
Report from Dagstuhl Seminar 14511

Programming Languages for Big Data (PlanBig)
Edited by
James Cheney1, Torsten Grust2, and Dimitrios Vytiniotis3

1 University of Edinburgh, GB, jcheney@inf.ed.ac.uk
2 Universität Tübingen, DE, torsten.grust@uni-tuebingen.de
3 Microsoft Research UK – Cambridge, GB, dimitris@microsoft.com

Abstract
This report documents the program and the outcomes of Dagstuhl Seminar 14511 “Programming
Languages for Big Data (PlanBig)”. The seminar was motivated by recent developments in
programming languages, databases, machine learning, and cloud computing, and particularly
by the opportunities offered by research drawing on more than one of these areas. Participants
included researchers working in each of these areas and several who have previously been involved
in research in the intersection of databases and programming languages. The seminar included
talks, demos and free time for discussion or collaboration. This report collects the abstracts
of talks and other activities, a summary of the group discussions at the seminar, and a list of
outcomes.

Seminar December 15–19, 2014 – http://www.dagstuhl.de/14511
1998 ACM Subject Classification D.3.2 [Programming Languages]: Language Classifications –

Applicative (functional) languages, H.2.3 [Database Management]: Languages – Query Lan-
guages, H.2.4 Systems - Distributed Databases, Query Processing; H.2.8 Database Applica-
tions – Data mining, Scientific databases

Keywords and phrases Programming languages, databases, data-centric computation, machine
learning, cloud computing

Digital Object Identifier 10.4230/DagRep.4.12.48
Edited in cooperation with Alexander Ulrich

1 Executive Summary

James Cheney
Torsten Grust
Dimitrios Vytiniotis

License Creative Commons BY 3.0 Unported license
© James Cheney, Torsten Grust, and Dimitrios Vytiniotis

Large-scale data-intensive computing, commonly referred to as “Big Data”, has been in-
fluenced by and can further benefit from programming languages ideas. The MapReduce
programming model is an example of ideas from functional programming that has directly
influenced the way distributed big data applications are written. As the volume of data
has grown to require distributed processing potentially on heterogeneous hardware, there
is need for effective programming models, compilation techniques or static analyses, and
specialized language runtimes. The motivation for this seminar has been to bring together
researchers working on foundational and applied research in programming languages but
also data-intensive computing and databases, in order to identify research problems and
opportunities for improving data-intensive computing.

Except where otherwise noted, content of this report is licensed
under a Creative Commons BY 3.0 Unported license

Programming Languages for Big Data (PlanBig), Dagstuhl Reports, Vol. 4, Issue 12, pp. 48–67
Editors: James Cheney, Torsten Grust, and Dimitrios Vytiniotis

Dagstuhl Reports
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://www.dagstuhl.de/14511
http://dx.doi.org/10.4230/DagRep.4.12.48
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/dagstuhl-reports/
http://www.dagstuhl.de

James Cheney, Torsten Grust, and Dimitrios Vytiniotis 49

To this extent, on the database side, the seminar included participants who work on
databases, query languages and relational calculi, query compilation, execution engines,
distributed processing systems and networks, and foundations of databases. On the pro-
gramming languages side, the seminar included participants who work on language design,
integrated query languages and meta-programming, compilation, as well as semantics. There
was a mix of applied and foundational talks, and the participants included people from
universities as well as industrial labs and incubation projects.

The work that has been presented can be grouped in the following broad categories:
Programming models and domain-specific programming abstractions (Cheney, Alexandrov,
Vitek, Ulrich). How can data processing and query languages be integrated in general
purpose languages, in type-safe ways and in ways that enable traditional optimizations
and compilation techniques from database research? How can functional programming
ideas such as monads and comprehensions improve the programmability of big data
systems? What are some language design issues for data-intensive computations for
statistics?
Incremental data-intensive computation (Acar, Koch, Green). Programming language
support and query compilation techniques for efficient incremental computation for data
set or query updates. Efficient view maintainance.
Interactive and live programming (Green, Vaz Salles, Stevenson, Binnig, Suciu). What
are some challenges and techniques for interactive applications. How to improve the live
programming experience of data scientists? Ways to offer data management and analytics
as cloud services.
Query compilation (Neumann, Henglein, Rompf, Ulrich). Compilation of data processing
languages to finite state automata and efficient execution. Programming languages
techniques, such as staging, for enabling implementors to concisely write novel compilation
schemes.
Data programming languages and semantics (Wisnesky, Vansummeren). Functorial
semantics for data programming languages, but also foundations for languages for inform-
ation extraction.
Foundations of (parallel) query processing (Suciu, Neven, Hidders). Communication
complexity results, program equivalence problems in relational calculi.
Big data in/for science (Teubner, Stoyanovich, Ré). Challenges that arise in particle
physics due to the volume of generated data. Howe we can use data to speed up new
material discovery and engineering? How to use big data systems for scientific extraction
and integration from many different data sources?
Other topics: architecture and runtimes (Ahmad), coordination (Foster), language
runtimes (Vytiniotis), weak consistency (Gotsman).

The seminar schedule involved three days of scheduled talks, followed by two days of
free-form discussions, demos, and working groups. This report collects the abstracts of talks
and demos, summaries of the group discussion sessions, and a list of outcomes resulting from
the seminar.

14511

50 14511 – Programming Languages for Big Data (PlanBig)

2 Table of Contents

Executive Summary
James Cheney, Torsten Grust, and Dimitrios Vytiniotis 48

Overview of Talks
Self-Adjusting Computation for Dynamic and Large Data Sets
Umut A. Acar . 52

Deconstructing Big Data Stacks
Yanif Ahmad . 52

Data Analytics with Flink
Alexander Alexandrov . 53

Interactive & Visual Data Exploration
Carsten Binnig . 53

From LINQ to QDSLs
James Cheney . 53

Demo: Normalization and Query Composition in LINQ
James Cheney . 54

The Homeostatis Protocol: Avoiding Transaction Coordination Through Program
Analysis
Nate Foster . 54

Weak Consistency in Cloud Storage
Alexey Gotsman . 55

Live Programming for Big Data
Todd J. Green . 55

Towards Regular Expression Processing at 1 Gbps/core
Fritz Henglein . 56

MapReduce Optimisation in the Nested Relational Calculus
Jan Hidders . 56

Incremental Computation: The Database Approach
Christoph Koch . 56

Compiling SQL Queries into Executable Code
Thomas Neumann . 57

Parallel-Correctness and Transferability for Conjunctive Queries
Frank Neven . 57

DeepDive: A Data System for Macroscopic Science
Christopher Ré . 58

An Efficient SQL to C Compiler in 500 lines of Scala
Tiark Rompf . 58

F#3.0 – Strongly-Typed Language Support for Internet-Scale Information Sources
Andrew Stevenson . 59

(Big) Data Challenges in Materials Science and Engineering
Julia Stoyanovich . 59

James Cheney, Torsten Grust, and Dimitrios Vytiniotis 51

Big Data Management with the Myria Cloud Service
Dan Suciu . 60

Communication Cost in Parallel Query Processing
Dan Suciu . 60

Big Data Problems in Particle Physics
Jens Teubner . 60

Query Compilation Based on the Flattening Transformation
Alexander Ulrich . 61

Spanners: A Formal Framework for Information Extraction
Stijn Vansummeren . 61

Challenges in Interactive Applications
Marcos Vaz Salles . 62

The R Project and Language
Jan Vitek . 62

Broom: Sweeping Out Garbage Collection from Big Data systems
Dimitrios Vytiniotis . 63

The Functorial Data Model
Ryan Wisnesky . 63

Working Groups . 63

Outcomes . 66

Participants . 67

14511

52 14511 – Programming Languages for Big Data (PlanBig)

3 Overview of Talks

3.1 Self-Adjusting Computation for Dynamic and Large Data Sets
Umut A. Acar (Carnegie Mellon University – Pittsburgh, US)

License Creative Commons BY 3.0 Unported license
© Umut A. Acar

Developing efficient and reliable software is a difficult task. Rapidly growing and dynamically
changing data sets further increase complexity by making it more challenging to achieve
efficiency and performance. We present practical and powerful abstractions for taming
software complexity in this domain. Together with the algorithmic models and programming
languages that embody them, these abstractions enable designing and developing efficient
and reliable software by using high-level reasoning principles and programming techniques.
As evidence for their effectiveness, we consider a broad range of benchmarks including soph-
isticated algorithms in geometry, machine-learning, and large data sets. On the theoretical
side, we show asymptotically significant improvements in efficiency and present solutions
to several open problems using the proposed techniques. On the practical side, we present
programming languages, compilers, and related software systems that deliver significant
improvements in performance, usually with little effort from the programmer. This talk
is based on research done jointly with collaborators including A. Ahmed, G. Blelloch, M.
Blume, Y. Chen, J. Dunfield, M. Fluet, M. Hammer, R. Harper, B. Hudson, R. Ley-Wild, O.
Sumer, K. Tangwongsan, D. Turkoglu.

3.2 Deconstructing Big Data Stacks
Yanif Ahmad (Johns Hopkins University, US)

License Creative Commons BY 3.0 Unported license
© Yanif Ahmad

Modern big data applications deployed in datacenter environments are complex layered
software stacks that provide functionality ranging from the networking and storage hardware,
to the high-level analytics logic required by the application. Today’s data systems play a
central role in facilitating distributed data movement, query scheduling and fault tolerance
for large-scale data processing. In this talk, we survey and deconstruct the design decisions
made in the modern data systems architectures commonly found in a Big Data stack. This
includes the storage services provided for input data as well as large intermediate results,
support for both mid-query and inter-query fault tolerance, and the architectural impact of
providing low-latency results, ideally without a long tail. The systems considered include
HDFS, Hadoop, Spark, Impala, Storm and briefly NoSQL and NewSQL DBMS.

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

James Cheney, Torsten Grust, and Dimitrios Vytiniotis 53

3.3 Data Analytics with Flink
Alexander Alexandrov (TU Berlin, DE)

License Creative Commons BY 3.0 Unported license
© Alexander Alexandrov

Joint work of Katsifodimos, Asterios; Alexandrov, Alexander
URL http://flink.apache.org/

In this demo session we give an overview of Apache Flink – an open-source system for scalable
data analysis. We present Flink’s functional programming model and discuss some unique
system features: (1) the approach of managing a JVM-based heap through aggressive object
serialization on byte buffers, (2) the cost-based dataflow optimizer, and (3) the support for
native incremental iterations and their resemblance with semi-naive Datalog evaluation.

3.4 Interactive & Visual Data Exploration
Carsten Binnig (DHBW – Mannheim, DE)

License Creative Commons BY 3.0 Unported license
© Carsten Binnig

Joint work of Sam Zhao; Binnig, Carsten; Tim Kraska; Ugur Cetintemel; Stan Zdonik

Data-centric applications in which data scientists of varying skill levels explore large data sets
are becoming more and more relevant to make sense of the data, identify interesting patterns,
and bring aspects of interest into focus for further analysis. Enabling these applications with
ease of use and at “human speeds” is key to democratizing data science and maximizing human
productivity. As a first step towards visual interactive data exploration, we implemented
a visual index for computing histograms based on a B+-tree. The major differences to the
traditional B+-tree are: (1) We annotate the index nodes with count values as discussed
before. (2) We offer optimized index traversal strategies for all requested bins of a histogram.
(3) We use typical bin definitions of a histogram as separators for the upper levels instead of
using the normal balancing rules.

3.5 From LINQ to QDSLs
James Cheney (University of Edinburgh, GB)

License Creative Commons BY 3.0 Unported license
© James Cheney

Joint work of Cheney, James; Lindley, Sam; Wadler, Philip
Main reference J. Cheney, S. Lindley, P. Wadler, “A practical theory of language-integrated query,” in Proc. of the

18th ACM SIGPLAN Int’l Conf. on Functional programming (ICFP’13), pp. 403–416, ACM, 2013.
URL http://dx.doi.org/10.1145/2544174.2500586

Language-integrated query techniques ease database programming by placing queries and
ordinary program code on the same level, so that the language implementation can check
and coordinate communication between the host language and database. Such techniques are
based on foundations developed in the 90s including comprehension syntax, normalization
results for nested relational calculus, and more recent work on generalizing normalization to
a higher-order setting and embedding query languages in host languages using quotation (a
technique we identify as Quotation-based Domain Specific Languages, or QDSLs). In this
talk I give an overview of this prior work exemplifying interaction between database and
programming language research, and illustrate its impact on LINQ for F#.

14511

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://flink.apache.org/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://dx.doi.org/10.1145/2544174.2500586
http://dx.doi.org/10.1145/2544174.2500586
http://dx.doi.org/10.1145/2544174.2500586

54 14511 – Programming Languages for Big Data (PlanBig)

3.6 Demo: Normalization and Query Composition in LINQ
James Cheney (University of Edinburgh, GB)

License Creative Commons BY 3.0 Unported license
© James Cheney

Joint work of Cheney, James; Lindley, Sam; Wadler, Philip
Main reference J. Cheney, S. Lindley, P. Wadler, “A practical theory of language-integrated query,” in Proc. of the

18th ACM SIGPLAN Int’l Conf. on Functional programming (ICFP’13), pp. 403–416, ACM, 2013.
URL http://dx.doi.org/10.1145/2500365.2500586

In this demo I explained the underlying ideas of LINQ in F#, and application of recent work
with Lindley and Wadler on normalization of query expressions. LINQ already performs some
transformations to query expressions at run time using quotation and reflection capabilities
of F#, but it has some gaps in support for queries that involve higher-order functions. Our
work overcomes this limitation by providing a guarantee that all query expressions of a
certain class normalize to a form that can be turned into SQL – even if the query expression
makes use of lambda-abstraction and application. This has subtle implications, and allows
writing efficient queries using lambda-abstraction that are not executed efficiently by the
built-in F# LINQ library, and constructing queries at run time by recursion over in-memory
data (illustrated by showing how XPath queries and their mapping to SQL can be defined in
F# LINQ)

3.7 The Homeostatis Protocol: Avoiding Transaction Coordination
Through Program Analysis

Nate Foster (Cornell University – Ithaca, US)

License Creative Commons BY 3.0 Unported license
© Nate Foster

Joint work of Roy, Sudip; Bender, Gabriel; Kot, Lucja; Ding, Bailu; Foster, Nate; Gehrke, Johannes; Koch,
Christoph

Many datastores rely on distribution and replication to achieve improved performance and
fault-tolerance. But correctness of many applications depends on strong consistency properties
– something that can impose substantial overheads, since it requires coordinating the behavior
of multiple nodes. This work developed a new approach to achieving strong consistency in
distributed systems while minimizing communication between nodes. The key insight was to
allow the state of the system to be inconsistent during execution, as long as this inconsistency
is bounded and does not affect transaction correctness. In contrast to previous work, our
approach used program analysis to extract semantic information about permissible levels of
inconsistency and is fully automated. We also developed a novel “homeostasis protocol” to
allow sites to operate independently, without communicating, as long as any inconsistency is
governed by appropriate treaties between the nodes. We designed mechanisms for optimizing
treaties based on workload characteristics to minimize communication, built a prototype
implementation, and conducted experiments to demonstrate the benefits of our approach on
transactional benchmarks.

To appear in SIGMOD 2015.

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://dx.doi.org/10.1145/2500365.2500586
http://dx.doi.org/10.1145/2500365.2500586
http://dx.doi.org/10.1145/2500365.2500586
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

James Cheney, Torsten Grust, and Dimitrios Vytiniotis 55

3.8 Weak Consistency in Cloud Storage
Alexey Gotsman (IMDEA Software Institute, ES)

License Creative Commons BY 3.0 Unported license
© Alexey Gotsman

Joint work of Bernardi, Giovanni; Cerone, Andrea; Burckhardt, Sebastian; Yang, Hongseok; Zawirski, Marek

Modern geo-replicated databases underlying large-scale Internet services guarantee immediate
availability and tolerate network partitions at the expense of providing only weak forms
of consistency, commonly dubbed eventual consistency. At the moment there is a lot of
confusion about the semantics of eventual consistency, as different systems implement it
with different sets of features and in subtly different forms, stated either informally or using
disparate and low-level formalisms.

We address this problem by proposing a framework for formal and declarative specification
of the semantics of eventually consistent systems using axioms. Our framework is fully
customisable: by varying the set of axioms, we can rigorously define the semantics of systems
that combine any subset of typical guarantees or features, including conflict resolution policies,
session guarantees, causality guarantees, multiple consistency levels and transactions. We
prove that our specifications are validated by an example abstract implementation, based
on algorithms used in real-world systems. These results demonstrate that our framework
provides system architects with a tool for exploring the design space, and lays the foundation
for formal reasoning about eventually consistent systems.

3.9 Live Programming for Big Data
Todd J. Green (LogicBlox – Atlanta, US)

License Creative Commons BY 3.0 Unported license
© Todd J. Green

Joint work of Green, Todd J.; Olteanu, Dan; Washburn, Geoffrey

We observe that the emerging category of self-service enterprise applications motivates
support for “live programming” in the database, where the user’s iterative exploration of
the input data triggers changes to installed application code and its output in real time.
This talk discusses the technical challenges in supporting live programming in the database
and presents the solution implemented in version 4.1 of the LogicBlox commercial database
system. The workhorse architectural component is a novel “meta-engine” that incrementally
maintains metadata representing application code, guides compilation of input application
code into its internal representation in the database kernel, and orchestrates maintenance of
materialized views based on those changes. Our approach mirrors LogicBlox’s declarative
programming model and describes the maintenance of application code using declarative
meta-rules; the meta-engine is essentially a “bootstrap” version of the database engine proper.
Beyond live programming, the meta-engine turns out effective for a range of static analysis
and optimization tasks, which we discuss. Outside of the database systems context, we
speculate that our design may even provide a novel means of building incremental compilers
for general-purpose programming languages.

14511

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

56 14511 – Programming Languages for Big Data (PlanBig)

3.10 Towards Regular Expression Processing at 1 Gbps/core
Fritz Henglein (University of Copenhagen, DK)

License Creative Commons BY 3.0 Unported license
© Fritz Henglein

Joint work of Bjørn Grathwohl; Henglein, Fritz; Ulrik Rasmussen
Main reference N.B.B. Gratewohl, F. Henglein, U.T. Rasmussen, “Optimally Streaming Greedy Regular

Expression Parsing,” in Proc. of the 11th Int’l Colloquium on Theoretical Aspects of Computing
(ICTAC’14), LNCS, Vol. 8687, pp. 224–240, Springer, 2014.

URL http://dx.doi.org/10.1007/978-3-319-10882-7_14
URL http://www.diku.dk/kmc

We describe how type theory, prefix codes, nondeterministic automata, streaming and
determinization to register automata yield a worst-case linear-time regular expression parser
for fixed regular expressions. Early tests indicate that it operates at a sustained 100+ Mbps
rate on complex regular expressions and large data sets; this seems to be significantly faster
than existing tools, which operate at 2 to 20 Mbps (commodity PC). We sketch how we
believe an expressive regular expression processor executing at 1 Gbps per 64-bit core can be
designed and implemented, without employing machine-specific or hardware oriented tricks.

3.11 MapReduce Optimisation in the Nested Relational Calculus
Jan Hidders (TU Delft, NL)

License Creative Commons BY 3.0 Unported license
© Jan Hidders

Joint work of Grabowski, Marek; Hidders, Jan; Sroka, Jacek; Vansummeren, Stijn
Main reference M. Grabowski, J.n Hidders, J. Sroka ,“Representing mapreduce optimisations in the nested

relational calculus,” in Proc. of the 29th British Nat’l Conf. on Big Data (BNCOD’13), LNCS,
Vol. 7968, pp. 175–188, Springer, 2013.

URL http://dx.doi.org/10.1007/978-3-642-39467-6_17

We introduced sNRC, a variant of the Nested Relational Calculus over bags which allows
heterogeneous bags and has two special operations: basic value equality and a duplicate
elimination operator that selects only basic values. In this language we can readily represent
a MapReduce operator, and so reasoning about equivalence of expressions in the language
becomes equivalent to reasoning over MapReduce workflows over nested data. It is discussed
how it might be possible to axiomatise equivalence of expressions with relatively simple
equations. We also show some conjectures about the decidability of this problem for the
presented fragment, and how this relates to existing results and open problems.

3.12 Incremental Computation: The Database Approach
Christoph Koch (EPFL – Lausanne, CH)

License Creative Commons BY 3.0 Unported license
© Christoph Koch

Main reference C. Koch, Y. Ahmad, O. Kennedy, M. Nikolic, An. Nötzli, D. Lupei, A. Shaikhha, “DBToaster:
higher-order delta processing for dynamic, frequently fresh views,” The VLDB Journal,
23(2):253–278, 2014.

URL http://dx.doi.org/10.1007/s00778-013-0348-4

In this talk, I presented the database approach to incremental computation – incremental view
maintenance by compile-time query transformation. I first presented the classical approach

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://dx.doi.org/10.1007/978-3-319-10882-7_14
http://dx.doi.org/10.1007/978-3-319-10882-7_14
http://dx.doi.org/10.1007/978-3-319-10882-7_14
http://dx.doi.org/10.1007/978-3-319-10882-7_14
http://www.diku.dk/kmc
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://dx.doi.org/10.1007/978-3-642-39467-6_17
http://dx.doi.org/10.1007/978-3-642-39467-6_17
http://dx.doi.org/10.1007/978-3-642-39467-6_17
http://dx.doi.org/10.1007/978-3-642-39467-6_17
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://dx.doi.org/10.1007/s00778-013-0348-4
http://dx.doi.org/10.1007/s00778-013-0348-4
http://dx.doi.org/10.1007/s00778-013-0348-4
http://dx.doi.org/10.1007/s00778-013-0348-4

James Cheney, Torsten Grust, and Dimitrios Vytiniotis 57

to incremental view maintenance using delta queries and then presented the DBToaster
approach – recursive or higher-order incremental view maintenance. I also gave a demo
of the DBToaster system, available at www.dbtoaster.org. Finally, I presented our recent
work on higher-order incremental view maintenance for nested relational queries and the
simply-typed lambda calculus, available as a preprint as [1].

References
1 Daniel Lupei, Christoph Koch, and Val Tannen. Incremental View Maintenance for Nested

Relational Algebra. http://arxiv.org/abs/1412.4320, 2014.

3.13 Compiling SQL Queries into Executable Code
Thomas Neumann (TU München, DE)

License Creative Commons BY 3.0 Unported license
© Thomas Neumann

Joint work of Neumann, Thomas; Leis, Viktor
Main reference T. Neumann, V. Leis, “Compiling Database Queries into Machine Code,” IEEE Data Engineering

Bulletin, 37(1):3–11, 2014.
URL http://sites.computer.org/debull/A14mar/p3.pdf

On modern servers the working set of database management systems becomes more and
more main memory resident. Slow disk accesses are largely avoided, and thus the in-memory
processing speed of databases becomes an important factor. One very attractive approach for
fast query processing is just-in-time compilation of incoming queries. By producing machine
code at runtime we avoid the overhead of traditional interpretation systems, and by carefully
organizing the code around register usage we minimize memory traffic and get excellent
performance. In this talk we show how queries can be brought into a form suitable for
efficient translation, and how the underlying code generation can be orchestrated. By carefully
abstracting away the necessary plumbing infrastructure we can build a query compiler that
is both maintainable and efficient. The effectiveness of the approach is demonstrated by the
HyPer system that uses query compilation as its execution strategy and achieves excellent
performance.

3.14 Parallel-Correctness and Transferability for Conjunctive Queries
Frank Neven (Hasselt University – Diepenbeek, BE)

License Creative Commons BY 3.0 Unported license
© Frank Neven

Joint work of Ameloot, Tom; Geck, Gaetano; Ketsman, Bas; Neven, Frank; Schwentick, Thomas
Main reference T. J. Ameloot, G. Geck, B. Ketsman, F. Neven, T. Schwentick, “Parallel-Correctness and

Transferability for Conjunctive Queries,” arXiv:1412.4030v2 [cs.DB], 2015.
URL http://arxiv.org/abs/1412.4030v2

A dominant cost for query evaluation in modern massively distributed systems is the number
of communication rounds. For this reason, there is a growing interest in single-round multiway
join algorithms where data is first reshuffled over many servers and then evaluated in a
parallel but communication-free way. The reshuffling itself is specified as a distribution policy.
We introduce a correctness condition, called parallel-correctness, for the evaluation of queries
with respect to a distribution policy. We study the complexity of parallel-correctness for
conjunctive queries as well as transferability of parallel-correctness between queries. We
also investigate the complexity of transferability for certain families of distribution policies,
including, for instance, the Hypercube distribution.

14511

www.dbtoaster.org
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://sites.computer.org/debull/A14mar/p3.pdf
http://sites.computer.org/debull/A14mar/p3.pdf
http://sites.computer.org/debull/A14mar/p3.pdf
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://arxiv.org/abs/1412.4030v2
http://arxiv.org/abs/1412.4030v2
http://arxiv.org/abs/1412.4030v2

58 14511 – Programming Languages for Big Data (PlanBig)

3.15 DeepDive: A Data System for Macroscopic Science
Christopher Ré (Stanford University, US)

License Creative Commons BY 3.0 Unported license
© Christopher Ré

Main reference C.r Ré, A. Abbas Sadeghian, Z. Shan, J. Shin, F. Wang, S. Wu, C. Zhang, “Feature Engineering
for Knowledge Base Construction,” IEEE Data Engineering Bulletin, 37(3):26–40, 2014; pre-print
available as arXiv:1407.6439v3 [cs.DB].

URL http://sites.computer.org/debull/A14sept/p26.pdf
URL http://arxiv.org/abs/1407.6439v3
URL http://DeepDive.stanford.edu

Many pressing questions in science are macroscopic in that these questions require that
a scientist integrate information from many data sources. Often, these data sources are
documents that contain natural language text, tables, and figures. Such documents contain
valuable information, but they are difficult for machines to understand unambiguously.
This talk describes DeepDive, a statistical extraction and integration system to extract
information from such documents. For tasks in paleobiology, DeepDive-based systems are
surpassing human volunteers in data quantity, recall, and precision. This talk describes
recent applications of DeepDive and DeepDive’s technical core. One of those core technical
issues is efficient statistical inference. In particular, we describe our recent Hogwild! and
DimmWitted engines that explore a fundamental tension between statistical efficiency (steps
until convergence) and hardware efficiency (efficiency of each of those steps). In addition, we
offer thoughts about how domain specific languages can help.

DeepDive is open source and available from http://DeepDive.stanford.edu.

3.16 An Efficient SQL to C Compiler in 500 lines of Scala
Tiark Rompf (Purdue University, US)

License Creative Commons BY 3.0 Unported license
© Tiark Rompf

For hard-core systems level programming, low-level C code is still the industry standard.
The drawbacks are well known: buggy systems, security vulnerabilities, poor programmer
productivity, etc. Generative programming is an alternative: writing expressive high-
level programs that generate fast low-level code at runtime. While many languages come
with basic code generation facilities, generative programming has remained somewhat of
a black art. Recent developments, however, promise to make generative programming
much more accessible. This talk will provide a step-by-step introduction to the open-source
LMS (Lightweight Modular Staging) framework, which brings runtime code generation
and compilation to Scala programs. We will build a SQL query engine that outperforms
commercial and open source database systems and consists of just about 500 lines of high-level
Scala code. Along the way, we will discuss concepts such as mixed-stage data structures
that contain both static and dynamic parts (e.g. static schema and dynamic values for data
records) and staged interpreters which can be mechanically turned into compilers (e.g. for
SQL queries or regular expressions).

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://sites.computer.org/debull/A14sept/p26.pdf
http://sites.computer.org/debull/A14sept/p26.pdf
http://sites.computer.org/debull/A14sept/p26.pdf
http://sites.computer.org/debull/A14sept/p26.pdf
http://arxiv.org/abs/1407.6439v3
http://DeepDive.stanford.edu
http://DeepDive.stanford.edu
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

James Cheney, Torsten Grust, and Dimitrios Vytiniotis 59

3.17 F#3.0 – Strongly-Typed Language Support for Internet-Scale
Information Sources

Andrew Stevenson (Queen’s University – Kingston, CA)

License Creative Commons BY 3.0 Unported license
© Andrew Stevenson

Joint work of Syme, Don; Battocchi, Keith; Takeda, Kenji; Malayeri, Donna; Fisher, Jomo; Hu, Jack; Liu, Tao;
McNamara, Brian; Quirk, Daniel; Taveggia, Matteo; Chae, Wonseok; Matsveyeu, Uladzimir;
Petricek, Tomas

Main reference D. Syme, K. Battocchi, K. Takeda, D. Malayeri, J. Fisher, J. Hu, T. Liu, B. McNamara, D. Quirk,
M. Taveggia, W. Chae, U. Matsveyeu, T. Petricek, “F#3.0 – Strongly-Typed Language Support for
Internet-Scale Information Sources,” Technical Report, MSR-TR-2012-101, 2012.

URL http://research.microsoft.com/apps/pubs/?id=173076

A growing trend in both the theory and practice of programming is the interaction between
programming and rich information spaces. From databases to web services to the semantic
web to cloud-based data, the need to integrate programming with heterogeneous, connected,
richly structured, streaming and evolving information sources is ever-increasing. Most modern
applications incorporate one or more external information sources as integral components.
Providing strongly typed access to these sources is a key consideration for strongly-typed
programming languages, to insure low impedance mismatch in information access. At this
scale, information integration strategies based on library design and code generation are
manual, clumsy, and do not handle the internet-scale information sources now encountered
in enterprise, web and cloud environments. In this report we describe the design and
implementation of the type provider mechanism in F# 3.0 and its applications to typed
programming with web ontologies, web-services, systems management information, database
mappings, data markets, content management systems, economic data and hosted scripting.
Type soundness becomes relative to the soundness of the type providers and the schema
change in information sources, but the role of types in information-rich programming tasks
is massively expanded, especially through tooling that benefits from rich types in explorative
programming.

3.18 (Big) Data Challenges in Materials Science and Engineering
Julia Stoyanovich (Drexel University – Philadelphia, US)

License Creative Commons BY 3.0 Unported license
© Julia Stoyanovich

Materials Science and Engineering (MSE) is focused on the process of engineering matter into
new and useful forms. It is a vast field that seeks to understand the properties of materials,
to create materials appropriate for particular tasks, and to predict material behavior. Like
many other disciplines, MSE is looking for ways to leverage data-driven approaches to make
the process of scientific discovery and engineering more efficient. In this talk I present two
interesting MSE use cases, outline ongoing efforts towards making MSE a data-intensive
domain, and discuss ingredients of an MSE cyberinfrastructure.

14511

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://research.microsoft.com/apps/pubs/?id=173076
http://research.microsoft.com/apps/pubs/?id=173076
http://research.microsoft.com/apps/pubs/?id=173076
http://research.microsoft.com/apps/pubs/?id=173076
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

60 14511 – Programming Languages for Big Data (PlanBig)

3.19 Big Data Management with the Myria Cloud Service
Dan Suciu (University of Washington – Seattle, US)

License Creative Commons BY 3.0 Unported license
© Dan Suciu

Joint work of Halperin, Daniel; de Almeida, Victor Teixeira; Choo, Lee Lee; Chu, Shumo; Koutris, Paraschos;
Moritz, Dominik; Ortiz, Jennifer; Ruamviboonsuk, Vaspol; Wang, Jingjing; Whitaker, Andrew; Xu,
Shengliang; Balazinska, Magdalena; Howe, Bill; Suciu, Dan

Main reference D. Halperin, V. Teixeira de Almeida, L. L. Choo, S. Chu, P. Koutris, D. Moritz, J. Ortiz,
V. Ruamviboonsuk, J. Wang, A. Whitaker, S. Xu, M. Balazinska, B. Howe, D. Suciu,
“Demonstration of the Myria big data management service,” in Proc. of the 2014 ACM SIGMOD
Int’l Conf. on Management of Data (SIGMOD’14), pp. 881–884, ACM, 2014.

URL http://dx.doi.org/10.1145/2588555.2594530
URL http://myria.cs.washington.edu/

Myria is a novel cloud service for big data management and analytics designed to improve
productivity. Myria’s goal is for users to simply upload their data and for the system to
help them be self-sufficient data science experts on their data – self-serve analytics. From a
web browser, Myria users can upload data, author efficient queries to process and explore
the data, and debug correctness and performance issues. Myria queries are executed on a
scalable, parallel cluster that uses both state-of-the-art and novel methods for distributed
query processing.

3.20 Communication Cost in Parallel Query Processing
Dan Suciu (University of Washington – Seattle, US)

License Creative Commons BY 3.0 Unported license
© Dan Suciu

Joint work of Beame, Paul; Koutris, Paraschos; Suciu, Dan
Main reference P. Beame, P. Koutris, D. Suciu, “Skew in parallel query processing,” in Proc. of the 33rd ACM

SIGMOD-SIGACT-SIGART Symp. on Principles of Database Systems (PODS’14), pp. 212–223,
ACM, 2014.

URL http://dx.doi.org/10.1145/2594538.2594558

We study the problem of computing a conjunctive query q in parallel using p servers on a
large database. We consider algorithms with one round of communication, and study the
complexity of the communication. We prove matching upper and lower bounds based on the
fractional edge packing of the query.

3.21 Big Data Problems in Particle Physics
Jens Teubner (TU Dortmund, DE)

License Creative Commons BY 3.0 Unported license
© Jens Teubner

Joint work of Teubner, Jens; Spaan, Bernhard

The Large Hadron Collider at CERN is often cited as a source of extremely large data
volumes, or “Big Data”. The talk gives a brief intuition of the type of experiments that
are being ran at CERN (specifically the LHCb sub-project) and I will show what types of
data are being produced and how they are being accessed by physical analyses. I will sketch
my vision on how database-oriented techniques could be used to allow for more efficient
data analysis and – as a consequence – to improve the insights that can be gained from the
experimental data.

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://dx.doi.org/10.1145/2588555.2594530
http://dx.doi.org/10.1145/2588555.2594530
http://dx.doi.org/10.1145/2588555.2594530
http://dx.doi.org/10.1145/2588555.2594530
http://dx.doi.org/10.1145/2588555.2594530
http://myria.cs.washington.edu/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://dx.doi.org/10.1145/2594538.2594558
http://dx.doi.org/10.1145/2594538.2594558
http://dx.doi.org/10.1145/2594538.2594558
http://dx.doi.org/10.1145/2594538.2594558
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

James Cheney, Torsten Grust, and Dimitrios Vytiniotis 61

3.22 Query Compilation Based on the Flattening Transformation
Alexander Ulrich (Universität Tübingen, DE)

License Creative Commons BY 3.0 Unported license
© Alexander Ulrich

Main reference A. Ulrich, T. Grust, “The Flatter, the Better – Query Compilation Based on the Flattening
Transformation,” to appear in Proc. of the 34th ACM SIGMOD Int’l Conf. on the Management of
Data (SIGMOD’15).

We tackle the problem of supporting an expressive, fully compositional list-based query
language that allows nested results efficiently on off-the-shelf relational query engines. Query
formulation is centered around comprehensions and a rich set of order-aware combinators
including grouping, aggregation and sorting. This query language provides a basis for
the construction of language-integrated query systems that seamlessly embed querying
capabilities into functional programming languages. In this talk, we sketch the internals of
a query compiler centered around the flattening transformation, a program transformation
originally conceived to support nested data parallelism on vector processors. Adapted to
query compilation, the flattening-based approach shreds nested queries into a small, statically
determined number of efficient relational queries. In contrast to previous work, flattening-
based query compilation (a) consists of a composition of simple steps that build on previous
work and are easy to reason about (b) supports ordered collections and operations like
aggregation, grouping and sorting and (c) produces efficient code.

In addition, we demonstrate Database-Supported Haskell (DSH), an implementation of
flattening-based query shredding. DSH is an embedded query DSL that allows to formulate
complex queries in idiomatic Haskell style. DSH queries are constructed from (higher-order)
combinators and comprehensions, support abstraction over sub-queries and are subject to
the same static typing discipline as other parts of a Haskell program. DSH compiles such
queries with nested results into a bundle of efficient flat queries for off-the-shelf relational
query engines.

3.23 Spanners: A Formal Framework for Information Extraction
Stijn Vansummeren (University of Brussels, BE)

License Creative Commons BY 3.0 Unported license
© Stijn Vansummeren

Joint work of Fagin, Ron; Kimelfeld, Benny; Reiss, Frederick; Vansummeren, Stijn

An intrinsic part of information extraction is the creation and manipulation of relations
extracted from text. In this talk, we present a foundational framework where the central
construct is what we call a spanner. A spanner maps an input string into relations over the
spans (intervals specified by bounding indices) of the string. The focus of this presentation is
on the representation of spanners. Conceptually, there are two kinds of such representations.
Spanners defined in a primitive representation extract relations directly from the input string;
those defined in an algebra apply algebraic operations to the primitively represented spanners.
This framework is driven by SystemT, an IBM commercial product for text analysis, where
the primitive representation is that of regular expressions with capture variables. We define
additional types of primitive spanner representations by means of two kinds of automata
that assign spans to variables. We prove that the first kind has the same expressive power as
regular expressions with capture variables; the second kind expresses precisely the algebra
of the regular spanners – the closure of the first kind under standard relational operators.

14511

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
A. Ulrich, T. Grust, ``The Flatter, the Better -- Query Compilation Based on the Flattening Transformation,'' to appear in Proc. of the 34th ACM SIGMOD Int'l Conf. on the Management of Data (SIGMOD'15).
A. Ulrich, T. Grust, ``The Flatter, the Better -- Query Compilation Based on the Flattening Transformation,'' to appear in Proc. of the 34th ACM SIGMOD Int'l Conf. on the Management of Data (SIGMOD'15).
A. Ulrich, T. Grust, ``The Flatter, the Better -- Query Compilation Based on the Flattening Transformation,'' to appear in Proc. of the 34th ACM SIGMOD Int'l Conf. on the Management of Data (SIGMOD'15).
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

62 14511 – Programming Languages for Big Data (PlanBig)

The core spanners extend the regular ones by string-equality selection (an extension used
in SystemT). We give some fundamental results on the expressiveness of regular and core
spanners.

3.24 Challenges in Interactive Applications
Marcos Vaz Salles (University of Copenhagen, DK)

License Creative Commons BY 3.0 Unported license
© Marcos Vaz Salles

Joint work of Vaz Salles, Marcos; Kefaloukos, Pimin Konstantin; Zachariasen, Martin
Main reference P.K. Kefaloukos, M.A. Vaz Salles, M. Zachariasen, “Declarative cartography: In-database map

generalization of geospatial datasets,” in Proc. of the 2014 IEEE 30th Int’l Conf. on Data
Engineering (ICDE’14), pp. 1024–1035, IEEE, 2014.

URL http://dx.doi.org/10.1109/ICDE.2014.6816720

Interactive applications, such as data visualizations and maps, computer games and simula-
tions, or in-memory transactional and analytics systems, are becoming ever more pervasive
and important to our society. In this talk, we describe lessons learned and challenges emerging
from our research with these applications. First, we explore the challenge of declarative pre-
computation of complex data transformations in these applications, discussing an example
of selecting data for zoomable maps [1]. Second, we discuss the challenge of performance
visibility in programming models for online computations, suggesting a way to revisit the
transaction model for this goal [2].

References
1 Pimin Konstantin Kefaloukos, Marcos Vaz Salles, and Martin Zachariasen. Declarative

Cartography: In-Database Map Generalization of Geospatial Datasets. Proc. ICDE 2014,
Chicago, Illinois, USA, 2014.

2 Vivek Shah. Transactional Partitioning: A New Abstraction for Main-Memory Databases.
VLDB PhD Workshop, Hangzhou, China, 2014. Best paper runner-up.

3.25 The R Project and Language
Jan Vitek (Northeastern University – Boston, US)

License Creative Commons BY 3.0 Unported license
© Jan Vitek

URL http://www.r-project.org

Jan introduced the seminar attendees to the R project for statistical computing and the
associated R scripting language. Through a series of live examples, from simple and obvious
to quirky and outright surprising, Jan demonstrated relevant bits of the R language semantics.
The discussion with the audience had a particular focus on R’s family of collection data types
(vectors, matrices, arrays, lists, factors, and data frames). Issues of R’s interpreted execution
model and the possibility of compiling R code were brought up later in the seminar.

Jan maintains his collection AllR of R-related implementation projects on GitHub:
https://github.com/allr/.

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://dx.doi.org/10.1109/ICDE.2014.6816720
http://dx.doi.org/10.1109/ICDE.2014.6816720
http://dx.doi.org/10.1109/ICDE.2014.6816720
http://dx.doi.org/10.1109/ICDE.2014.6816720
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://www.r-project.org
https://github.com/allr/

James Cheney, Torsten Grust, and Dimitrios Vytiniotis 63

3.26 Broom: Sweeping Out Garbage Collection from Big Data systems
Dimitrios Vytiniotis (Microsoft Research UK – Cambridge, GB)

License Creative Commons BY 3.0 Unported license
© Dimitrios Vytiniotis

Many popular systems for processing “big data” are implemented in high-level programming
languages with automatic memory management via garbage collection (GC). However, high
object churn and large heap sizes put severe strain on the garbage collector. As a result,
applications underperform significantly: GC increases the runtime of typical data processing
tasks by up to 40%. We propose to use region-based memory management instead of GC in
distributed data processing systems. In these systems, many objects have clearly defined
lifetimes. It is natural to allocate these objects in fate-sharing regions, obviating the need to
scan a large heap. Regions can be memory-safe and could be inferred automatically. Our
initial results show that region-based memory management reduces emulated Naiad vertex
runtime by 34% for typical data analytics jobs.

3.27 The Functorial Data Model
Ryan Wisnesky (MIT – Cambridge, US)

License Creative Commons BY 3.0 Unported license
© Ryan Wisnesky

Joint work of Wisnesky, Ryan; Spivak, David
Main reference D. I. Spivak, R. Wisnesky, “Relational Foundations for Functorial Data Migration,”

arXiv:1212.5303v5 [cs.DB], 2014.
URL http://arxiv.org/abs/1212.5303v5

We study the data transformation capabilities associated with schemas that are presented by
directed multi-graphs and path equations. Unlike most approaches which treat graph-based
schemas as abbreviations for relational schemas, we treat graph-based schemas as categories.
A schema S is a finitely-presented category, and the collection of all S-instances forms a
category, S-inst. A functor F between schemas S and T , which can be generated from a visual
mapping between graphs, induces three adjoint data migration functors, ΣF : S-inst → T -inst,
ΠF : S-inst → T -inst, and ∆F : T -inst → S-inst. We present an algebraic query language
FQL based on these functors, prove that FQL is closed under composition, prove that
FQL can be implemented with the select-project-product-union relational algebra (SPCU)
extended with a key-generation operation, and prove that SPCU can be implemented with
FQL.

4 Working Groups

The participants expressed a clear preference to avoid splitting into smaller groups to have
discussions; instead, on Thursday and Friday there were plenary discussions in the main
seminar room.

14511

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://arxiv.org/abs/1212.5303v5
http://arxiv.org/abs/1212.5303v5
http://arxiv.org/abs/1212.5303v5

64 14511 – Programming Languages for Big Data (PlanBig)

“Standard” intermediate language for data-centric programming
There are now lots of “programming languages for big data”, exhibiting signs of convergent
evolution, with similar primitives (usually starting with some variation on map and reduce
operations). Nevertheless, most such languages seem not to be well-informed by principles of
programming language design, or at least, these appear to be afterthoughts. One discussion
session considered the question whether these efforts are now stable enough that there is a case
for a community-led “standard” – drawing inspiration from the lazy functional programming
community, which consolidated its effort behind a single language design (Haskell) after a
number of exploratory language designs gained momentum in the 1980s and early 1990s.

There was an extensive discussion of what this would mean, with different participants
taking different views of what a “standard” would mean and what its benefits would be. One
question raised was the community that such a standard would serve – would it serve PL
researchers (as a “standard calculus” for language-based work on big data / data-centric
computation)? Would it serve system developers (as an API) or users (as a standard surface
language)? Another concern raised was that industry tends to view academic work as
irrelevant due to limited scale – would this limit the value of a standard language model?

One participant mentioned recent experience with eventual consistency: after an initial
burst of enthusiasm, industry seems to be reverting to stronger consistency models and
tested higher-level abstractions such as transactions. Thus, it may be premature to try to
consolidate effort on language designs/calculi for dealing with big data, as work in this area
may still be at an experimental stage and may be at risk of abandonment if its value is not
realized soon.

At a more concrete level, participants discussed what kind of standard would be of
value for their research. The lambda-calculus was cited as a (widely successful) example
of a “standard” formalism that programming languages researchers use as a starting point
for understanding and formalizing language design ideas, abstracting away somewhat from
the full complexity of implemented languages. By analogy, a calculus that plays a similar
role for cloud computing, MapReduce systems, or multicore CPU or GPU code could be
valuable (it should be noted that there are already some such proposals). It might be a good
idea to take experience from the OpenFlow standard in software-defined networking into
account; OpenFlow was established by an industry consortium but has enabled programming
languages and systems researchers to work to a common interface. Likewise, formalisms such
as the relational calculus/algebra (and formal standards such as SQL) have played a similar
role in the database community for decades.

An interesting issue for a proposed “standard model” is that of cost modeling: a calculus
or language that attempts to abstract away from the implementation details risks abstracting
away the computational costs as well, so there is a tension between abstraction/portability
and performance transparency/scalability. A standard model that is operationally transparent
would be valuable for parallel or distributed computing (but there was no clear consensus on
what this would mean). It would be desirable for such a model to give an explicit account
of physical properties or distances between components in the system to avoid cost-opacity.
Cellular automata models were mentioned as an example of how to do this but it was argued
that they are too low-level. The Delite system was also mentioned as an example providing
a set of high-level operators that can be mapped to different execution architectures; it is
higher-level than real hardware or systems and needs to be mapped to abstract machines that
model the underlying hardware well. A standard formalism might need to handle multiple
layers of abstraction (by analogy with relational query optimization with its logical, physical
and run-time layers). Something that is “good enough” for typical uses and portable might

James Cheney, Torsten Grust, and Dimitrios Vytiniotis 65

be the best tradeoff (analogously to C which is not perfect but represents a workable tradeoff
between abstraction and performance).

In addition, there was a short side-discussion about the desirability of benchmarking
and diversity clusters for the evaluation of “big data” systems (and language techniques
for them). This would aid performance tuning and portability. The Stabilizer system from
the University of Massachusetts was mentioned as an example of this. The general topic
of reproducibility for computer science/systems research was also mentioned (and it was
pointed out that this is currently receiving attention from several quarters).

Community-building
Another topic that was discussed was the need for, and options for, building a community to
improve communication among and interaction between communities relevant to the topics
of the seminar. There seemed to be consensus that it would be beneficial to encourage
community-building in this area. Some participants expressed concern that existing workshops
seem to be diminishing in popularity and value, while it is at least possible (sometimes with
greater effort) to publish work with (for example) a significant DB component in PL venues
or vice-versa. Others expressed the opinion that workshops are no longer as worthwhile
and a lighter-weight approach such as Dagstuhl-like events every 2 years or so is preferable.
This approach, however, has the disadvantage that it limits participation to those whom the
organizers can identify well in advance of the event, so may limit diversity and community
growth.

One concrete option that was discussed was the possibility of organizing a new conference
(rather than workshop) on “data-centric computing” to encourage work and cross-fertilization
between PL and systems/databases/machine learning. The pros and cons of this strategy
were discussed. On the one hand, it was recognized that this would require buy-in from
“big names” / thought leaders (beyond the participants in the Dagstuhl seminar). Another
potential challenge was the need to encourage significant industry participation, which could
impose constraints on logistics or venues. On the other hand, participants cited recent
experience with new workshops on hot topics such as USENIX HotCloud and HotSDN
workshops, the ACM Symposium on Cloud Computing, which has grown rapidly to an
independent event since its inception in 2010.

Overall, it was recognized that a new venue might be feasible but a strong scientific
case (going beyond identifying the shortcomings of existing venues) needs to be made,
in terms of increased benefit to participants and better science. One participant (Umut
Acar) volunteered to coordinate subsequent discussion of the idea of a new “data-centric
computation” conference. Establishing such a new conference may be difficult and so
experience with DBPL 2015 may help build the case for this.

DBPL
The final morning of the seminar saw a discussion of the future of DBPL, the International
Symposium on Database Programming Languages, which has been running biennially since
1987. Recent occurrences of DBPL in 2011 and 2013 had seen a decrease in submissions and
participation compared to previous years. Members of both events PC chair teams were
present and as of the week of the seminar its status in 2015 was unclear. There was some

14511

66 14511 – Programming Languages for Big Data (PlanBig)

feeling that DBPL may have run its course, but also that it would be a shame for the series
to end when events such as this Dagstuhl seminar showcase such a range of relevant activity.
It was felt that this question was largely orthogonal to the question of developing a new
conference venue (though a strong showing for DBPL in 2015 might contribute to a case for
the “data-centric computation” conference idea).

DBPL had been co-located with VLDB (a major database conference, which seminar
participants from the DB community would typically attend) until 2013, and since 2009 took
place as a one-day workshop. In 2015, VLDB takes place the same week as ICFP, a major
PL conference (and one which a number of seminar participants would normally attend).
This clash highlighted a problem with DBPL’s recent role as a “VLDB workshop”: even in
years when there is no clash with other events, participants from outside the DB community
may find it difficult to justify the time/expense of attending another conference (or of just
attending one day of an event they would otherwise not attend).

A number of alternatives were discussed, including the possibility of co-locating DBPL
with ICFP in 2015, holding it as a stand-alone event (close in time/space to VLDB or ICFP
but not formally affiliated with either), or seeking another co-location option . The possibility
of co-locating with SPLASH 2015 (an umbrella PL conference including OOPSLA and several
other events) was also raised, but did not seem to generate much enthusiasm at the seminar.
An alternative proposal was considered, which attracted considerable support: to try to hold
DBPL at both venues, with a video link connecting speakers and audience members at VLDB
(in Hawaii) and ICFP (in Vancouver). Although this arrangement was recognized to have
disadvantages (e.g. the inability to talk to speakers or other participants informally outside
the conference room), participants felt that it offered the most promising route if it could be
done. Of approximately 20 participants present in the discussion, a clear majority indicated
willingness to either help organize or participate in/submit to DBPL if it were held in 2015.

5 Outcomes

Umut Acar agreed to coordinate a discussion of the possibility of starting a “data-centric
computation” conference.
James Cheney started a “data-centric programming languages” mailing list, invited
Dagstuhl participants to join and subsequently advertised it on relevant mailing lists such
as TYPES and DBworld. The list currently has over 120 members.
Fritz Henglein and Torsten Grust agreed to investigate the possibility of DBPL taking
place “virtually” at two locations, with VLDB in Hawaii and ICFP in Vancouver connected
by a video link. This turned out to be infeasible due to the high up-front cost of the link.
Based on a straw poll conducted with Dagstuhl participants it was decided to approach
the SPLASH 2015 organizers to see if DBPL could be co-located there. The SPLASH
organizers were willing to approve this without going through the formal workshop
application process. The two co-chairs are James Cheney and Thomas Neumann and 6
of the 10 PC members were participants in the Dagstuhl seminar.

James Cheney, Torsten Grust, and Dimitrios Vytiniotis 67

Participants

Umut A. Acar
Carnegie Mellon University –
Pittsburgh, US

Yanif Ahmad
Johns Hopkins University –
Baltimore, US

Alexander Alexandrov
TU Berlin, DE

Carsten Binnig
DHBW – Mannheim, DE

Giuseppe Castagna
University Paris-Diderot, FR

James Cheney
University of Edinburgh, GB

Laurent Daynès
Oracle Corporation, FR

Nate Foster
Cornell University – Ithaca, US

Pierre Geneves
INRIA – Grenoble, FR

Alexey Gotsman
IMDEA Software – Madrid, ES

Todd J. Green
LogicBlox – Atlanta, US

Torsten Grust
Universität Tübingen, DE

Fritz Henglein
University of Copenhagen, DK

Jan Hidders
TU Delft, NL

Christoph Koch
EPFL – Lausanne, CH

Tim Kraska
Brown University, US

Sam Lindley
University of Edinburgh, GB

Todd Mytkowicz
Microsoft Corp. – Redmond, US

Thomas Neumann
TU München, DE

Frank Neven
Hasselt Univ. – Diepenbeek, BE

Ryan R. Newton
Indiana University –
Bloomington, US

Kim Nguyen
University Paris-Sud – Gif sur
Yvette, FR

Klaus Ostermann
Universität Tübingen, DE

Christopher Ré
Stanford University, US

Tiark Rompf
Purdue University, US

Andrew Stevenson
Queen’s Univ. – Kingston, CA

Julia Stoyanovich
Drexel Univ. – Philadelphia, US

Dan Suciu
University of Washington –
Seattle, US

Jens Teubner
TU Dortmund, DE

Alexander Ulrich
Universität Tübingen, DE

Jan Van den Bussche
Hasselt Univ. – Diepenbeek, BE

Stijn Vansummeren
Université Libre de Bruxelles, BE

Marcos Vaz Salles
University of Copenhagen, DK

Jan Vitek
Northeastern University –
Boston, US

Dimitrios Vytiniotis
Microsoft Research UK –
Cambridge, GB

Ryan Wisnesky
MIT – Cambridge, US

14511

	Executive Summary James Cheney, Torsten Grust, and Dimitrios Vytiniotis
	Table of Contents
	Overview of Talks
	Self-Adjusting Computation for Dynamic and Large Data Sets Umut A. Acar
	Deconstructing Big Data Stacks Yanif Ahmad
	Data Analytics with Flink Alexander Alexandrov
	Interactive & Visual Data Exploration Carsten Binnig
	From LINQ to QDSLs James Cheney
	Demo: Normalization and Query Composition in LINQ James Cheney
	The Homeostatis Protocol: Avoiding Transaction Coordination Through Program Analysis Nate Foster
	Weak Consistency in Cloud Storage Alexey Gotsman
	Live Programming for Big Data Todd J. Green
	Towards Regular Expression Processing at 1 Gbps/core Fritz Henglein
	MapReduce Optimisation in the Nested Relational Calculus Jan Hidders
	Incremental Computation: The Database Approach Christoph Koch
	Compiling SQL Queries into Executable Code Thomas Neumann
	Parallel-Correctness and Transferability for Conjunctive Queries Frank Neven
	DeepDive: A Data System for Macroscopic Science Christopher Ré
	An Efficient SQL to C Compiler in 500 lines of Scala Tiark Rompf
	F#3.0 – Strongly-Typed Language Support for Internet-Scale Information Sources Andrew Stevenson
	(Big) Data Challenges in Materials Science and Engineering Julia Stoyanovich
	Big Data Management with the Myria Cloud Service Dan Suciu
	Communication Cost in Parallel Query Processing Dan Suciu
	Big Data Problems in Particle Physics Jens Teubner
	Query Compilation Based on the Flattening Transformation Alexander Ulrich
	Spanners: A Formal Framework for Information Extraction Stijn Vansummeren
	Challenges in Interactive Applications Marcos Vaz Salles
	The R Project and Language Jan Vitek
	Broom: Sweeping Out Garbage Collection from Big Data systems Dimitrios Vytiniotis
	The Functorial Data Model Ryan Wisnesky

	Working Groups
	Outcomes
	Participants

