
Security Type Error Diagnosis for
Higher-Order, Polymorphic Languages

Jeroen Weijers
Dept. of Comp. Science,

Universität Tübingen
Sand 13, 72076 Tübingen,

Germany
jeroen.weijers@uni-tuebingen.de

Jurriaan Hage
Dept. of Inf. and Comp. Sciences,

Utrecht University
P.O. Box 80.089, 3508 TB Utrecht,

The Netherlands
J.Hage@uu.nl

Stefan Holdermans
Vector Fabrics

Paradijslaan 28, 5611 KN Eindhoven,
The Netherlands

stefan@vectorfabrics.com

Abstract
We combine the type error slicing and heuristics based approaches
to type error diagnostic improvement within the context of type
based security analysis on a let-polymorphic call by value lambda
calculus extended with lists, pairs and the security specific con-
structs declassify and protect. We define and motivate four classes
of heuristics that help diagnose inconsistencies among the con-
straints, and show their effect on a selection of security incorrect
programs.

Categories and Subject Descriptors D.3.3 [Programming Lan-
guages]: Language Constructs and Features—Polymorphism;
F.3.2 [Logics and Meanings of Programs]: Semantics of Program-
ming Languages—Program analysis; F.3.3 [Logics and Meanings
of Programs]: Studies of Program Constructs—Functional con-
structs, Type structure

General Terms Languages, Theory

Keywords type-based program analysis, security analysis, error
feedback

1. Introduction
We take for granted that a compiler for a strongly-typed language
refuses to generate code for a program that is not type correct. We
also expect compilers to provide a reasonable explanation of what
is wrong, but this has not always been the case. As the literature
study of Heeren [10] documents, the problem of type error diag-
nosis for the Hindley-Milner type system, and several extensions
thereof, has been extensively studied. Thus far, however, most ef-
fort in this area has been directed to the intrinsic type systems
of functional programming languages, and not to other validation-
oriented type based analyses such as security analysis [24].

Consider the following expression (taken from [11]; this is not
code anyone would care to write) for which we have provided
explicit type and security annotations:

if (True :: BoolH) then (True :: BoolL)
else (False :: BoolL) :: BoolL

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
PEPM’13, January 21–22, 2013, Rome, Italy.
Copyright c© 2013 ACM 978-1-4503-1842-6/13/01. . . $15.00

In this expression, an annotation H means that the expression to
which it is attached delivers values that are highly confidential.
Expressions annotated with L deliver values of low confidential-
ity. The purpose of security analysis is to verify that data is never
leaked to expressions that may also evaluate to less confidential
data. Intuitively, in a security correct program no value may in-
advertently influence a value of a lesser security level. In the ex-
pression above, this is not the case: because the value of the con-
dition decides whether the then or else part must be evaluated,
so observing the value of the low confidentiality result reveals in-
formation about the highly confidential conditional. Therefore, the
expression is not security type correct (although it is type correct)
and it should be rejected. The problem can be fixed by changing
the annotation on the condition to L, or by changing the annotation
on the complete expression to H.

King et al. [15] observed that information-flow reporting tech-
niques are inadequate to explain security type errors. In their work
they assign information-flow blame, and provide traces of the Java
programs they analyze to show how values of high confidentiality
end up in locations that may only expose values of lower confiden-
tiality. Their work, however, does not transfer easily to a functional
setting: their analysis is (largely) context-insensitive (i.e., mono-
variant), the language they consider is first-order, there is no discus-
sion of parametric polymorphism, and their trace-like explanation
does not seem so natural for a higher-order functional language.
Moreover, as the authors themself suggest, their work has not been
combined with heuristics to further prune the traces they provide
(see [5, 8, 13] for work on such heuristics).

This paper offers the following contributions:

• We are the first to combine the type error slicing approach of
Haack and Wells [7] with the heuristic approach of Heeren [10].

• We introduce and motivate a number of heuristics, divided into
four essentially different categories, as described in Section 2.
We provide a substantial number of example programs that
show how our approach works.

• We provide a polyvariant prototype implementation of our work
obtainable at http://www.cs.uu.nl/wiki/bin/view/Hage
/Downloads for a polymorphic lambda-calculus extended with
recursion, lists and tuples, and special security specific con-
structs, declassify and protect.

The paper is structured as follows. We describe our approach
in Section 2. In Section 3 we define the subject language, spec-
ify the more interesting parts of the security-annotated type system
and indicate how the type system relates to the heuristics discussed
in Section 4. Section 5 provides further examples as a first step in

3

F i l e ” Login . fml ” , l i n e 11 , c h a r a c t e r s 0−144:
Th i s e x p r e s s i o n g e n e r a t e s t h e f o l l o w i n g

i n f o r m a t i o n f low :
r o o t < e v e r y o n e
which i s n o t l e g a l .

Figure 1. Error message for FlowCaml.

validating our work. In Section 6 we discuss related work, and Sec-
tion 7 concludes. For reasons of space we omit many details, in
particular, example code for the FlowCaml system and SecLib li-
brary, parts of the security type system, and the complete inference
algorithm and constraint solver that implement the security type
system. These details can be obtained from [25].

2. Approach
In this section we describe at a high level our approach and the
heuristics that come into play. The type based security analysis we
provide error diagnosis for is polyvariant and includes a rule for
subeffecting, but not full subtyping. The rule for subeffecting is
somewhat more restrictive than that of full subtyping, but this is
not relevant for our work here (and note that the loss precision is
to a large extent compensated for by the polyvariance of the analy-
sis). Our source language is a higher-order polymorphic functional
language, very much akin to FlowCaml, an implementation based
on the Core ML language [19].

In a FlowCaml program the programmer describes the relations
that must hold in the lattice of security levels, e.g., !everyone <
!root . If, during analysis, the analyzer finds that !root<!everyone ,
then an error has occurred, and this is communicated to the pro-
grammer. An example error message of this kind is given in Fig-
ure 1. The message explains there is an illegal flow, and the loca-
tion points to the line where the definition that contains the incon-
sistency begins. Although correct, the message does not explain
how the flow was derived, which subexpressions were responsible,
and what the programmer can do to fix the problem. For reasons
of space, we omit the example program written in FlowCaml and
further discussion (but see [25]).

As we explain below, our work essentially combines the ap-
proaches of Hage and Heeren [8, 10], and Haack and Wells [7].
Like Haack and Wells, we first compute a (security) type error slice
when a security type error has been found. A security type error
slice is a program slice (or fragment) that only contains those parts
of the program that contribute to the error. The constraints that are
needed to construct such a slice together form a minimal unsatisfi-
able set of constraints: remove any of its elements, and it becomes
satisfiable. If a program contains multiple errors, then the next error
will be revealed only after the first one has been corrected.

Due to space restriction we refer the reader to Section 7 of
Stuckey, Sulzmann and Wazny [23] for the algorithm to compute
a minimal unsatisfiable set of constraints.

Displaying the security type error slice is a first approximation
for the type error, but in some cases there may be strong evidence
that a smaller set of locations will do just as well, or that we can
suggest a fix for the mistake. In Section 4, we present a number of
heuristics that inspect the constraints in the minimal unsatisfiable
set to determine whether certain constraints/locations should never
be marked as the cause of a security type error or, just the oppo-
site, a particular constraint should be blamed for the mistake. In the
latter case, a very specific security type error message can be pro-
vided. Because a compiler cannot know what the intentions of the
programmer are, we are taking a risk here. This risk can be miti-
gated by, for example, offering various security error messages and
allowing the programmer to scan through these. Our implementa-

tion currently offers only one error message. Adding a facility such
as we just described is only a matter of engineering.

There are two good reasons to start from a minimal unsatisfiable
set of constraints. First, it is impossible to blame a constraint that
cannot be responsible for the mistake (which may be considered
a “soundness property” for the heuristics). Second, the heuristics
need only look at a restricted set of constraints, which we may hope
is much smaller than the complete set of constraints.

In the end, we will be left with a set of constraints that will
receive the blame for the mistake. When a constraint is generated,
meta information about the AST node where it was generated is
added to the constraint. The collection of AST nodes associated
with the constraints in the minimal unsatisfiable subset together
form the program slice. This slice can in itself be presented as an
error message, with some explanation on the nature of the error [7].

Because our analysis is polyvariant, simplification/solving of
constraints will take place for every definition, i.e., at any point that
generalisation is to take place. During this process of simplification,
the error diagnosis process we have just sketched will be invoked
whenever simplification results in an inconsistency.

Our heuristics can be divided into four categories:

• generic heuristics that borrow heavily from earlier work and
apply just as well in the current setting, e.g., a heuristic that
filters out constraints that equate the security level of a let-
expression with that of the let-body.

• propagation heuristics that prevent blaming code that only prop-
agates the security levels of their inputs. For example, blaming a
function inc that increments an integer value (and that implic-
itly maintains the level of confidentiality of its input) cannot
be sensibly blamed for an inconsistency. In practice, we expect
most functions to be of this kind. Changes in levels of confiden-
tality are most likely to arise from implicit control-flow (see the
example in the introduction), from security specific operations
like protect and declassify and from values explicitly provided
with security annotations.

• heuristics derived from the assumption that programmers may
be used to dealing with the intrinsic type system, and will be un-
aware of the subtle differences that arise from the fact that a se-
curity type system is in fact a dependency analysis [1]. We sys-
tematically derive these heuristics from observable differences
between the specification of security typing and the underlying
intrinsic type system.

• heuristics that are specific to security analysis, in particular the
operations of declassify and protect.

Although we have no evidence to support this, we believe that
many of the heuristics and our approach can be reused in other
settings besides security analysis. For example, the heuristics in the
third category are also likely to apply to other dependency analyses.

3. Security type system
The language we use is based upon the Fun language of [18], a let-
polymorphic call-by-value lambda calculus. We have extended Fun
with a few special purpose security program constructs as well as
some additional features to make the analysis and examples more
interesting. We call this extended language sFun++.

In this paper we employ the following syntactic categories as
given below. Most categories should speak for themselves. We note
that the category Sec ranges over security levels, which we assume
to form a lattice [3], meaning that given a finite non-empty set S of
security levels, there is a unique lowest security level that is at least
as secure as each element of S. The join operator of this lattice is,
as usual, denoted by t.

4

n ∈ Nat natural numbers ,
b ∈ Bool booleans ,
e ∈ Exp expressions ,

f , x ∈ Var variables ,
u,⊕ ∈ Op’,Op unary and binary operators ,

p ∈ Prog program ,
d ∈ Decl declarations ,
s ∈ Sec security levels

The abstract syntax of our language is defined as:

p ::= d∗

d ::= f = e1
e ::= n | b | x | fn x ⇒ e0 | fun f x ⇒ e0

| e0 e1 | if e0 then e1 else e2
| let x = e0 in e1 | e1 ⊕ e2 | u e1
| Cons e1 e2 | Nil | (e1, e2)
| fst e1 | snd e1 | null e1 | hd e1 | tl e1
| declassify e0 s | protect e0 s

A program p is a list of declarations, and each declaration binds
an expression to an identifier. As in [18], fn x ⇒ e0 defines a non-
recursive function and fun f x ⇒ e0 a recursive one. In the latter,
the identifier f refers to the recursively defined function. Function
application is left associative. Local definitions let x = e0 in e1
are non-recursive. Top level declarations are syntactic sugar for a
nested let. This means that a declaration can only use functions that
are declared earlier in the program. For data types we have pairs
(e1, e2), and lists are built from Cons and Nil as usual. Pairs are
destructed by fst and snd, and hd and tl destruct lists. Finally, we
can test for the empty list with the null predicate.

The two security constructs are protect and declassify. The ex-
pression protect e0 s increases the level of protection (security)
of an expression e0 to level s . It is important to note that this con-
struct can only increase the security level of e0, so level s has to
be at least as secure as the level at which e0 was previously pro-
tected. The expression declassify e0 s does exactly the opposite:
it decreases the security level of e0 to level s . The presence of this
construct implies that our analysis is not sound with respect to con-
fidentiality. However, without some form of declassification it will
be hard to write useful programs. For example, we cannot write a
valid program that informs an unauthorised user that he or she en-
tered an invalid password (assuming the password information is
confidential).

3.1 The sFun++ type language
As usual, we specify the security type system as an annotated type
system ([17], and Chapter 5 of [18]). Our security analysis is poly-
variant, which means that we can quantify over annotation vari-
ables. The relations between annotation variables, and restrictions
on them are expressed as constraints. These constraints may be
added to types, in the style of qualified types [14].

We introduce the following new syntactic categories:

α ∈ TyVar type variables
β ∈ AnnVar annotation variables
π ∈ Constr constraints
l ∈ Levels security levels
ϕ ∈ Ann security annotations
τ ∈ Ty annotated types
ρ ∈ Qualified Types qualified types
σ ∈ TyScheme annotated type schemes
C ∈ Constraints constraint set
Γ ∈ TyEnv type environments

The sets of annotation variables, AnnVar, and type variables,
TyVar are assumed to be mutually disjoint. An annotation is either
some security level l (taken from any given security lattice), or an

annotation variable β. Constraints relate two security levels, where
we take ϕ1 v ϕ2 to mean that ϕ2 is at least as secure as ϕ1.

ϕ ::= l | β
π ::= ϕ1 v ϕ2

We then define a three-layer type language:

τ ::= Int | Bool | List τϕ
| (τ1

ϕ, τ2
ϕ) | τ1ϕ → τ2

ϕ | α
ρ ::= π ⇒ ρ | τ
σ ::= ∀α. σ | ∀β. σ | ∃β. σ | ρ

The first layer, τ , consists of annotated types for the primitive
types, lists, pairs and function types. We introduce type variables in
order to be able to construct type schemes. Qualified types ρ consist
of a type and a sequence of constraints that further restrict the type.
Finally, type schemes allow us to quantify universally over type
and annotation variables, and existentially only over annotation
variables. The latter facility is used to deal with annotation type
variables that may be constrained in some way, but that are not
exposed as part of the type. Note that in contrast to FlowCaml [19]
we do have annotations on pairs, although we do not really need
them. For uniformity with the treatment of other datatypes that do
need them, we have also included them here.

A type environment Γ is a mapping from variables x to a pair
consisting of a type scheme σ and a top-level annotation for x .

Γ ::= ∅ | Γ [x 7→ (σ, ϕ)]
C ::= ∅ | {π1, . . . , πn} ∪ C

The pair associated with a variable x in an environment Γ
is written Γ (x); it returns a pair associated with the rightmost
occurrence of x . Note that top level annotations are not present in
type schemes, but are stored separately in the type environment. As
a result, we can not quantify over these annotations, and therefore
declarations will never be polyvariant in their top level annotation.
Although one might think that this causes a loss of expressivity, the
presence of a rule for sub-effecting will counter this loss. Constraint
sets C will be used to store a constraint environment in our typing
judgment.

3.2 The security type system
In Figure 2 we give the non syntax directed type rules for our
security analysis. For reasons of space, we provide only those of
a core calculus and the ones that we shall need in the remainder
of this paper. The full type system, as well as the syntax-directed
variant and the inference algorithm can be found in [25].

The main judgment is Γ, C ` e : σϕ, which reads “under the
type environment Γ and constraint environment C, the expression
e can have type σ and is protected at level ϕ”. The constraint
environment C contains the relations between security levels that
define the security lattice proper, as well as the constraints that
should hold for e .

For rules [t-null], [t-hd] and [t-tl] we note that the functions
null, hd and tl all reveal information about the structure of the
list, and hd additionally reveals information about the contents of
the list; hence the least upper bound in the consequent of [t-hd].
As mentioned before, for reasons of consistency pairs also have a
top level annotation, although we learn nothing from knowing the
structure of a pair that the type has not already conveyed (see [t-fst]
and [t-snd]).

Function application ([t-app]) requires the annotation of the
provided argument to be equal to the annotation of the expected
argument. The annotation of the application result is the least up-
per bound of the security level of the result, and of the result of
applying the function. The reason for the former, is that applying a

5

function may reveal information about that function. Functions de-
clared at top level are assigned the lowest security level ⊥, so then
the annotation of the application only depends on the annotation on
the result of the body.

For the rule [t-if], recall from the Introduction that the security
annotation on the condition should also propagate to the security
level of the result of the conditional. Otherwise, the outcome may
leak secure information accessed during the evaluation of the con-
dition.

The influence of protect and declassify on the security levels
are expressed in the rules [t-protect] and [t-declass], respectively.
The expression protect e0 ϕ0 is protected at level ϕ0, under the
condition that e0 is at most as secure as ϕ0. Declassification does
exactly the opposite, lowering the level of security.

As evidenced by many of our rules, we typically insist that
different subexpressions have exactly the same annotated type. In
the rule [t-if], for example, the condition, the then part and the
else part need to have exactly the same security level. This is by
itself too restrictive, making reasonable programs unanalysable.
To alleviate this problem, the rule for subeffecting can be used
to selectively increase the level of protection for an expression. 1,
example? The rules for generalisation and instantiation of types
and annotions are straightforward, and we omit the details.

Our type system specification follows those described in [1, 19].
We are confident therefore that — omitting the rule for declassifica-
tion —, the full security type system satisfies a non-interference re-
sult. Intuitively, non-interference implies that replacing an expres-
sion of some confidentiality with any other (of the same level of
confidentiality), does not change the values of any expression of
lower confidentiality. Since these properties are well-known, and
our focus in this paper is on deriving heuristics from the security
type system, we forego the definition of semantics that we need to
formally specify the non-interference result.

3.3 Towards an algorithm
The full type system can be transformed to an algorithm, follow-
ing Chapter 5 of [18]. First, we turn the type system of Figure 2
into a type system that is completely syntax-directed, e.g., by per-
forming generalisation of the let-definition before passing the com-
puted type schemes into the body of the let. Then we implement
a variant of algorithm W [2] that computes the types of variables
during a tree traversal, doling out fresh annotation variables wher-
ever necessary, and equating these variables during unification.
The annotations themselves obtain their particular security level
when we solve the security constraints that are collected during
the tree traversal. Because our language is let-polyvariant, we need
to simplify/solve the constraints as we compute the annotated type
scheme of a let-bound identifier. This is to establish over which an-
notation variables we should universally or existentially quantify.
This explains the use of simplify in the definition of gen given
in Figure 3. The task of simplify is to decide whether the con-
straint set is consistent, and, if this is the case, remove trivially sat-
isfied constraints, and return a partition (C′, C′′) of the remaining
constraints. The latter contains constraints that involve annotation
variables that are free in the environment Γ, while C′ contains the
remaining constraints. We quantify universally over the type and
annotation variables that occur free in τ , and quantify existentially
over the remaining free annotation variables (from C′). The con-
straints from C′ can be stored in the type scheme, because they
only involve annotation variables that we just quantified over, while
the constraints in C′′ are returned for further propagation.

Note that the non-syntax-directed rule [t-sub] can be handled
by generating fresh annotation variables in various places, and
relating these by constraints. For example, in the case for [t-if]
we generate a fresh annotation variable for the annotated type for

gen Γ ϕ τ C =
(∀α1 . . . αn. ∀β1 . . . βm.∃βm+1 . . . βp. C

′ ⇒ τ , C′′) where
(C′, C′′) = simplify C
{α1, . . . , αn} = ftv(τ)− ftv(Γ)
{β1, . . . , βm} = fav(τ)− fav(Γ)− fav(ϕ)
{βm+1, . . . , βp} = fav(C′)− fav(τ)− fav(Γ)− fav(ϕ)

Figure 3. The generalisation function gen

the conditional, say β, and relate the annotation variable on the
then part, say β1, by the constraint β1 v β; the else part and the
conditional can be treated similarly.

4. Heuristics
This section discusses the various heuristics we have developed,
organized into four different categories: generic heuristics, propa-
gation heuristics, dependency analysis specific heuristics, and se-
curity specific heuristics. We motivate and describe the heuristics
themselves, and define the order in which they are applied, and
why. In Section 5 we provide additional examples. We note that
whatever the heuristics do, they will never remove all constraints
from the current set. This would imply that no constraint can be
blamed for the inconsistency.

We note that having had to refashion some of our code to fit the
columns of the paper, the location information may not be correct
in all cases.

4.1 Generic heuristics
The heuristics in this section are generally applicable heuristics that
have also been employed in other work on heuristics-based type
error diagnosis.

Majority heuristic
Johnson and Walz introduced the idea to look at the amount of
evidence for a constraint to the source of an inconsistency [12]. We
use this idea to point to a possible mistake in a value that is involved
in a security error. The majority heuristic retrieves all constraints
from an expression that is used as an argument but is considered to
be too secure. Then it computes for each security level the number
of constraints that imply that the expression should at least have
that security level. If the amount of constraints that testify that the
expression should have a lower security level is substantially larger
than the amount of constraints demanding a higher security level,
then the subexpressions where the latter were generated might be
the actual cause of the inconsistency. As a result, a mention of those
subexpressions will be added to the type error message, stating that
they caused the security level to be so high. Note, that we do not
propose that these expressions are at fault.

In Figure 4, the first five lines declare some values, where the
first four are protected at level Low and the last value is protected at
level High . The declaration fifteen on the sixth line computes the
sum of the five values and passes the result to the print function.
The latter expects a value that is protected at level Low , but the
sum of the five values is protected at level High . The only value
that causes the sum to be protected at level High is five , all four
other values are protected at the level Low . The heuristic blames
the application of print . As there is very little evidence stating
that the sum should be protected at level High the heuristic also
explains what caused the expression to be protected at this level
(see Figure 5). The programmer can now decide whether the use of
five in this place was incorrect or whether the use of print was at
fault.

6

Typing judgements Γ, C ` e : σϕ

Γ [x 7→ (τx, ϕx)], C ` e0 : τ0
ϕ0

Γ, C ` fn x ⇒ e0 : τx
ϕx →ϕ τ0

ϕ0
[t-fn]

Γ, C ` e : τϕ1 C ` ϕ1 v ϕ
Γ, C ` e : τϕ

[t-sub]

Γ, C ` e1 : τ2
ϕ2 →ϕ τ0

ϕ0 Γ, C ` e2 : τ2
ϕ2

Γ, C ` e1 e2 : τ0
ϕtϕ0

[t-app]
Γ, C ` e0 : Boolϕ Γ, C ` e1 : τϕ Γ, C ` e2 : τϕ

Γ, C ` if e0 then e1 else e2 : τϕ
[t-if]

Γ, C ` e1 : (τ1
ϕ1 , τ2

ϕ2)ϕ

Γ, C ` fst e1 : τ1
ϕtϕ1

[t-fst]
Γ, C ` e1 : (τ1

ϕ1 , τ2
ϕ2)ϕ

Γ, C ` snd e1 : τ2
ϕtϕ2

[t-snd]
Γ (x) = (σ, ϕ)

Γ, C ` x : σϕ
[t-var]

Γ, C ` e1 : (List τϕ1)ϕ

Γ, C ` null e1 : Boolϕ
[t-null]

Γ, C ` e1 : (List τϕ1)ϕ

Γ, C ` hd e1 : τϕ1tϕ [t-hd]
Γ, C ` e1 : (List τϕ1)ϕ

Γ, C ` tl e1 : (List τϕ1)ϕ
[t-tl]

Γ, C ` e : τϕ C ` ϕ0 v ϕ
Γ, C ` declassify e ϕ0 : τϕ0

[t-declass]
Γ, C ` e : τϕ C ` ϕ v ϕ0

Γ, C ` protect e ϕ0 : τϕ0
[t-protect]

Figure 2. Non-syntax directed rules for security analysis

one = protect 1 Low
two = protect 2 Low
three = protect 3 Low
four = protect 4 Low
five = protect 5 High
fifteen = print (one + two + three + four + five)

Figure 4. Example program: majority of Low values in faulty
subexpression

E r r o r i n a p p l i c a t i o n :
” (p r i n t ((((one + two) + t h r e e) + f o u r) +

f i v e)) ” a t : (l i n e 6 , column 12)
Expec ted an argument p r o t e c t e d a t a t most

l e v e l : Low
The argument i s p r o t e c t e d a t l e v e l : High
Because o f t h e f o l l o w i n g s u b e x p r e s s i o n (s) :
” f i v e ” a t : (l i n e 6 , column 46)

Figure 5. Error generated by the majority heuristic in Figure 4

The least trusted constraint
All constraints are assigned a certain amount of trust based on
the AST-node they are generated at. We believe that there is a
good reason to have more trust in certain programming constructs
than others, because some constructs are more often the cause
of an inconsistency or are less intuitive. Constraints that result
from instantiating the type of a program variable defined elsewhere
receive a higher trust value than constraints that were generated
for the expression itself. The constraints that are generated at these
sites belong to the declaration of that particular variable and were
found to be consistent when generalising the type of that program
variable. Constraints that are generated at application sites receive
the least amount of trust, because this construct is considered most
likely to introduce inconsistencies. In Section 5 we discuss an
example of this kind.

Irrefutable constraints
At some nodes of the abstract syntax tree we generate a con-
straint for reasons of uniformity with the rest of the type system.
We know that such constraints can never be wrong, and therefore
should never be blamed. The irrefutable constraints heuristic re-

moves these constraints from the current set of constraints. This
is achieved by setting the trust for such constraints to infinity. Our
type system, for example, generates a constraint at let bindings stat-
ing that the let binding is at least as protected as the body of the let
binding. This constraint is, for obvious reasons, always true, and
should never be blamed. This heuristic was introduced by Heeren
in Section 8.3 of [10].

4.2 The propagation heuristic
Many of the generated constraints only propagate security levels.
Consider for example the program in Figure 6. The highly secure
secureVal is passed through the identity function once and then
twice in succession incr before being passed to the print function.
Both functions, incr and id , are polyvariant and propagate the se-
curity annotation from their argument to their result. An algorithm
will generate explicit constraints to, step-by-step, propagate the se-
curity level of secureVal to the print function. Since the print
function expects a value of low confidentiality, the program is in-
consistent. When we want to assign blame, it makes no sense to
blame the application of functions like id and incr , because they
do not affect the security levels of their argument. What we want
then is that the constraints responsible for the propagation of se-
curity levels are never blamed for an inconsistency. Therefore we
have devised a heuristic that will remove such constraints from the
current constraint set. Of course, an error message could suggest
to replace a function like id by a function that does change the se-
curity properties (like declassify in this particular case). But since
there is no way that we can decide which function should be re-
placed and with what it should be replaced, this can only serve to
confuse the programmer. We will thus have to accept that the se-
quence of calls to security agnostic functions is correct, which is
attained by deleting all propagation constraints from the minimal
unsatisfiable constraint set.

Note that the usefulness of this heuristic stems from the poly-
variance of the analysis, and is independent of the fact that the un-
derlying language is polymorphic or monomorphic.

4.3 Heuristics for dependency analyses
Security analysis is an instance of a dependency analysis [1], which
makes some of the type rules that govern security annotations
slightly and subtly different from those of the intrinsic type system
that the programmer will most likely be used to. In this section we
describe a few heuristics that are constructed with this in mind.
For example, the heuristic for the conditional considers that a

7

secureVal :: IntHigh

incr :: ∀β1. ∀β2. β1 v β2 ⇒ Intβ1 → Intβ2

id :: ∀α.∀β1.∀β2. β1 v β2 ⇒ αβ1 → αβ2

print :: ∀α. αLow → αLow

print (incr (incr (id secureVal)))

Figure 6. Propagating security levels through incr and id

programmer may believe that the security level of the condition
does not contribute to that of the whole conditional, although the
type rule in Figure 2 says otherwise. The heuristic tries to discover
whether such a misunderstanding explains an inconsistency among
the constraints.

We have systematically compared the constraints on security
annotations and the constraints on the underlying types in each of
the rules of Figure 2. For most of the discrepancies we have found,
we have implemented a corresponding heuristic. We shall consider
all of these below, but in the interest of conciseness, we only
provide details and examples for the heuristic for the conditional.

The first discrepancy is that the security level of an application
may be influenced by the security level on the function itself.
Specifically, in the rule [t-app], the ϕ on the arrow of the type of
e1 contributes to the security level of the application e1 e2. In the
underlying type system, only the result type of the function type
contributes to the type of e1 e2. We note that functions are usually
created at the lowest security level, but it is still possible to increase
the security level by protecting it at a higher level.

The second discrepancy can be found in the rule [t-hd]. In the
underlying type system, only the element type of the list determines
the type of the result of hd, but since successfully applying hd
to a list also provides some information about the structure of its
argument list (it is not empty), the security level ϕ attached to the
structure of the list also contributes to the security level of the result
of hd. We note that in the case of fst and snd the same reasoning
applies, but that the annotations on pairs are there for reasons of
uniformity of presentation only. However, it is possible to explicitly
increase the security level on a pair by using protect, which will
then indeed influence the security level on the result of fst and snd.
It is easy to add such heuristics to our prototype, but currently these
have not been implemented.

The final and arguably most striking discrepancy arises for
the conditional statement. As explained in the introduction, the
outcome of a conditional may reveal information about the value
of the condition, and therefore if the condition is highly secure, the
result of the conditional will be highly secure, even if the then and
else parts themselves are not as secure. This fact can be gleaned
from the rule [t-if], in which the annotation on e0 contributes to the
security annotation on the conditional, but that only the type τ of
the then and else parts determine the type of the conditional.

The heuristic determines whether the security level of the con-
dition is the reason that the whole expression is protected at a level
higher than expected. If so it will report this to the programmer and
will also explain why the conditional expression has a high security
level. In Figure 7 we present a program where secure information
is leaked through the conditional. The error presented in Figure 8
is generated by our heuristic. This is an example of a program that
uses a lattice consisting of values Low, Medium and High, with
the expected relations Low vMedium and Medium vHigh . The
message describes why the conditional is protected at level High ,
and that this is inconsistent with the security level expected by the
function log .

log = fn x ⇒ protect x Medium

hVal = protect True High

mVal = protect 1 Medium

lVal = protect 2 Low

error = log (if hVal then lVal else mVal)

Figure 7. Secure information leaks through conditional

The c o n d i t i o n a l : hVal o f t h e i f s t a t e m e n t :
i f hVal t h e n l V a l e l s e mVal a t (l 9 , c 14)

u s e s a v a l u e : hVal p r o t e c t e d a t l e v e l : High .
Th i s c a u s e s t h e whole i f e x p r e s s i o n :

i f hVal t h e n l V a l e l s e mVal a t (l 9 , c 14)
t o be p r o t e c t e d a t l e v e l : High .
I n s t e a d a v a l u e p r o t e c t e d a t l e v e l : Medium was

e x p e c t e d by : l o g .

Figure 8. Error generated by the if-heuristic for the program in
Figure 7

secureValue = protect True High

printSecure = printValue (protect secureValue Low)

Figure 9. Example program: misuse of protect statement

4.4 Security specific heuristics
The sFun++ language has two constructs to explicitly change the
security level, declassify and protect. It is not unlikely that a
programmer, at first, will confuse the two. For example, he may
try to declassify an expression e by using the protect statement,
and provide a security level lower than the level inferred for e , or
vice versa. In this section we describe in more detail the situation
that a protect may need to be replaced by declassify. The inverse
situation follows dually, and we will not discuss it further. Both
have been implemented in the prototype.

In Figure 9 we present an expression that contains a mis-
take. The value secureValue has type BoolHigh and the function
printValue prints a value that is protected at level Low . The pro-
grammer of the program tried to declassify secureValue by pro-
tecting it at level Low . Our heuristic will generate the error message
presented in Figure 10. The error suggests to replace protect with
declassify, and this indeed results in a security correct program.

It may seem that this heuristic can always be applied whenever
we have an inconsistency involving protect, but that is not the
case: it is essential that the level explicitly provided is lower than
the inferred level, because that provides the additional hint to the
system that declassify was intended.

The heuristic requires that there are currently only two con-
straints in the constraint set, each containing one non-variable an-
notation. It will then consider the nodes where the constraints orig-
inate from, and if this includes a protect node, and the explicitly
provided level is lower than the inferred security level of the argu-
ment to protect, then the heuristic will be applicable and generate
a suitable error message.

We note that these heuristics are instances of the sibling heuris-
tic introduced by Heeren et al [9].

4.5 How heuristics are applied
In our prototype heuristics are applied in sequence, and in a par-
ticular order. One can easily come up with various common-sense

8

You t r y t o p r o t e c t t h e e x p r e s s i o n : ” p r o t e c t
s e c u r e V a l u e Low” a t (l i n e 3 , column 27)
t o l e v e l : Low

But t h e e x p r e s s i o n you a r e p r o t e c t i n g i s
p r o t e c t e d a t l e v e l : High .

Try d e c l a s s i f y t o a s s i g n t h e e x p r e s s i o n t h e
l e v e l : Low

Figure 10. Error generated by sibling heuristic for the program in
Figure 9

reasons why a given heuristic should be tried after another. For ex-
ample, it makes sense to first filter out irrefutable constraints, and
to keep the less-focused heuristics to later. As a rule, we prefer
to try the heuristics that pinpoint a particular often-made mistake
early on. In general, however, the “best” order very much depends
on programmer preference (although we have not investigated this,
we can imagine that this can be attained by some adaptive algo-
rithm). This is why we made it easy to change the order in which
heuristics are considered in our prototype (to be precise, the iden-
tifier heuristics defined in module Heuristics / Heuristics.hs).
For the examples in this paper, we have used the following ordering
that corresponds to the ordering in our downloadable prototype:

1. remove irrefutable constraints,
2. select constraints with heuristics for dependency analyses (if,

head, application) (we omitted heuristics for fst and snd, be-
cause they are not likely to be useful)

3. remove propagation constraints,
4. security specific heuristics,
5. select constraint based on majority heuristic,
6. select least trusted constraint,
7. pick among the remainder, the constraint that is “earliest” in the

program (first come, first blamed)

The motivation for this particular order is as follows: we first
delete all irrefutable constraints, because we know that blaming
such a constraint will seem very silly. It makes sense to remove
propagation constraints at this point, because blaming any of these
will not make sense either. In our implementation, however, it
is much easier to delete such constraints after we know that the
dependency-analysis based heuristics are known not to apply. Hav-
ing removed the propagation constraints, we move on to the last of
the specific heuristics, that specifically targets declassify or protect
invocations in the program. The remaining heuristics are more
generic, starting with the heuristic that targets specific constraints
to blame, followed by weaker heuristics that filter out constraints
that are less likely to be to blame.

On the occasion that after applying heuristics 1 through 6 we
have not yet found a single cause of the error, it is still possible to
present a program slice. Since some of the heuristics will have fil-
tered out various constraints, such a slice is typically much smaller
than the original minimal unsatisfiable set of constraints. The pro-
gram presented in Figure 4 would, for example, result in the slice
presented in Figure 11, which indeed only shows those point of the
program that contribute to the inconsistency. The explanation of the
slice, on the first line, is determined by the kind of AST-node that
forms the root of the slice. The endpoints refer to the expected and
the provided security levels. Thus when we are not able to find the
cause of the inconsistency presenting the program slice may still
provide a useful error message. Our prototype implementation can-
not present program slices, but it can list all program points that
contribute to an inconsistency. We believe that it is possible to con-
struct a type error slice (those parts of the program that contribute
to the error leaving out those that do not) from this information.
In our implementation we resort to a catch-all heuristic (no. 7) that

S o r t o f e r r o r : use o f s e c u r e v a l u e as l e s s
s e c u r e argument , e n d p o i n t s Low vs . High

p r i n t ((. .) + f i v e)

Figure 11. Program slice error from the program in Figure 4

picks from the remaining constraint the one that occurs earliest in
the program, and bases the error report on that constraint.

5. Further examples
Validation of our work is best performed on a large corpus of
programs, following the example of [16] for such a study on type
error diagnosis for ML. Unfortunately security facilities have not
found their way yet to mainstream functional languages, which is
why security incorrect programs are hard to come by. An exception
may be the Jif system [15], but that is a Java based system, a context
in which we have no polyvariance and no higher-order functions
(see Section 6 for a more detailed discussion). We therefore resort
to discussing a number of examples, and variations thereof. Our
implementation (see the introduction) provides additional example
programs.

In Figure 12 we present a security type correct login program
written in sFun++. In the program user names and passwords are
simple integers, as our language does not support characters and
strings. A password file is an (unprotected) list of pairs, consisting
of an unprotected user name and a protected password. The func-
tion findUser retrieves the user name from the list. Because we do
not have a proper maybe type, we return either a singleton list when
the user is found, or the empty list when the requested user name is
not known. The function login receives a user name and a password
as arguments; it then looks up the user record in the password file.
If a user record is found it compares the password inside with the
given password. If no user was found it returns False . The result
of the password comparison is protected at security level High , the
print function expects a value that is protected no higher than Low .
It is therefore declassified before it is printed.

In Figure 13 we present a variation of the login function
where declassification is forgotten. This means that a highly secure
boolean value is passed to the print function. The corresponding
error message is given in Figure 15. In this case, it is the least
trusted constraint heuristic that correctly blames the application.

A mistake that is easily made is that the programmer tries to
declassify information through the protect statement. In Figure 14
the login function uses protect to declassify information. The error
provided by our prototype is shown in Figure 16. This time one of
the security specific heuristics discovers the mistake, and generates
an error message that suggests to replace protect by declassify.

We now continue with an example of an invocation of hd that
leads to an inconsistency in Figure 17. In this case, the log function
expects a value of confidentiality Low , but the expression hd zl
makes one of the possible arguments to log a value of confidential-
ity High , which can be traced back to the fact that the structure of
the list has High confidentiality and this is inherited by the value
returned by hd; that the contents of the list has confidentiality Low
is not important. The error message that this results in can be found
in Figure 18. Strikingly, the error messages changes substantially
(to the one in Figure 19) when we change the confidentiality level
of the subexpression 1 in the definition of zl to Medium . This is
because we now have two sources for the fact that hd zl is not of
level Low . So now the application of log to its argument is blamed.
Fortunately, the message does still explain that the too high confi-
dentiality arises from zl . Note that the applications of id are never
blamed for anything, and that how id is exactly implemented has
no bearing on what is derived for it. This is what we expect.

9

passwordFile =
Cons (1, protect 31415 High)

(Cons (2, protect 27182 High) Nil)
findUser =

fun f user ⇒
fn l⇒ if (null l) then Nil

else
let r = hd l
in if ((fst r) ≡ user)

then Cons r Nil
else f user (tl l)

login =
fn u ⇒

fn p ⇒ print (declassify
(let userRecord = (findUser u passwordFile)

in (if (null userRecord)
then False
else ((snd (hd userRecord)) ≡ p))) Low)

Figure 12. An sFun++ login program

login =
fn u ⇒

fn p ⇒ print
(let userRecord = (findUser u passwordFile)

in (if (null userRecord)
then False
else ((snd (hd userRecord)) ≡ p)))

Figure 13. The login function without declassification

login =
fn u ⇒

fn p ⇒ print (protect
(let userRecord = (findUser u passwordFile)

in (if (null userRecord)
then False
else ((snd (hd userRecord)) ≡ p))) Low)

Figure 14. The login function with protection

E r r o r i n a p p l i c a t i o n :
” (p r i n t l e t u s e r R e c o r d = ((f i n d U s e r u)

p a s s w o r d F i l e) i n i f n u l l u s e r R e c o r d t h e n
F a l s e e l s e (snd head u s e r R e c o r d == p)) ” a t : (
l i n e 12 , column 25)

The f u n c t i o n : ” p r i n t ”
Expec ted an argument p r o t e c t e d a t a t most l e v e l :

Low
But t h e argument : ” l e t u s e r R e c o r d . . . == p) ”
I s p r o t e c t e d a t a h i g h e r l e v e l .

Figure 15. sFun++ error given for program in Figure 13

You t r y t o p r o t e c t t h e e x p r e s s i o n : ” l e t
u s e r R e c o r d = ((f i n d U s e r u) p a s s w o r d F i l e)
i n i f n u l l u s e r R e c o r d t h e n F a l s e e l s e (
snd head u s e r R e c o r d == p) ” a t : ” (l i n e 12 ,

column 32) t o l e v e l : Low
But t h e e x p r e s s i o n you a r e p r o t e c t i n g i s

p r o t e c t e d a t l e v e l : High
Try d e c l a s s i f y t o a s s i g n t h e e x p r e s s i o n t o

t h e l e v e l : Low

Figure 16. sFun++ error given for program in Figure 14

log = fn x ⇒ protect x Low

boolVal = protect True Low
lVal = protect 2 Low

zl = Cons (protect 1 Low) (protect Nil High)

id = fn x ⇒ let y = x in y

main = log (if id (id boolVal) then id lVal
else hd zl)

Figure 17. Another example

The s t r u c t u r e o f l i s t : z l a t (l 11 , c 40)
a p p l i e d t o head i n t h e e x p r e s s i o n :

head z l a t (l 11 , c 37)
i s p r o t e c t e d a t l e v e l : High .
Th i s c a u s e s t h e r e s u l t o f t h e head o p e r a t i o n t o

be p r o t e c t e d a t l e v e l : High .
I n s t e a d a v a l u e p r o t e c t e d a t l e v e l : Low t h a t was

e x p e c t e d by : l o g

Figure 18. sFun++ error given for program in Figure 17

E r r o r i n a p p l i c a t i o n :
(l o g i f (i d (i d boo lVa l)) t h e n (i d l V a l) e l s e

head z l) a t (l 10 , c 8)
An argument p r o t e c t e d a t a t most l e v e l : Low i s

e x p e c t e d by : l o g . . .
The argument p r o v i d e d :

i f (i d (i d boo lVa l)) t h e n (i d l V a l) e l s e head
z l a t (l 10 , c 13)

i s p r o t e c t e d a t l e v e l : High
Because o f t h e f o l l o w i n g sub−e x p r e s s i o n s : z l a t (

l 11 , c 40)

Figure 19. sFun++ error given for program in Figure 17

log = fn x ⇒ protect x Low

fLow = fn x ⇒ protect x Low
fHigh = protect fLow High

main = log (fLow 2 + fHigh 3)

Figure 20. An example to show the effect of highly confidential
functions

The f u n c t i o n : fHigh a t (l 6 , c 22)
i n t h e a p p l i c a t i o n :

(fHigh 3) a t (l 6 , c 22)
i s p r o t e c t e d a t l e v e l : High .
Th i s c a u s e s t h e r e s u l t o f t h e a p p l i c a t i o n t o be

p r o t e c t e d a t l e v e l : High .
I n s t e a d a v a l u e p r o t e c t e d a t l e v e l : Low t h a t was

e x p e c t e d by : l o g

Figure 21. sFun++ error given for the program in Figure 20

10

log = fn x ⇒ protect x Low
lVal = protect 2 Low
fakeId = fn x ⇒ let y = x in (protect y High)

main = log (
if True then
if False then lVal + 2 else 10

else if fakeId False then lVal else lVal + 1)

Figure 22. An example with a nested conditional

The c o n d i t i o n a l : (f a k e I d F a l s e) a t (l 8 , c 12)
o f t h e i f s t a t e m e n t :

i f (f a k e I d F a l s e) t h e n l V a l e l s e (l V a l) + (1) a t
(l 8 , c 9)

u s e s a v a l u e : ’ (f a k e I d F a l s e) a t (l 8 , c 12) ’
p r o t e c t e d a t l e v e l : High .

Th i s c a u s e s t h e whole i f e x p r e s s i o n :
i f (f a k e I d F a l s e) t h e n l V a l e l s e (l V a l) + (1) a t

(l 8 , c 9)
t o be p r o t e c t e d a t l e v e l : High .
I n s t e a d a v a l u e p r o t e c t e d a t l e v e l : Low was

e x p e c t e d by : l o g

Figure 23. sFun++ error given for program in Figure 22

Consider Figure 20. Here we have implemented a function and
protected the function (and not its return value) at level High; the
default for functions is Low . Because of the rule for application, a
return value of this function will be the join of the confidentiality of
the body and the function itself, which will in this case always be
High . This leads to an inconsistency, because log expects a value
with Low confidentiality. The error report is shown in Figure 21.

A final example is the program in Figure 22, where we provide
a nested if-statement in which the if in the else part leads to an
inconsistency, because the function fakeId returns a value of High
confidentiality. Note that the message in Figure 23 indeed picks out
this particular subexpression to blame, but also refers to where the
mistake shows up: in the call to log .

6. Related work
Sabelfeld and Myers provide a comprehensive overview of the
field of security analysis [22], in particular the part of the field
that derives from the work of Volpano, Smith and others [24].
Our work deals only with the issue of program confidentiality. In
early work all data was labelled with a security level and checked
dynamically; we follow the static approach that aims to reject
programs at compile time.

Heintze and Riecke present a small statically typed, lambda cal-
culus based, language for security analysis called the Slam calculus
[11]. The call by value language employs two kinds of security an-
notations, one for direct readers and one for indirect readers. In
the Slam calculus all values are explicitly annotated with both di-
rect and indirect reader permissions. The type system they present
features sub-typing, making the analysis more accurate than ours.
They support protect, but declassify is not available.

In [19] a security analysis for a lightweight version of ML
(called Core ML) is presented. Their subject language forms the
basis for the language used in this paper, although we have omit-
ted some advanced features such as exceptions and references. Core
ML does not have the protect construct; it is not needed in the pres-
ence of a subtyping rule. Instead, a higher than necessary security
level for a value can be set explicitly by the programmer; if, then,
the inferred security level is higher than the explicit annotation, the

program will be rejected. The Core ML specification is polyvariant,
and the underlying language is polymorphic, as it is in this paper.

Security analysis has been shown to be an instance of depen-
dency analysis, see, e.g., [1]. The authors mention three advantages
for defining analyses as instances of their Dependency Core Calcu-
lus (DCC), to which we add a fourth that says that heuristics that
address the peculiarities of a dependency-like analysis may also
be transferable to other instances of DCC. Although the other in-
stances of DCC discussed in [1] are optimising analyses, inconsis-
tencies may again arise if dependency type signatures are allowed.

A lot of work has been done on providing feedback for type er-
rors for polymorphic, higher-order functional languages. The PhD
thesis of Heeren [10] contains a comprehensive overview of the
field up to 2004. Our work combines that of [7] and [23] with that
of [10]. In [10], a framework for type inferencing and type error re-
porting is presented. As do many authors, the Hindley-Milner type
system is specified in a constraint-based manner. The way we em-
ploy heuristics, and some of the heuristics themselves are described
in [8]. Type error diagnosis for parametric polymorphism in Java is
addressed in [6].

Whereas the previous work intends to provide as precise type
errors as possible, [7] take a different approach. When a type error
occurs, a program slice is presented to the user. The slice contains
all positions in the program that may contribute to the error; posi-
tions outside the slice are known not to contribute to the error. Their
work is based on an algorithm for finding a minimal, inconsistent
constraint set, from which a slice can be computed. Recent work
shows that the method scales to a full size language [20].

In this paper we combine the two approaches: when we find an
inconsistency, we first restrict ourselves to the constraints originat-
ing from the associated program slice. Then we apply our heuristics
to these constraint to see if they can come up with a more specific
error message for the error at hand. Our algorithm for computing
the slice is taken from [23]. Moreover, they advocate a third ap-
proach in which, instead of displaying a type error message, the
programmer is assisted by an interactive type debugging session.

The intentions of the work in this paper are most closely related
to that of [4] and [15]. Both papers investigate security type error
diagnosis, and in contrast to our work, both do so in an impera-
tive setting. In particular, the work of Deng and Smith [4] works
for a simple imperative language extended with arrays, and devel-
ops a tailormade inference algorithm that additionally provides a
recursive trace of the security levels of all the variables involved in
the inconsistency. This is precise, but also verbose. The work by
King et al. [15] is much more mature, and has been implemented
in the Jif information-flow compiler. Their work applies to Java,
and by employing an algorithm similar to the algorithm to compute
the minimal unsatisfiable subset and using the fact that the analy-
sis is implemented as a dataflow analysis, the system can provide
an execution trace leading up to the inconsistency, but restricted
to the security aspect only. In contrast to our work, the analysis
they provide is context-insensitive, does not deal with higher-order
functions, and does not seem to be able to deal with parametric
polymorphism. A limited form of context-sensitivity is attained by
essentially duplicating the analyses of pieces of code for use in a
secure and a non-secure; moreover the choice to use either one of
these versions has to be made explicitly by the programmer. This
decreases the usability of the system and it still remains to be seen
how well this extends to larger lattices.

Moreover, there is an ad-hoc extension in order to deal with
implicit control-flow, for which they need to introduce additional
security variables (which amounts to analysing an SSA form of
the program). As a result, the type error diagnosis is not always
easy to map back onto the original program. Our work can handle
implicit flows, in fact explicit flows and implicit flows cannot be

11

distinguished in a higher-order setting. Moreover, some of our
heuristics in particular address issues arising from implicit control-
flow (Section 4.3). The authors suggest adding heuristics to their
work as future work, which is one of our contributions.

A totally different approach to security typing, is to employ an
embedded domain-specific language, SecLib [21]. The library uses
type classes and monads to enforce security. All security levels
and flows are checked by the Haskell type system, illegal flows
are reported as regular type errors. All functions have explicit
types, as the library heavily relies on type classes for which the
programmer has to restrict the instances available. Furthermore the
library requires some language extensions to be enabled (all of
them are related to type classes). The compiler cannot infer the
correct type for all expressions, so we have to help it by providing
explicit types. Although beneficial from the viewpoint of language
engineering, the fact that we embed the security types into normal
types, implies that type errors and security errors cannot easily
be distinguished: normal type errors will also reveal security type
annotations, and vice versa.

7. Conclusion and future work
In this paper we combine a heuristics-based approach to type er-
ror diagnosis with a type error slice approach, in order to improve
security type error diagnosis. We first compute a minimal unsatisfi-
able set of constraints, that allows us to determine the locations in a
program that contribute to an error. Since these slices can be large,
we try to provide more specific messages by applying a number of
heuristics to this minimal unsatisfiable subset. We have presented
heuristics divided into four categories: generic, propagation, depen-
dency analysis specific and security analysis specific heuristics.

Obvious directions for future work are: extending the source
language, extending the set of heuristics, and to consider how the
order in which heuristics are applied affect type error diagnosis.
Although we have provided a rationale for our heuristics, a full
scale experimental validation still needs to be executed. A prob-
lem is the absence of a benchmark collection of security incorrect
programs. The minimal unsatisfiable subsets give a certain guaran-
tee of “soundness”, but that does not mean that our messages often
reflect the diagnosis that an expert may come up with. A possible
approach is to consider what has changed with respect to previous
compiles.

Acknowledgments
This work was supported by the NWO project on “Scriptable
Compilers” (612.063.406). The authors would like to thank Sean
Leather and anonymous referees for their helpful comments.

References
[1] M. Abadi, A. Banerjee, N. Heintze, and J. G. Riecke. A core calculus

of dependency. In POPL ’99: Proceedings of the 26th ACM SIGPLAN-
SIGACT symposium on Principles of programming languages, pages
147–160, New York, NY, USA, 1999. ACM.

[2] L. Damas and R. Milner. Principal type-schemes for functional pro-
grams. In POPL ’82: Proceedings of the 9th ACM SIGPLAN-SIGACT
symposium on Principles of programming languages, pages 207–212,
New York, NY, USA, 1982. ACM.

[3] B. A. Davey and H. A. Priestley. Introduction to lattices and order.
Cambridge University Press, 1990.

[4] Z. Deng and G. Smith. Type inference and informative error reporting
for secure information flow. In Proceedings of the 44th annual South-
east regional conference, ACM-SE 44, pages 543–548, New York, NY,
USA, 2006. ACM.

[5] N. el Boustani and J. Hage. Corrective hints for type incorrect Generic
Java programs. In J. Gallagher and J. Voigtländer, editors, Proceedings

of the ACM SIGPLAN 2010 Workshop on Partial Evaluation and
Program Manipulation (PEPM ’10), pages 5–14. ACM Press, 2010.

[6] N. el Boustani and J. Hage. Improving type error messages for generic
java. Higher-Order and Symbolic Computation, 24(1):3–39, 2012.
10.1007/s10990-011-9070-3.

[7] C. Haack and J. B. Wells. Type error slicing in implicitly typed higher-
order languages. Sci. Comput. Program., 50(1-3):189–224, 2004.

[8] J. Hage and B. Heeren. Heuristics for type error discovery and recov-
ery. In Z. Horváth, V. Zsók, and A. Butterfield, editors, Implementa-
tion of Functional Languages – IFL 2006, volume 4449, pages 199 –
216, Heidelberg, 2007. Springer Verlag.

[9] B. Heeren, J. Hage, and S. D. Swierstra. Scripting the type inference
process. In Eighth ACM Sigplan International Conference on Func-
tional Programming, pages 3 – 13. ACM Press, 2003.

[10] B. J. Heeren. Top quality type error messages (phd), September 2005.
[11] N. Heintze and J. G. Riecke. The slam calculus: programming with

secrecy and integrity. In POPL ’98: Proceedings of the 25th ACM
SIGPLAN-SIGACT symposium on Principles of programming lan-
guages, pages 365–377, New York, NY, USA, 1998. ACM.

[12] G. F. Johnson and J. A. Walz. A maximum-flow approach to anomaly
isolation in unification-based incremental type inference. In POPL
’86: Proceedings of the 13th ACM symposium on Principles of pro-
gramming languages, pages 44–57, New York, 1986. ACM.

[13] R. Johnson and D. Wagner. Finding user/kernel pointer bugs with type
inference. In Proceedings of the 13th conference on USENIX Security
Symposium-Volume 13, pages 9–9, 2004.

[14] M. P. Jones. Qualified types: theory and practice. Cambridge Univer-
sity Press, New York, NY, USA, 1994.

[15] Dave King, Trent Jaeger, Somesh Jha, and Sanjit A. Seshia. Effective
blame for information-flow violations. In Proceedings of the 16th
ACM SIGSOFT International Symposium on Foundations of software
engineering, SIGSOFT ’08/FSE-16, pages 250–260, New York, NY,
USA, 2008. ACM.

[16] B.S. Lerner, M. Flower, D. Grossman, and C. Chambers. Searching
for type-error messages. In ACM SIGPLAN Notices, volume 42, pages
425–434. ACM, 2007.

[17] J. M. Lucassen and D. K. Gifford. Polymorphic effect systems. In
POPL ’88: Proceedings of the 15th ACM SIGPLAN-SIGACT sym-
posium on Principles of programming languages, pages 47–57, New
York, NY, USA, 1988. ACM.

[18] F. Nielson, H. R. Nielson, and C. Hankin. Principles of Program
Analysis. Springer-Verlag, Berlin, 1999.

[19] F. Pottier and V. Simonet. Information flow inference for ML. ACM
Trans. Program. Lang. Syst., 25(1):117–158, 2003.

[20] V. Rahli, J. B. Wells, and F. Kamareddine. A constraint system for a
SML type error slicer. Technical Report HW-MACS-TR-0079, Herriot
Watt University, Edinburgh, Scotland, Aug 2010.

[21] A. Russo, K. Claessen, and J. Hughes. A library for light-weight
information-flow security in Haskell. In Haskell ’08: Proceedings of
the first ACM SIGPLAN symposium on Haskell, pages 13–24, New
York, NY, USA, 2008. ACM.

[22] A. Sabelfeld and A. C. Myers. Language-based information-flow se-
curity. IEEE Journal on Selected Areas in Communications, 21:2003,
2003.

[23] P. J. Stuckey, M. Sulzmann, and J. Wazny. Interactive type debugging
in haskell. In Proceedings of the 2003 ACM SIGPLAN workshop on
Haskell, pages 72–83, New York, NY, USA, 2003. ACM.

[24] D. Volpano, C. Irvine, and G. Smith. A sound type system for secure
flow analysis. J. Comput. Secur., 4(2-3):167–187, 1996.

[25] J. Weijers. Feedback-oriented security analysis (msc thesis), 2010.
http://www.cs.uu.nl/people/jur/jweijers-msc.pdf.

12

