them is a rule for removing duplicate-
generating for-expressions to obtain DDO-free expressions.

• We carefully design the order of rule application in the split and
inject phases.

The remainder of the paper is organized as follows. Section 2
gives an overview of the proposed method as well as a brief introduc-
tion to XQuery. Sections 3 and 4 present input query transformation
rules that allow conditions to be extracted from transformed queries.
In Section 3, the split phase introduced above is described. In Sec-
tion 4, the map phase is described. Section 5 describes a method
of injecting the conditions extracted from the input query into the
skeleton query. Section 6 discusses related work before Section 7
wraps up.

2 OVERVIEW
In this section, we begin with a brief introduction to XQuery with a
focus on the data model, and then review the target dialect of XQuery
that is output by the transformation. We continue with a complete
walk-through that clarifies the two-phase generate-and-test strategy.
To this end, Section 2.2 describes how to derive the skeleton query
from schema information and discusses structural features that the
skeleton query exhibits. These features allow conditions to be in-
jected in a systematic way. Section 2.3 presents a transformation that
rewrites the input query such that we can “read off” the conditions
to be placed in the skeleton query. Section 2.4 exercises both phases
in terms of a complete example transformation.
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D; cxt ` () → ()

D; cxt ` r1 → e1 · · · D; cxt ` rN → eN
D; cxt ` (r1, . . . , rN ) → (e1, . . . , eN )

((r = l ) ∨ (r = l ∗) ∨ (r = l+) ∨ (r = l ?))
a fresh variable $u ∈ Var D; $u ` D.µ(l) → e

D; $v ` r → for $u in $v/�ild ::l return (if () then $u else (), e)

Figure 1: Skeleton query derivation for NRDTD D.

2.1 XQuery
2.1.1 The data model of XQuery. XQuery’s data model is

based on sequences, namely, ordered collections of zero or more
items. One important characteristic of the data model is that all se-
quences are flat: a sequence never contains other sequences; nested
sequence expressions are implicitly flattened by the XQuery pro-
cessor. In addition, there is no distinction between an item x and
the singleton sequence (x) containing that item. Sequences are
assigned an effective Boolean value: an empty sequence, denoted by
(), represents false while any non-empty sequence represents true.

2.1.2 Input XQuery expressions. The subset of XQuery ex-
pressions that comprise our input dialect is represented in Figure 3a.
Note that the input XQuery form does not include element construc-
tors because we focus on twig queries, which extract subtrees that
satisfy given tree patterns. The absence of element constructors
renders the target dialect purely functional (constructors in XQuery
induce side effects) so that let-expressions can be eliminated by
replacing bound variables with their defining expressions [15]. Note
also that we use a special variable $R instead of the doc function
to denote the document node of an input XML document. We use
dos and aos to abbreviate the descendant-or-self and ancestor-or-
self axes, respectively. In addition, we use Var and Label to denote
an infinite set of variables and an infinite set of element tag names
(short: labels), respectively.

2.2 The skeleton query
2.2.1 Derivation of skeleton queries. We design skeleton

queries based on the following principles, which later enable us to
inject test conditions that we extract from the input query:

• A skeleton query is a DDO-free expression,
• the query encodes the schema that the input documents adhere

to, and
• stub if-conditionals (to be replaced later) are placed in appropri-

ate positions.

Our skeleton queries are formulated based on nested-relational
DTDs, which are very common in practice [1]. Nested-relational
DTDs are a proper subclass of non-recursive, disjunction-free DTDs.

Definition 4 (Document Type Definition (DTD)). A DTD over a
finite alphabet Σ is a triple D = (Σ, l0, µ), where l0 is the root label
and µ is a function from Σ to the set of regular expressions over Σ.
µ(l) = () (the empty sequence) if label l denotes an element leaf

s ::= for $v in $v/�ild ::τ return sr | ()
sr ::= ((if () then $v else ()), s, ..., s)

Figure 2: The syntax of a skeleton query

node. A regular expression r over Σ is defined as follows:

r ::= l (∗ label, l ∈ Σ ∗)
| (r , r , . . . , r ) (∗ sequence ∗)
| r∗ (∗ zero or more occurrences ∗)
| r+ (∗ one or more occurrences ∗)
| r? (∗ zero or one occurrence ∗)
| r | r | · · · | r (∗ disjunction ∗)

Definition 5 (Nested-relational DTD (NRDTD)). A DTD D =
(Σ, l0, µ) is an NRDTD if D is non-recursive, and µ(l) is a sequence
(r1, . . . , rN ) such that each ri has the form li , l∗i , l+i , or li ?, and all
li s are distinct labels.

The algorithm for deriving a skeleton query from an NRDTD is
defined in terms of a set of inference rules, as shown in Figure 1. In
these rules, a judgment of the form

D; cxt ` r → e

indicates that, given an NRDTD D and a variable cxt of XQuery rep-
resenting the context position in all the XML documents conforming
to D, the regular expression r is transformed into skeleton XQuery e.
For a given NRDTD D and a variable $R representing the root nodes
of all the XML documents conforming to D, the skeleton XQuery e
is obtained by means of the following judgment:

D; $R ` D.l0 → e .

The resulting skeleton query e has the syntactic form shown in
Figure 2. The query is DDO-free since every step expression it
contains is a single-node child-traversal expression.

Example 1. Consider an NRDTD D1 = (Σ1, a, µ1), where Σ1 =
{a, b, c, d} and µ1(a) = (b∗, c+), µ1(c) = d?, and µ1(b) = µ1(d) = ().
Then, the skeleton query for D1 is as follows (for readability, we omit
concatenations with the empty sequence and follow the convention
to abbreviate $v/�ild ::τ as $v/τ ):

for $a in $R/a return
(if () then $a else (),
for $b in $a/b return (if () then $b else ()),
for $c in $a/c return
(if () then $c else (),
for $d in $c/d return (if () then $d else ())))

Note how the stub conditionals if () then . . . are placed to control
whether an element is produced or not—these will be replaced in
the sequel.

2.2.2 Structural features of skeleton queries. The skeleton
query serves as a query template whose stub conditions will be
instantiated in the second phase. The two following definitions help
to make properties of this template precise:

Definition 6 (Output variable). A variable is said to be an output
variable when that variable is bound to nodes that may be output.
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e ::= $v | (e, e, ..., e) | () | e/α ::τ | for $v in e return e
| if e then e else ()

α ::= �ild | parent | self | descendant | ancestor
| descendant-or-self (dos) | ancestor-or-self (aos)

τ ::= label | ∗

(a) Our input syntax

es ::= (e, e, ..., e)
e ::= $v | $v/�ild ::τ | if e then e else ()

| for $v in $v/�ild ::τ return e
τ ::= label | ∗

(b) Output syntax in the split phase

es ::= (ef , ef , ..., ef )
ef ::= $v | for $v in $v/�ild ::τ return er
er ::= ef | if cond then $v else ()
cond ::= ep | if cond then e else ()
ep ::= $v | ep/�ild ::τ
τ ::= label | ∗

(c) Output syntax in the map phase

e ::= for $v in $v/�ild ::τ return er
er ::= ((if conds then $v else ()), e, ..., e)
conds ::= (cond, ..., cond )
cond ::= ep | if cond then e else () | ()
ep ::= $v | ep/�ild ::τ
τ ::= label | ∗

(d) Output syntax in the inject phase

Figure 3: Input and output syntaxes in each phase

Definition 7 (Consecutive-child-axis for-expression). A for-ex-
pression (for $v1 in e2 return e3) is said to be a consecutive-
child-axis expression when
(1) e2 has the form $v0/�ild ::τ1, and
(2) if e3 contains a for-expression, then in the outermost for-expression
(for $v2 in e4 return e5) of e3, e4 has the form ($v1/�ild ::τ2).

Intuitively, a consecutive-child-axis for-expression is a nested for-
expression in which the in part is a step expression ($v/�ild ::τ )
and $v is defined in the innermost outer for.

Property 1. A skeleton query exhibits the following three structural
properties:

(a) If a node is output it has been previously bound to an output
variable,

(b) all occurrences of for are consecutive-child-axis for-expressions,
and

(c) a (stub) if-conditional is located in the return part of each for.
These conditionals have the form

if () then $v else ().

The () conditions are placeholders (or holes) that will be filled
with test conditions extracted from the input query. Note that a
skeleton query returns all nodes in DDO for any XML document
that conforms to the input NRDTD if we replace the conditions
with true. This DDO-property is preserved when we place more
restrictive conditions in the holes.

2.3 Transforming input queries and injecting
conditions

The transformation of the input queries is the core of the proposed
method. By properly transforming an input query, we can obtain an
expression with a structure similar to that of a skeleton query. It then
becomes possible to “read off” the conditions specified in the input
query and to inject those conditions into the skeleton query holes.
To facilitate this, we rewrite the transformed input query to take on
a specific form:

Property 2. The target form of a transformed input query is a se-
quence expression (e1, ..., eK ) in which each component expression

ei in (e1, ..., eK ) is a for-expression or the variable $R. When ei is a
for-expression, it exhibits the following three structural properties:

(a) If a node is output it has been previously bound to an output
variable,

(b) all occurrences of for are consecutive-child-axis for-expressions,
and

(c) if-conditionals that appear in the innermost return part of a
for have the following form:

if cond then $v else () .

The conditions cond that appear in these if-expressions can be ex-
tracted and placed to fill the associated holes in the skeleton query’s
stub conditionals. Note that the transformed input and skeleton
queries exhibit a nearly identical structure (compare Properties 1
and 2).

We structure the transformation of the input query as follows.
Split and map are preparatory; the actual extraction and injection of
conditions happens in the final inject phase:

• Split is described in Section 3. In this phase, an input query
that conforms to the syntax shown in Figure 3a is split such
that there are no sequence expressions except for the topmost
expression. In addition, non-child axes are eliminated. The
expressions obtained in this phase conform to the syntax shown
in Figure 3b.

• Map is described in Section 4. Here, for each expression e in the
topmost sequence expression es obtained in the split phase (see
Figure 3b), e is rewritten into a for-expression that is equivalent
up-to-DDO. Each of these for-expression satisfies Property 2.
The expressions obtained in this phase conform to the syntax
shown in Figure 3c.

• Inject is discussed in Section 5. This phase finally extract con-
ditions from the transformed input query and places them in
the skeleton’s holes. Since the skeleton query and the trans-
formed query share shapes, this injection can be performed in a
straightforward fashion.

Key to the input query transformation are rewriting rules that
preserve equivalence up-to-DDO. We have marked these rules by (∗)
to aid the discussion. In an effort to make the following longer chain
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of rewriting phases more digestible, we characterize the intermediate
XQuery dialects obtained after a phase has completed its work.

2.4 A complete example
For the DTD D1 given in Example 1, consider the XQuery expres-
sion (A) presented in the introduction. In the split phase, expression
(A) is rewritten into the following form (additionally, standard sim-
plifications [12] have been applied to eliminate empty sequences):

(for $v in $R/a return
for $b in $v/b return

for $a in $R/a return $b/c,
for $v in $R/a return
for $b in $v/b return

for $a in $R/a return $a/c)
Note that topmost syntactic construct is a sequence. Non-child axes
have been eliminated. Next, in the map phase, the above expression
is transformed as follows:

(for $v in $R/a return
for $b in $v/b return

for $o in $b/c return
if (if $R/a then $o else ()) then $o else (),

for $v in $R/a return
for $o in $v/c return

if (if (if $R/a then $R/a/b else ()) then $o else ())
then $o
else ())

If this query outputs a node, it has previously been bound to an
output variable (here: $o). Finally, in the inject phase, we extract the
conditions from the above expression and place them in the skeleton
query’s holes (recall Example 1). We obtain the following:

for $a in $R/a return
(if () then $a else (),
for $b in $a/b return (if () then $b else ()),
for $c in $a/c return
(if (if (if $R/a then $R/a/b else ()) then $c else ())
then $c else (),
for $d in $c/d return (if () then $d else ())))

Note that the condition (with dashed underline) in the first for-
expression in the sequence expression is not injected since there
are no places to inject it in the skeleton query. Again, the applica-
tion of existing techniques for the elimination of empty sequence
expressions [12] leads to a simplified variant of the above:1

for $a in $R/a return
for $c in $a/c return
if (if (if $R/a then $R/a/b else ()) then $c else ())
then $c else ()

Evaluation of this query invokes no DDO operations at all. If we
wrap (A) in a ddo() call, it is equivalent to the above expression.

3 SPLIT PHASE
This section describes how a given XQuery expression e—conforming
to the input syntax shown in Figure 3a—is transformed into an ex-
pression e ′ that contains no sequence expressions except for the
topmost expression. Non-�ild axes are also eliminated in this
1We could further unfold the nested if-conditional but optimizations along these lines
are well-known and not the focus of the present paper.

phase. The obtained expression conforms to the syntax shown in
Figure 3b. To this end, six transformation rules are presented. Each
transformation is relatively simple.

3.1 Eliminating long-distance axes
A long-distance axis step may extract nodes that are not directly
adjacent to the step’s context node. Steps along these axes, such as
dos, descendant, aos and ancestor, can be eliminated by translating
them into finite sequences of �ild or parent axis steps: there is a
maximum height of input XML documents that conform to a given
NRDTD. The maximum height of trees that conform to NRDTD
D can be easily calculated using MaxH(D.l0), which is defined as
follows:
MaxH((r1, . . . , rN )) = maximum(MaxH(r1), . . . , MaxH(rN ),1)
MaxH(r ) = MaxH(D.µ(l)) + 1 if r ∈ {l , l∗, l+, l?}

We use H to denote the maximum height of the input trees. For
example, the maximum height for XML documents that conform
to the NRDTD D1 presented in Example 1 is H = 4. Each long-
distance axis can be eliminated using the following transformation
rules that “unroll” the long-distance axis:

e/dos ::τ
(e/self ::τ ,
e/�ild ::τ ,

e/�ild :: ∗ /�ild ::τ ,
...,

e/�ild :: ∗ /�ild :: ∗ /.../�ild ::τ︸                                       ︷︷                                       ︸
H steps

)

(∗)

e/aos ::τ
(e/self ::τ ,
e/parent ::τ ,

e/parent :: ∗ /parent ::τ ,
...,

e/parent :: ∗ /parent :: ∗ /.../parent ::τ︸                                              ︷︷                                              ︸
H steps

)

(∗)

Similar transformation rules can be applied to eliminate descendant-
and ancestor-axis step expressions. The generated path expressions
“probe” the vertical vicinity of the context node (up to H steps away)
for elements with label τ . Some of these probing paths will al-
ways yield the empty sequence (). For a path of parent-axis steps,
such meaningless expressions can be eliminated as described in
Section 3.4. For a path of �ild-axis steps, such expressions can be
eliminated in the inject step, as described in Section 5. The expres-
sions that are obtained after the application of the above rules will
have the following syntactic form:

e ::= $v | (e, e, ..., e) | () | e/α ::τ | for $v in e return e
| if e then e else ()

α ::= �ild | parent | self
τ ::= label | ∗

3.2 Simplifying step expressions
We rely on two transformations to simplify step expressions. Once
these two transformations are applied, we obtain single-step expres-
sions that originate in a variable.

5
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for $v in () return e
()

for $v in $u return e
e[$v ⇐ $u]

for $v in (e1, ..., eN ) return e
(for $v in e1 return e, ..., for $v in eN return e)

for $v in (for $u in e1 return e2) return e
for $u in e1 return (for $v in e2 return e)

for $v in (if e1 then e2 else ()) return e3
if e1 then (for $v in e2 return e3) else ()

Figure 4: Known rewriting rules for for-expressions

3.2.1 Pushing axis access. The first transformation is done
by applying the following four rules to e/α ::τ . The rules push the
step inside e: in the result, all steps originate in a variable (but not in
a sequence, for-, or if-expression):

(e1, ..., eN )/α ::τ
(e1/α :: τ , ..., eN /α ::τ )

(∗)
()/α ::τ
()

(for $v in e1 return e2)/α ::τ
for $v in e1 return e2/α ::τ

(∗)
(if e1 then e2 else ())/α ::τ
if e1 then e2/α ::τ else ()

After application, the expression adheres to the following syntax
(note non-terminal ep in particular):

e ::= ep | (e, e, ..., e) | () | for $v in e return e
| if e then e else ()

ep ::= $v | ep/α ::τ
α ::= �ild | parent | self
τ ::= label | ∗

3.2.2 Decomposing multiple steps. Multi-step path expres-
sions are decomposed (this simply follows the standard XQuery
semantics):

ep/α1::τ1/α2::τ2 a fresh variable $v ∈ Var
for $v in ep/α1::τ1 return $v/α2::τ2

Decomposition leaves us with expressions of this form:
e ::= $v | (e, e, ..., e) | () | $v/α ::τ | for $v in e return e
| if e then e else ()

α ::= �ild | parent | self
τ ::= label | ∗

3.3 Normalizing “for”-expressions
In an additional preparatory step, we simplify the in (or: generator)
part of for-expressions. The aim is to produce generators $v/α ::τ ,
that are closer to the form required by consecutive-child-axis (re-
call Definition 7). We can call on established rewriting rules for
for-expressions [17, 20], shown in Figure 4. Here, e[$v ⇐ $u]
represents e with all free occurrences of $v replaced by $u. These
rules bring the query expression into the form defined by Figure 5.

3.4 Eliminating parent and self axes
With Figure 5, we have now reached an intermediate expression
form that can be characterized as:
• Every axis step expression originates in a variable,

e ::= $v | (e, e, ..., e) | () | $v/α ::τ
| for $v in $v/α ::τ return e | if e then e else ()

α ::= �ild | parent | self
τ ::= label | ∗

Figure 5: Syntax after the normalization of for-expressions

• every variable is defined in a for-expression where the in part is
a step expression, and

• every axis is of the �ild, parent or self type.
These three features imply the following property:

Property 3. For an axis step expression $v/α ::τ , all nodes bound
to variable $v will always be found at the same level of their input
tree if $v has been defined in an enclosing for-expression with a
generator of the form $u/�ild ::τ ′. Below, we will see that it is
reasonable to assume that $v is defined like this.

We build on this property to develop transformation rules that
eliminate parent and self axis steps. Given a step expression
$v/α ::τ , the basic idea is the following: we use static analysis to
track the levels of the nodes that will be bound to $v. If these levels
all agree, we call them the level of $v. Once we know the level of $v,
we use it to rewrite $v/α ::τ into a suitable expression of �ild-axis
steps.

To implement this static analysis, we introduce two environments:
L and Γ. L maps variables to levels in terms of natural numbers.

L :: Var → N

For the special variable $R that is bound to the document node,
L($R) def

= 0. When the nodes that are bound to $v are children of the
nodes that are bound to $u, L($v) = L($u)+1. When the node bound
to $v is the document’s root element, L($v) = 1. Γ is an environment
for mapping variables to �ild-axis step expressions:

Γ :: Var → {$v/�ild ::τ , . . . } .
For a given $v, Γ($v) = $u/�ild ::τ indicates that variable $v is
defined by the following for-expression:

for $v in $u/�ild ::τ return ...

With these in place, an algorithm for eliminating self and parent
axes is presented in terms of a set of inference rules as shown in
Figure 6. According to these rules, a judgment of the form

Γ;L ` e → e ′

indicates that for a given Γ and L, an XQuery expression e that
conforms to the syntax shown in Figure 5 is transformed into e ′;
if e ′ contains step expressions, these will exclusively use the �ild
axis. The transformation starts with the top-level expression, Γ = {}
and L = {$R 7→ 0}. In this algorithm, the rules for variables, the
empty sequence (), sequence expressions, if-conditionals and �ild-
axis steps are straightforward. Note that for a sequence expression,
nested sequences are not constructed.

Here, we pay particular attention to for-expressions to demon-
strate that the assumption of Property 3 is reasonable. For a for-
expression for $v1 in $v0/α ::τ1 return e1, its generator $v0/α ::τ1
is transformed first. In this transformation, any self- or parent-axis
steps are eliminated (if present). The transformed generator either
is a �ild-axis step $u/�ild ::τ2 or an empty sequence expression

6
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Γ; L ` $v → $v Γ; L ` () → ()
Γ; L ` e1 → e′1 · · · Γ; L ` e1 → e′N

Γ; L ` (e1, ..., eN ) → (e′1, ..., e′N )
Γ; L ` e1 → e3 Γ; L ` e2 → e4

Γ; L ` if e1 then e2 else () → if e3 then e4 else ()

Γ; L ` $v0/α ::τ1 → $u/�ild ::τ2 Γ + {$v 7→ $u/�ild ::τ2 }; L + {$v 7→ L($u) + 1} ` e1 → e2
Γ; L ` for $v in $v0/α ::τ1 return e1 → for $v in $u/�ild ::τ2 return e2

(∗)

Γ; L ` $v0/α ::τ1 → ()
Γ; L ` for $v1 in $v0/α ::τ1 return e → ()

Γ; L ` $v/�ild ::τ → $v/�ild ::τ
L($v1) = 0

Γ; L ` $v1/self ::τ1 → ()
L($v1) ≥ 1 Γ($v1) = $v2/�ild ::τ2 (τ2 u τ1) = τ ′

Γ; L ` $v1/self ::τ1 → $v2/�ild ::τ ′ (∗)

L($v1) ≤ 1
Γ; L ` $v1/parent ::τ1 → ()

L($v1) > 1 Γ($v1) = $v2/�ild ::τ2 Γ($v2) = $v3/�ild ::τ3 (τ3 u τ1) = τ ′

Γ; L ` $v1/parent ::τ1 → $v3/�ild ::τ ′ (∗)

Figure 6: Algorithm for eliminating self and parent axes

()—we use the latter to signal that no unique level could be assigned
to $v. Then, the return part e1 is transformed using the two updated
environments, yielding e2. Finally, this transformation results in the
for-expression

for $v in $u/�ild ::τ2 return e2

(or () if the transformation fails).
For a self-axis step expression $v1/self ::τ1, if the nodes bound

to $v1 are document nodes (denoted by L($v1) = 0), then the trans-
formation results in () because document nodes do not have ele-
ment names; otherwise, the self-axis step is transformed into a
suitable �ild-axis step. More concretely, suppose that variable $v1
is defined in the following for-expression (denoted by Γ($v1) =
$v2/�ild ::τ2):

for $v1 in $v2/�ild ::τ2 return ...

Then, if τ1 = ∗ or τ1 = τ2 (resp. τ2 = ∗ or τ1 = τ2), the transformation
results in $v2/�ild ::τ2 (resp. $v2/�ild ::τ1); otherwise (i,e., if τ1 ,
τ2), the transformation results in (). To see why this meets the
XQuery semantics, consider the following path expression obtained
by replacing $v1 with Γ($v1):

$v2/�ild ::τ2/self ::τ1 .

To implement the above strategy, we introduce binary operator u on
labels (element names) as follows:

τ2 u τ1 =


τ1 ((τ2 = ∗) ∨ (τ1 = τ2))
τ2 ((τ1 = ∗) ∨ (τ1 = τ2))
τ3 ((τ1 � τ2) ∧ (a fresh τ3 ∈ Label))

where τ1 ∼ τ2 holds iff τ1 = τ2, τ1 = ∗, or τ2 = ∗. Note that we use
$v2/�ild ::τ3 with a fresh label τ3 not used in the DTD to represent
().

Similarly, for a parent-axis step $v1/parent ::τ1, if the nodes that
are bound to $v1 are either document or root nodes, the transforma-
tion results in () because neither have parent nodes with element
names;2 otherwise, the transformation results in $v3/�ild :: τ ′, as
obtained using u and Γ.

2Note that in this paper, τ is either a label (an element name) or ∗ (an arbitrary element
name). If τ can be node(), then the bounds for L in the premises of the inference rules
for the self- and parent-axis steps need to be adapted.

The transformed expressions adhere to following dialect (since
we have reached a �ild-axis-only intermediate form norm, we use
$v/τ instead of $v/�ild ::τ from now on):

e ::= $v | (e, e, ..., e) | () | $v/τ
| for $v in $v/τ return e | if e then e else ()

τ ::= label | ∗

3.5 Decomposing sequence expressions
To wrap up the split phase, a final set of rules decomposes sequences
expression that do not appear at the top-level. We obtain expressions
that conform to the non-terminal es defined in Figure 3b:

for $v in $u/τ return (e1, . . . , eN )
((for $v in $u/τ return e1),
. . . , (for $v in $u/τ return eN ))

(∗)

if (e1, . . . , eN ) then e else ()
((if e1 then e else ()), . . . , (if eN then e else ())) (∗)

if e then (e1, . . . , eN ) else ()
((if e then e1 else ()), . . . , (if e then eN else ())

4 MAP PHASE
Phase split (previous section) emits a sequence expression es =
(e1, . . . , eN ), recall Figure 3b and Property 2 in Section 2.3. The
goal of the map phase is to rewrite each ei into a for-expression
that adheres to Properties 2(a) through (c). In particular, these for-
expressions (1) explicitly reveal conditions specified in the input
query and (2) are in consecutive-child-axis form. We give five trans-
formation rules towards this goal. The most interesting among these,
presented in Section 4.2.2, transforms duplicate-generating for-
expressions into if-conditionals. The other four rules are relatively
straightforward.

4.1 Introducing output variables
To satisfy Property 2(a), each expression e in es is rewritten to
introduce explicit output variables:

e

for $o in e return if $o then $o else ()
In the return part, note that we write if $o then $o else () instead
of the equivalent $o. As will be shown in Section 5, this notational
trick renders condition injection simpler.
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es ::= (e, e, ..., e)
e ::= $v | for $v in $v/τ return e

| if cond then e else ()
cond ::= $v | $v/τ | if cond then e else ()
τ ::= label | ∗

Figure 7: Output syntax after simplification of the “if” part
with the normalization of “for”-expressions

We reach the following intermediate syntactic form:

es ::= (ef , ef , ..., ef )
ef ::= for $v in e return if $v then $v else ()
e ::= $v | $v/τ | if e then e else ()

| for $v in $v/τ return e
τ ::= label | ∗

4.2 Transformations to obtain
consecutive-child-axis “for”-expressions

Establishing Property 2(b) calls for two transformation rules. The
first rule simplifies the condition of a for-expression. The second
rewrites a duplicate-generating for-expression into a consecutive-
child-axis for loop. Both rules preserve equivalence up-to-DDO.

4.2.1 Simplifying conditions. Conditions expressed in terms
of for-expressions are simplified by the following rewrite:

if (for $v in $v/τ return e1) then e2 else ()
for $v in $v/τ return (if e1 then e2 else ()) (∗)

In this transformation, the input conditional is evaluated once, whereas
the if-expression in the output is evaluated k times, where k is the
length of the sequence of the result of $v/τ . The resulting duplicates
of e2 render this rule equivalence-preserving up-to-DDO. Once this
rule has been applied, we are left with an expression of the following
shape:

es ::= (ef , ef , ..., ef )
ef ::= for $v in e return if $v then $v else ()
cond ::= $v | $v/τ | if cond then e else ()
e ::= cond | for $v in $v/τ return e
τ ::= label | ∗

We re-apply the normalization of for-expressions (see Figure 4)
and end up with the intermediate XQuery dialect of Figure 7.

4.2.2 Removing duplicate-generating for-expressions. Per-
haps the most interesting rule presented here transforms duplicate-
generating for-expressions into if-conditionals. This, in turn, facil-
itates the generation of consecutive-child-axis for-expressions as
required by Property 2(b).

Definition 8 (Duplicate-generating for-expression). A for-expression
for $v in $u/τ return e is duplicate-generating if variable $v does
not appear in any generator (or in part) in e and is not an output
variable.

Consider the following duplicate-generating for-loop to see why
such expressions may yield duplicate nodes:

for $v in $u/τ return e

• If variable $v does not appear freely in e, e does not depend on
$v. Instead, e will yield the same value in each iteration of the
for-loop. Hence duplicates are generated.

• If variable $v is free in e, then it should appear in the condition
cond of an if-expression in the form $v or $v/τ ′ (see the syntax
shown in Figure 7), because $v is not an output variable. While
$v determines whether e generates output at all, the value of e’s
output variable does not depend on $v. Iterated evaluation of e
in the for-loop may thus generate duplicate nodes.

Duplicate-generating for-expressions are eliminated by applying the
following transformation rule:

for $v in $u/τ return e
$v does not appear in any generator of e
$v is not an output variable
if $u/τ then e[$v ⇐ ($u/τ )] else () (∗)

where e[$v ⇐ ($u/τ )] represents e with all free occurrences of $v
replaced with ($u/τ ).

The soundness of the above rule can be proved as follows:

PROOF. Consider the input expression for $v in $u/τ return e.

• If variable $v is not free in e, the proof is trivial.
• If variable $v is free in e, $v appears in the condition of an

if-expression in the form $v or $v/τ ′, as described above. Con-
sider the case in which $v appears in the form $v/τ ′. More
specifically, let us discuss the following input for-expression
without loss of generality:

for $v in $u/τ return (if $v/τ ′ then e ′ else ())

Suppose that $u/τ evaluates to (n1, ...,nk ). We then see that
evaluation of the for-expression leads to the following sequence
of if-conditionals:(
if n1/τ ′ then e ′ else (), · · · , if nk/τ ′ then e ′ else ()

)
.

Now, transform the above sequence expression equivalently
up-to-DDO:

⇒ { value of e ′ does not change }
if (n1/τ ′ or ... ornk/τ ′) then e ′ else ()

⇒ { or can be replaced by sequence construction }
if (n1/τ ′, ...,nk/τ ′) then e ′ else ()

⇒ { preserves effective Boolean value of condition }
if (n1, ...,nk )/τ ′ then e ′ else ()

⇒ { assumption: $u/τ = (n1, . . . ,nk ) }
if $u/τ/τ ′ then e ′ else ()

⇒ { apply replacement e[$v ⇐ ($u/τ )] }
(if $v/τ ′ then e ′ else ())[$v ⇐ ($u/τ )]

A similar proof holds for the case in which the condition of the
if-expression takes the form $v.

�

All for-expressions in the resulting expression are now of the
consecutive-child-axis type. The dialect reads:
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es ::= (e, e, ..., e)
e ::= $v | for $v in $v/τ return e

| if cond then e else ()
cond ::= ep | if cond then e else ()
ep ::= $v | ep/τ
τ ::= label | ∗

Note that replacing the occurrences of $v with $u/τ ′ may introduce
multi-step paths ep. These appear only in if-conditions, however.

Example 2. Consider the following input for-expression:

for $a in $R/a return
for $b in $a/b return
for $c in $R/c return $c .

First, since for $b in $a/b return . . . is duplicate-generating, the
above transformation rule is applied. We obtain:

for $a in $R/a return
if $a/b
then (for $c in $R/c return $c)
else () .

Here, for $a in $R/a return . . . also is duplicate-generating. We
apply the above transformation rule again, yielding the following
expression, which finally is of the desired consecutive-child-axis
type:

if $R/a
then if $R/a/b

then (for $c in $R/c return $c)
else ()

else () .

4.3 Revealing the conditions
To satisfy the final Property 2(c), two simple transformation rules
are applied. One moves if-conditionals to the innermost return part
of a query, the other normalizes nested conditionals.

4.3.1 Moving conditionals to the innermost return. We ap-
ply the following transformation (which is standard XQuery lore if
read from bottom to top):

if e1 then (for $v in e2 return e3) else ()
for $v in e2 return (if e1 then e3 else ())

We obtain expressions of the form:

es ::= (ef , ef , ..., ef )
ef ::= $v | for $v in $v/τ return er
er ::= ef | if cond then cond else ()
cond ::= ep | if cond then e else ()
ep ::= $v | ep/τ
τ ::= label | ∗

4.3.2 Normalizing nested conditionals. To prepare condi-
tion injection, it is necessary to normalize conditionals such that
(1) the then part of the outermost if-expression consists of an output
variable only, and (2) the conditions to be extracted occur in the
outermost conditional:

if e1 then (if e2 then e3 else ()) else ()
if (if e1 then e2 else ()) then e3 else ()

The input expression is now in a form in which conditions can be
extracted for injection into the skeleton query. We have presented
that final dialect already in Figure 3c of Section 2.

5 INJECT PHASE
In this final phase, the conditions that we have just isolated in the
input query are extracted to be placed in their associated holes in
the skeleton query (recall the definition in Section 2.2). We reap
the benefits of the substantial preparatory work done in the split
and map phases: since the skeleton query and the transformed input
expression both satisfy Properties 1 and 2, the injection algorithm is
relatively simple. It first locates appropriate positions (holes) in the
skeleton query to fill. Conditions are then injected with appropriate
variable renaming.

The injection algorithm is, again, specified in terms of a set of
inference rules (see Figure 8). In these rules, a judgment of the form

(e1, . . . , eN ) ] s → sN

indicates that for an expression (e1, . . . , eN ) obtained as described
in Section 4 and a skeleton query s, a DDO-free XQuery sN can
be obtained by injecting the conditions from (e1, ..., eN ) into s. The
actual injection of the conditions in the individual ei—whose syntax
conforms to the dialect of Figure 3c—is then performed by the
judgment

ei ⊕ s → s ′ .

Skeleton query s, whose holes may be partially filled already, is
further completed by the conditions extracted from ei to yield the
skeleton s ′. As we said before, s ′ will be a DDO-free XQuery.
Note that if ei is a variable, it must be the special variable $R that
represents the input tree’s document node. In this case, the final
result of the inject phase is ($R, sN ).

Let us thus consider the case in which ei is not a variable: the
conditions of ei = for $v1 in $v2/�ild :: τ1 return er are to be in-
jected into the skeleton query for $v3 in $v4/�ild :: τ2 return sr .
If the queries do not traverse the same nodes (denoted by τ1 � τ2),
no injection takes place. Otherwise, if τ1 ∼ τ2, then the condition
in the return expression er [$v1 ⇐ $v3] is injected into its skeleton
counterpart sr . (Recall that τ1 ∼ τ2 holds iff τ1 = τ2, τ1 = ∗, or
τ2 = ∗.) When the conditions in er are injected into (s1, . . . , sN ),
we individually inject them into each sj (to yield s ′j ) which are then
grouped into a new sequence expression (s ′1, ..., s

′
N ). No injection

is performed if the expression kinds do not match (for vs. if). The
injection of a condition cond into a skeleton if-conditional with
condition conds , leads to a merge of both conditions (cond, conds ).
(Note that this also works if conds = () is a hole.)

6 MORE RELATED WORK
The inherent cost of DDO operations has long been acknowledged
by the XML and XQuery community, including the W3C itself. 3

On the language level, this led to the inclusion of primitives like
unordered { } which, however, gives up on establishing document
order and retains duplicate nodes [10]. The present work preserves
these features of the XQuery data model.

3“. . . a performance advantage may be realized by [. . . ] granting the system flexibility
to return the result in the order that it finds most efficient.” — https://www.w3.org/TR/
xquery-31/
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e1 ⊕ s → s1 e2 ⊕ s1 → s2 ... eN ⊕ sN−1 → sN
(e1, e2 ..., eN ) ] s → sN

τ1 � τ2
(for $v1 in $v2/τ1 return er ) ⊕ (for $v3 in $v4/τ2 return sr ) → for v3 in $v4/τ2 return sr

τ1 ∼ τ2 er [$v1 ⇐ $v3] ⊕ sr → e′

(for $v1 in $v2/τ1 return er ) ⊕ (for $v3 in $v4/τ2 return sr ) → for v3 in $v4/τ2 return e′

er ⊕ s1 → s′1 ... er ⊕ sN → s′N
er ⊕ (s1, ..., sN ) → (s′1, ..., s′N )

(for $v1 in $v2/τ1 return er ) ⊕ (if conds then $v3 else ()) → if conds then $v3 else ()

(if cond then $v1 else ()) ⊕ (if conds then $v2 else ()) → if (cond, conds ) then $v2 else ()

Figure 8: Algorithm for injecting the conditions extracted from transformed expressions into skeleton queries

A variety of XML document storage formats and associated path
index structures—both native and relational—have been designed to
represent and exploit XML serialization order [2, 5, 9, 21]. These
systems take care to scan storage and indexes in document order to
save on node sorting effort. Axis step evaluation algorithms over
these storage structures have been design to operate in a scan-once-
only fashion to avoid the generation of duplicate nodes [6, 11, 13, 14].
Prevalent of the �ild axis—as proposed by DDO-free XQuery—
supports these approaches.

The above dynamic (or: runtime) approaches are complemented
by static analyses that build on query transformation [15]. This work
is closest to our strategy. The authors of [15] study the transforma-
tion of XQuery programs that feature element construction. This
is complimentary to the present work and we conjecture that both
could be fused to yield queries that save on subtree copying as well
as DDO operations.

7 WRAP UP
We show that for a given nested-relational DTD and an XQuery e for
an XML document that conforms to the DTD, e can be transformed
into a DDO-free XQuery e ′ such that the resulting nodes still adhere
to DDO. DDO-free XQuery is useful since we save on node sorting
and de-duplication effort. The runtime savings can be substantial as
Appendix A already demonstrates. Future work will complement
the present theoretical study with a comprehensive assessment of
the benefits of DDO-freeness.
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A DO XQUERY PROCESSORS BENEFIT
FROM DDO-FREENESS?

While its individual rewritings are simple, the DDO-freeness trans-
formation constitutes a whole-query multi-step transformation that
incurs effort at compile time. Are we, then, actually rewarded with
reduced query runtime? This brief appendix answers this question
for the paper’s running example query (A) of Section 2.3. For conve-
nience, we have reproduced the actual XQuery text of the original
and transformed queries in Figure 9.

A comprehensive experimental assessment that accompanies the
present theoretical study is still due but the following already pro-
vides a clear indication of the potential of DDO-freeness. It is a
salient feature of DDO-free XQuery that it is implementable on
top of any existing language implementation—no changes to the
XQuery engines’ core are required. The following experiments use
the XQuery processors BaseX 8.4 [8] and Saxon-HE 9.7.0.18J [16].

The larger the intermediate results of path step evaluation, the more
impact we expect to see from a transformation that removes the—
possibly many—implicit calls to ddo() [10]. To this end, we
synthesized a series of XML documents that
(1) validate against the nested-relational DTD D1 of Example 1

(also see Figure 10a) and
(2) grow in size: a document of size n contains about 1 + 2 1

2 × n
elements, arranged in a node hierarchy as depicted in Figure 10b.
(In serialized form, this document amounts to ≈ 20 × n bytes of
XML text.)

( let $R := doc(” 〈document of size n 〉”) return
for $b in $R/a /b return

for $a in $b/ ancestor ::* return
($b,$a) / c ) / self : :node()

(a) Original twig query incurring DDO overhead

let $R := doc(” 〈document of size n 〉”) return
for $a in $R/a return

for $c in $a/c return
i f ( i f ( i f $R/a then $R/a /b else ( ) ) then $c

else ( ) ) then $c
else ()

(b) DDO-free query after transformation

Figure 9: Timed XQuery expressions (original vs. DDO-free)

<!DOCTYPE a [

<!ELEMENT a (b*, c+)>

<!ELEMENT b EMPTY>

<!ELEMENT c (d?)>

<!ELEMENT d (#PCDATA)

]>

(a) Nested-relational DTD

a

b c

d

n × × n

≈ 1
2n ×

(b) Sketch of the element hier-
archy in document of size n

Figure 10: Generated input XML documents

Table 1: Wall-clock times (measured in milliseconds)4 for the
evaluation of the twig query over different input document
sizes n (OOM: no measurement due to out of memory condition)

BaseX Saxon
doc. size n original DDO-free original DDO-free

1 1.78 1.06 0.56 1.02
10 7.03 2.17 2.69 3.12
100 40.43 5.30 10.70 6.05

1 000 454.20 17.44 287.67 13.53
10 000 OOM 30.69 79646.54 62.15
100 000 OOM 72.80 OOM 217.07

1 000 000 OOM 404.79 OOM 1531.95

Looking at the original twig query of Figure 9a, its evaluation over a
document of size n will incur

n︸︷︷︸
# of b nodes

× ( 1︸︷︷︸
ancestor::*

+ 1︸︷︷︸
child::c

) + 1︸︷︷︸
self::node()

invocations of ddo() (the initial path $R/a/b does not lead to
a ddo() operation). The ddo() call implicit in the final self::node()
step will remove duplicates among n2 c elements, leaving us with
an document-ordered result sequence of length n. We instrumented
the code of BaseX 8.4 and found its engine to perfectly follow this
breakdown of the predicted ddo() runtime effort.
Table 1 reports on the evaluation times we observed when the original
query and its DDO-free equivalent are evaluated over documents
of size n = 1, 10, . . . , 1 000 000. We list the average time of 10 runs;
for BaseX we include evaluation and printing (serialization) time.
Starting with n = 1000, the DDO-free query exhibits a substantial
performance advantage of at least an order of magnitude. The gap
dramatically widens with growing document size as the original
ddo()-intensive variants start to struggle with the intermediate
node sequences of length n2 (in fact, both BaseX and Saxon fail to
process the larger document instances within a JVM heap budget
of 4 GB). We also learn that the DDO-free transformation is safe to
be used as the engine’s default processing mode since the system
always benefits (BaseX) or pays a negligible price for tiny to small
document sizes only (Saxon).

A look at BaseX’ query plans discloses that the system has to
evaluate the original query variant in terms of its CachedStep
operators which allocate and fill buffers of nodes that are then passed
to ddo(). Instead, the DDO-free equivalent exclusively relies on
the IterStep primitive, a path evaluation algorithm that does not
use any intermediate node storage.

4Intel Core i7 CPU clocked at 3.3 GHz supported by 16 GB RAM. BaseX and Saxon
are both implemented in Java.

11



DBPL 2017, September 1, 2017, Munich, Germany Hiroyuki Kato, Yasunori Ishihara, and Torsten Grust

B STEP BY STEP: THE COMPLETE
TRANSFORMATION

For reference and reader convenience, this appendix pulls together
the entire series of steps that the input query (A) (see the Introduc-
tion) goes through to reach DDO-freeness. We add nothing new to
the mix here—the entire approach is documented in the main paper.

B.1 Transformation example in each step in the
split phase
for $b in $R/ child : : a / child : :b return

for $a in $b/ ancestor ::* return
($b,$a) / child : : c

⇒ { eliminating long-distance axes }
for $b in $R/ child : : a / child : :b return

for $a in ($b/ parent : :* ,
$b/ parent : :* / parent : :* ,
$b/ parent : :* / parent : :* / parent : :*) return

($b,$a) / child : : c
⇒ { pushing axis access }

for $b in $R/ child : : a / child : :b return
for $a in ($b/ parent : :* ,

$b/ parent : :* / parent : :* ,
$b/ parent : :* / parent : :* / parent : :*) return

($b/ child : : c ,$a/ child : : c)
⇒ { decomposing multiple steps }

for $b in ( for $v1 in $R/ child : : a return $v1/ child : :b) return
for $a in ($b/ parent : :* ,

for $v2 in $b/ parent ::* return
$v2/ parent : :* ,

for $v3 in $b/ parent ::* return
for $v4 in $v3/ parent ::* return

$v4/ parent ::*
) return

($b/ child : : c ,$a/ child : : c)
⇒ { normalizing for-expressions }

for $v1 in $R/ child : : a return
for $b in $v1/ child : :b return

( for $a in $b/ parent ::* return
($b/ child : : c ,$a/ child : : c) ,

for $v2 in $b/ parent ::* return
for $a in $v2/ parent ::* return

($b/ child : : c ,$a/ child : : c) ,
for $v3 in $b/ parent ::* return

for $v4 in $v3/ parent ::* return
for $a in $v4/ parent ::* return

($b/ child : : c ,$a/ child : : c)
)

⇒ { eliminating parent and self axes }

for $v1 in $R/ child : : a return
for $b in $v1/ child : :b return

( for $a in $R/ child : : a return
($b/ child : : c ,$a/ child : : c) ,

for $v2 in $R/ child : : a return
() ,

for $v3 in $R/ child : : a return
()

)
⇒ { decomposing sequence expressions }

( for $v1 in $R/ child : : a return
for $b in $v1/ child : :b return

for $a in $R/ child : : a return
$b/ child : : c ,

for $v1 in $R/ child : : a return
for $b in $v1/ child : :b return

for $a in $R/ child : : a return
$a/ child : : c ,

for $v1 in $R/ child : : a return
for $b in $v1/ child : :b return

for $v2 in $R/ child : : a return
() ,

for $v1 in $R/ child : : a return
for $b in $v1/ child : :b return

for $v3 in $R/ child : : a return
() ,

)
⇒ { XQuery folklore: eliminate empty sequences }

( for $v1 in $R/ child : : a return
for $b in $v1/ child : :b return

for $a in $R/ child : : a return
$b/ child : : c ,

for $v1 in $R/ child : : a return
for $b in $v1/ child : :b return

for $a in $R/ child : : a return
$a/ child : : c ,

)

B.2 Transformation example in each step in the
map phase

⇒ { introducing output variables }
( for $o in ( for $v1 in $R/ child : : a return

for $b in $v1/ child : :b return
for $a in $R/ child : : a return

$b/ child : : c) return
i f $o then $o

else () ,
for $o in ( for $v1 in $R/ child : : a return

for $b in $v1/ child : :b return
for $a in $R/ child : : a return

$a/ child : : c) return
i f $o then $o

else ()
)

⇒ { simplifying conditions and normalizing for-expressions}

12
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( for $v1 in $R/ child : : a return
for $b in $v1/ child : :b return

for $a in $R/ child : : a return
for $o in $b/ child : : c return

i f $o then $o
else () ,

for $v1 in $R/ child : : a
return for $b in $v1/ child : :b

return for $a in $R/ child : : a
return for $o in $a/ child : : c

return i f $o then $o
else ()

)
⇒ { removing duplicate-generating expressions }

( for $v1 in $R/ child : : a return
for $b in $v1/ child : :b return

i f $R/ child : : a then
for $o in $b/ child : : c return

i f $o then $o
else ()

else () ,
i f $R/ child : : a then

i f $R/ child : : a / child : :b then
for $a in $R/ child : : a return

for $o in $a/ child : : c return
i f $o then $o

else ()
else ()

else ()
)

⇒ { moving conditions to the innermost return}
( for $v1 in $R/ child : : a return

for $b in $v1/ child : :b return
for $o in $b/ child : : c return

i f $R/ child : : a then
i f $o then $o

else ()
else () ,

for $a in $R/ child : : a return
for $o in $a/ child : : c return

i f $R/ child : : a then
i f $R/ child : : a / child : :b then

i f $o then $o
else ()

else ()
else ()

)
⇒ { normalizing nested conditionals }

( for $v1 in $R/ child : : a return
for $b in $v1/ child : :b return

for $o in $b/ child : : c return
i f ( i f $R/ child : : a then $o

else ( ) ) then $o
else () ,

for $a in $R/ child : : a return
for $o in $a/ child : : c return

i f ( i f ( i f $R/ child : : a then $R/ child : : a / child : :b
else ( ) ) then $o

else ( ) ) then $o
else ()

)

B.3 Injecting conditions into the skeleton query in
the inject phase

⇒ { injecting conditions into the skeleton query }
for $a in $R/ child : : a return

( i f () then $a
else () ,

for $b in $a/ child : :b return
( i f () then $b

else ( ) ) ,
for $c in $a/ child : : c return

( i f ( i f ( i f $R/ child : : a then $R/ child : : a / child : :b
else ( ) ) then $c

else ( ) ) then $c
else () ,

for $d in $c/ child : :d return
( i f () then $d

else ( ) )
)

)
⇒ { XQuery folklore: eliminate empty sequences }

for $a in $R/a return
for $c in $a/c return

i f ( i f ( i f $R/a then $R/a /b else ( ) ) then $c
else ( ) ) then $c

else ()
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