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Observing SQL Queries in their Natural Habitat
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We describe Habitat, a declarative observational debugger for SQL. Habitat facilitates true language-level

(not: plan-level) debugging of, probably flawed, SQL queries that yield unexpected results. Users mark SQL

subexpressions of arbitrary size and then observe whether these evaluate as expected. Habitat understands
query nesting and free row variables in correlated subqueries, and generally aims to not constrain users

while suspect subexpressions are marked for observation.

From the marked SQL text, Habitat’s algebraic compiler derives a new query whose result represents
the values of the desired observations. These observations are generated by the target SQL database host

itself and are derived from the original data: Habitat does not require prior data extraction or extra
debugging middleware. Experiments with TPC-H database instances indicate that observations impose a

runtime overhead sufficiently low to allow for interactive debugging sessions.
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1. OBSERVATIONAL SQL DEBUGGING
We discuss the design and internals of the observational SQL debugger HABITAT that
helps users to identify errors, or “bugs”, buried in queries. In particular, we pursue
debugging of logical flaws that lead SQL queries to yield unexpected results or even
runtime errors. We do not consider query engine or performance debugging here.

A correct program is built from correct pieces. Observational debugging [Silva 2011;
Pope and Naish 2003; Marlow et al. 2007] builds on this basic insight and promotes a
debugging paradigm in which users observe program pieces to validate the elementary
assumption that the pieces evaluate as expected. In this work, we apply the principles
of observational debugging to SQL. Here, the pieces of a SQL query are its subqueries
(if any) and, at a considerably finer granularity, its individual subexpressions. Ob-
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A:2 T. Grust and J. Rittinger

SELECT p
¯
partkey,p

¯
name,

(SELECT ps
¯
supplycost

FROM Partsupp
WHERE ps

¯
partkey = p

¯
partkey)

FROM Part

Fig. 1. A flawed SQL query that raises a runtime error for some TPC-H database instances (Query 1).

servational debugging with its focus on the evaluation of expressions is a particularly
good fit for SQL: SQL’s non-procedural set-oriented semantics forbid a traditional “gdb-
stlye” debugging approach in which the query execution runtime is traced as it changes
state.

Observational debugging depends on the query author having an intended interpre-
tation of the query. If this intention is not met by the query result, one option is to
work backwards from the erroneous output, identifying and observing those subex-
pressions that may contribute to the error. The identification part of the process can
be automated, e.g. in terms of algorithmic debugging, see Section 5. Here, we focus on
the observation of subexpressions.

The nature of SQL may render it difficult for users to observe whether a given indi-
vidual query piece functions as anticipated. Observational debugging requires to turn
the original query “inside out” such that the piece of interest appears at the query’s
top-level—only then the piece becomes observable.

To illustrate this challenge, consider the following debug session that, for now, does
without HABITAT.
Manual Debug Session 1 (Unexpected Runtime Error). Query 1 of Figure 1 extracts parts
and their supply cost from a TPC-H database [Transaction Processing Performance
Council]. The query works as expected for some database instances but more often
than not bails out with a runtime error—it does fail for the small TPC-H instance
of Figure 4, for example. IBM DB2 V9 emits the error message:

SQL0811N The result of a scalar fullselect,
SELECT INTO statement, or VALUES INTO statement
is more than one row.

The mention of “scalar fullselect” suggests that the nested subquery in the outer
SELECT clause of Query 1 is the root of the runtime error. We did not expect this
subquery to violate SQL’s single-row cardinality constraint [ANSI/ISO, §7.14]. Un-
fortunately, we cannot simply extract the subquery text between ( · · · ) and then ex-
ecute and observe it on its own: the correlated subquery contains a reference to col-
umn p

¯
partkey whose originating table Part has just been removed with the extraction.

At this point we need to modify the original subquery to obtain any observation at
all. Among the many possible edits, we choose to remove the WHERE clause and with it
the problematic reference to column p

¯
partkey. Instead, we use grouping and resort to

a COUNT aggregate to check whether the original subquery could possibly yield more
than a single row for any value of ps

¯
partkey:

SELECT ps
¯
partkey,COUNT(ps

¯
supplycost)

FROM Partsupp
GROUP BY ps

¯
partkey .

(∗)

Indeed we find the cause of the runtime bug: for ps
¯
partkey = 3, the row count is 2

(see Figure 4, bottom two rows of table Partsupp). �
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SELECT p
¯
partkey,p

¯
name,

(SELECT ps
¯
supplycost

FROM Partsupp
WHERE ps

¯
partkey = p

¯
partkey)

FROM Part

1

Fig. 2. Placing Marking 1 (via mouse dragging) to observe the suspect subquery in Query 1.

1

s0
SELECT v0.p

¯
partkey,v0.p

¯
name,[

s1

(SELECT v1.ps
¯
supplycost

FROM Partsupp AS v1
WHERE v0.p

¯
partkey = v1.ps

¯
partkey)

FROM Part AS v0

Fig. 3. The row variables v0 (bound in scope s0) and v1 (bound in s1) are made explicit in an internal variant
of Query 1.

Already for this simple example, note that the original query piece (the subquery
in Figure 1) and its modification (∗) clearly deviate. In general, it will be far from
obvious whether this manual piece extraction and editing process yields an observation
that properly reflects the relevant query semantics (here: the subquery’s row count).
Additionally, the user is asked to correctly interpret the modified query’s output.

HABITAT: Mark and Observe. Generally, it is non-trivial to turn a query’s inside
out to make its pieces observable for debugging. HABITAT’s main objective thus is to
implement a declarative debugging approach that lets users mark arbitrary suspect (or
interesting) pieces of a buggy query. A marking may comprise large query fragments
and can cut across correlated subqueries, but might also focus on just a predicate or an
individual scalar expression. Given such markings, HABITAT crafts relational queries
that let the target RDBMS itself compute the value of the suspect pieces based on
the original database instance data. Users observe and verify these values, and then
possibly narrow or widen their markings to hunt the bug in an interactive, iterative
fashion.

The debugger enables users to reassure themselves of the workings of arbitrary
small or large query pieces. The workings of a single piece are much more easily under-
stood and assessed than those of an entire complex query [Motro 1986]. In particular,
the evaluation of a given query piece may succeed (and thus be observable) while its
containing query may fail to deliver any result at all.

This second debug session tries to track down the runtime bug of Query 1 with the
help of HABITAT.
Debug Session 2 (Unexpected Runtime Error). To investigate the suspect piece, we mark
the subquery text between ( · · · ) to obtain Marking 1 (see Figure 2) and then invoke
the debugger. HABITAT’s internal operation is based on a variant of Query 1 in which
SQL row variables are introduced and referenced explicitly (Figure 3). Here, it is im-
mediate that the value of the marked subquery depends on variable v0 whose binding
site FROMPart AS v0 lies outside the subquery, (in scope s0). The value of a marked piece
can only be computed if such dependencies on enclosing scopes are resolved. HABITAT
thus constructs an observer query and evaluates it on the underlying database sys-
tem to collect the data required to observe the suspect expression side by side with its
dependencies.

HABITAT responds with a tabular display of the observation made for Marking 1
(Figure 5). We now see that, for the particular TPC-H instance of Figure 4, the marked
piece is evaluated four times under varying values (1, . . , 4) bound to v0.p

¯
partkey. For

ACM Transactions on Database Systems, Vol. V, No. N, Article A, Publication date: January YYYY.



A:4 T. Grust and J. Rittinger

Part
p

¯
partkey p

¯
name p

¯
mfgr

1 black Manufacturer#2
2 ivory Manufacturer#3
3 azure Manufacturer#1
4 steel Manufacturer#2

Partsupp
ps

¯
partkey ps

¯
suppkey ps

¯
availqty ps

¯
supplycost

1 30 5 20.00
2 10 0 10.00
3 20 1 30.00
3 30 4 10.00

Lineitem
l
¯
orderkey l

¯
linenumber l

¯
partkey l

¯
suppkey

1 1 1 30
2 1 3 20
2 2 3 30
3 1 3 20

Fig. 4. Excerpt of a sample TPC-H database instance (focus on the subset of tables, columns, and rows that
suffices to illustrate the SQL query bugs). Key columns are underlined.

1

p
¯
partkey SELECT ps

¯
su · · ·

1 ps
¯
supplycost

20.00

2 ps
¯
supplycost

10.00

3 ps
¯
supplycost

30.00
10.00

4 ps
¯
supplycost

Fig. 5. Observation made for Marking 1 .

the row v0 with v0.p
¯
partkey = 3, we observe the piece 1 to unexpectedly return two

rows in violation of SQL’s single-row cardinality constraint. Indeed, table Partsupp lists
two distinct suppliers (column ps

¯
suppkey) for this particular part v0. A possible fix

for Query 1 thus extends the subquery’s WHERE clause, restricting ps
¯
suppkey to refer to

one specific supplier. �

In a sense, markings and observations realize an intuitive “printf-style” approach
to SQL debugging. Acknowledging the relational data model, HABITAT calls on the
underlying database system itself to produce and collect the debugging output in a
table before it is presented to the user.

In the context of this work, we define language-level debugging as a process that sup-
ports all debugging activity on the level of the user-facing SQL syntax and semantics:
users mark fragments of their own SQL text and observe piece values in tabular form,
i.e. in the form defined by the relational data model itself. Users are not expected to
inspect and understand the target RDBMS’s query execution process.

Contributions. Our specific contributions are these:
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SELECT ps
¯
partkey,ps

¯
suppkey

FROM Partsuppp
WHERE ps

¯
availqty <=

(SELECT COUNT(*)
FROM Lineitem
WHERE ps

¯
partkey = l

¯
partkey

AND ps
¯
suppkey = l

¯
suppkey)

SELECT ps
¯
partkey,ps

¯
suppkey

FROM Partsupp,
(SELECT l

¯
partkey,l

¯
suppkey,

COUNT(*) AS count
FROM Lineitem
GROUP BY l

¯
partkey,l

¯
suppkey)

WHERE ps
¯
partkey = l

¯
partkey

AND ps
¯
suppkey = l

¯
suppkey

AND ps
¯
availqty <= count

ps
¯
partkey ps

¯
suppkey

2 10
3 20

6= ps
¯
partkey ps

¯
suppkey

3 20

(a) Original correct variant (Query 2). (b) Uncorrelated yet buggy variant (Query 3).

Fig. 6. Two variants of the “out of supplies” SQL query and their respective results. Outcomes differ when
evaluated against the TPC-H instance of Figure 4.

— We bring observational debugging to SQL for the first time. This enables a debug-
ging approach that fits the declarative nature of SQL whose semantics is based on
the evaluation of expressions under variable bindings (Section 2).

— We describe a new breed of SQL compiler with a focus on expression observation
rather than performance (Section 3). Users operate (i.e. mark and observe) on the
level of the syntax and semantics of SQL itself and are shielded from the complex
details of query execution.

— Building on the new SQL compiler, we implement expression observation purely in
terms of relational queries (Section 3.4). These queries are submitted to the target
database host to collect observations based on the original instance data. There is
no need for prior data extraction or preparation.

— HABITAT supports the interactive debugging of queries against large data in-
stances (Section 4). Predicates may be applied to filter instance data during debug-
ging. Alternatively, small yet representative sample data can be specifically gener-
ated for the purpose of debugging (Section 4.1).

— We built a debugger that does not depend on extra middleware or specific software
hooks: no API beyond SQL query execution—in the style of ODBC, say—is required.
(Interactive debug sessions may run remotely to minimize impact on a live target
database host.) HABITAT’s approach allows to debug expressions in their original
execution environment where observations will find the exact set of built-in and
user-defined functions specific to the target database host.

2. MARKINGS AND OBSERVATIONS
HABITAT aims to not constrain users when query text pieces are marked for observa-
tion. In general, then, markings will contain and depend on free row variables. The
binding site (FROM clause) of a free variable is not contained in the marking itself but
resides in an enclosing scope. Row variable v0 is bound in the enclosing scope s0 and
thus free in Marking 1 of Figure 3, for example.

For any marked subexpression e, HABITAT understands e as a function of its free
row variables. Under this regime, Marking 1 defines a function f 1 with

f 1 (v0) = (SELECT v1.ps
¯
supplycost

FROM Partsupp AS v1
WHERE v0.p

¯
partkey = v1.ps

¯
partkey) ,
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A:6 T. Grust and J. Rittinger

mapping rows v0 (of table Part) to tables of associated ps
¯
supplycost values. Generally, an

observation for subexpression e reflects the set-oriented semantics of SQL and contains

— the bindings of the free row variables (here: v0) under which e is evaluated, [input]
and

— the value of e for each of these bindings. [output]

HABITAT uses a straightforward tabular representation to show the input/output be-
havior of function f 1 :

Tabulation. Together, input and output constitute a tabulation of the function de-
fined by expression e. In these tabulations, we project the input onto the relevant
columns actually referenced in e.1

Figure 5 shows this tabulation for Marking 1 : the column labeled 1 indicates the
output of function f 1 , column p

¯
partkey shows its input. A debug session tracks down

those expressions for which the observed input/output behavior does not match the
query author’s expectations.

Effectively, HABITAT implements a model of the SQL semantics [Gogolla 1990] in
terms of SQL itself. To facilitate observational debugging, the model includes the bind-
ings of row variables as well as the value of any SQL subexpression under these bind-
ings. These two components of the model are represented as tabulations, i.e. relational
structures that can be built using SQL itself (meta-interpretation [Naish 1997]). The
relational database host itself can thus be used to realize the debugger.

In the following we describe another debug session to illustrate how this tabulation
principle applies to

(1) expressions of all scalar SQL data types, including expressions of type BOOLEAN,
(2) (possibly empty) table-valued subexpressions,
(3) related expressions, whose tabulations can be merged if their sets of free variables

are contained in one another, and
(4) expressions that might not be evaluated at all for specific variable bindings.

Debug Session 3 (Missing Rows after Rewrite). Again referring to the sample TPC-H
database of Figure 4, Query 2 of Figure 6(a) computes those parts for which we are
out of supply: the available quantity (column ps

¯
availqty) can not, or only barely, meet

the current demand (which we read off table Lineitem). For the sample instance, the
two parts represented by the rows with 〈ps

¯
partkey, ps

¯
suppkey〉 ∈ {〈2, 10〉 , 〈3, 20〉} are

identified to be scarce (see the table in Figure 6(a)).
Query 2 works as expected. For large database instances, however, the performance

is disappointing.2 We attribute this to the correlated aggregation carried out by the
subquery. To remedy the issue, we rewrite Query 2, trading correlation for group-
ing [Ganski and Wong 1987], and obtain Query 3 of Figure 6(b). While performance
improves significantly, we find the rewritten query to not perfectly imitate the origi-
nal: unexpectedly, part 〈2, 10〉 is not considered to be out of supply by Query 3 (see the
table in Figure 6(b)). This is a bug whose cause we try to hunt down using HABITAT.

We start the debug session with the aim to reinforce our understanding of why the
rows 〈2, 10〉 and 〈3, 20〉 have, correctly, been returned by Query 2. To do so, Marking 2

1Put differently, we obtain a tabular representation of the closures [Landin 1964] that capture the free
variables and results of all evaluations of e. (We return to this programming-language-inspired view in Sec-
tion 5.)
2Again, this is not what we consider a bug in the context of the present discussion.
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3

2


s0

SELECT v0.ps
¯
partkey,v0.ps

¯
suppkey

FROM Partsuppp AS v0
WHERE v0.ps

¯
availqty <=s1

(SELECT COUNT(*)
FROM Lineitem AS v1

WHERE v0.ps
¯
partkey = v1.l

¯
partkey

AND v0.ps
¯
suppkey = v1.l

¯
suppkey)

(a) Markings placed to observe the evaluation of the “out of sup-
ply” (· <= ·) predicate in Query 2.

4

5 6
s0

SELECT v0.ps
¯
partkey, v0.ps

¯
suppkey

FROM Partsupp AS v0,s2
(SELECT v2.l

¯
partkey,v2.l

¯
suppkey,

COUNT(*) AS count
FROM Lineitem AS v2

GROUP BY v2.l
¯
partkey,v2.l

¯
suppkey) AS v1

WHERE v0.ps
¯
partkey = v1.l

¯
partkey AND v0.ps

¯
suppkey = v1.l

¯
suppkey

AND v0.ps
¯
availqty <= v1.count

(b) A first set of subexpressions marked in Query 3.

Fig. 7. Possible markings that help track down the missing row bug (scopes s0–s2 shown here to aid the
exposition).

2 3

v0.ps
¯
partkey v0.ps

¯
suppkey v0.ps

¯
availqty COUNT(*) · <= ·

1 30 5 1 false
2 10 0 0 true
3 20 1 2 true
3 30 4 1 false

Fig. 8. Observations made for Markings 2 and 3 . The leading three columns show the projection of free
row variable v0 onto the columns actually referenced in the markings.

4 5 6

v0.ps
¯
availqty v1.count · <= · v0.ps

¯
partkey v0.ps

¯
suppkey

5 1 false
5 2 false
5 1 false
0 1 true
0 2 true
0 1 true
1 1 true
1 2 true 3 20
1 1 true
4 1 false
4 2 false
4 1 false

Fig. 9. Observations made for Markings 4 to 6 .
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is placed to observe whether the COUNT(*) aggregation computes the demand of parts
as expected (Figure 7(a)). As row variable v0 is free in the marking, this defines func-
tion f 2 (v0), mapping a part v0 to a scalar of SQL type INTEGER, the current demand
for that part. We further mark the <= predicate that embodies the “out of supply” con-
dition (Marking 3 ). Whenever this observation yields true, Query 2 has identified a
scarce part v0: its available quantity v0.ps

¯
availqty is less than or equal to the current

demand. Marking 3 thus defines a Boolean function f 3 (v0) on parts v0.
As Markings 2 and 3 depend on the same free row variable v0 (equivalently: func-

tions f 2 and f 3 share the row parameter v0), HABITAT merges the results of the as-
sociated observer queries into a single tabulation (Figure 8). More generally, HABITAT
merges observations whenever their sets of free row variables are contained in another
(here, we have {v0} ⊆ {v0}). Merging related observations in this way greatly helps
to understand the interplay of individual subexpressions in a larger query (see Ap-
pendix B).

With Marking 3 we observe the WHERE predicate to yield true two times, coinciding
with Query 2’s result cardinality of two, and understand that part 〈2, 10〉 is considered
“out of supply” because its availability (0 in column v0.ps

¯
availqty) does not exceed the

current demand (the COUNT(*) aggregate also yields 0, column 2 ).

We expect the WHERE predicate in the rewritten Query 3 to realize the “out of supply”
condition in the same fashion and place Marking 4 to observe its evaluation (Fig-
ure 7(b)). This marking defines a Boolean function f 4 (v0, v1), capturing two free vari-
ables. The additional Markings 5 and 6 in the SELECT clause, both functions of v0,
will enable us to observe the resulting parts. All three markings are related in terms
of their free row variables ({v0} ⊆ {v0} ⊆ {v0, v1}), so HABITAT prepares a merged
tabulation.

The resulting observation is telling (Figure 9). First, we see how the “out of sup-
ply” condition is evaluated against the combination of all bindings for v0 and v1.
This is a consequence of the nested loop semantics embodied by SQL FROM clauses
that feature two or more row variables [ANSI/ISO, §7.5]. Multiple bindings qual-
ify (true values in column 4 ) but only 〈v0.ps

¯
partkey, v0.ps

¯
suppkey〉 = 〈3, 20〉 appears

to make it into the final result. For all other bindings, we observe that the two
subexpressions in the SELECT clause are not evaluated at all, indicated by
in columns 5 and 6 . Those bindings—including the expected but missing bindings
with 〈v0.ps

¯
partkey, v0.ps

¯
suppkey〉 = 〈2, 10〉—must fail to satisfy the foreign key join

predicate in Query 3.
This join predicate thus is the subject of our next Marking 7 (Figure 10). The as-

sociated observation f 7 (v0, v1) shows the evaluation of the predicate against all com-
binations of v0, v1 bindings, so we let HABITAT focus the display on those bindings
that we miss (focus predicates are discussed in Section 4.1). As suspected, the row
variable bindings in focus find no join partner (Figure 11, false values in the high-
lighted rows in column 7 ). The grouping subquery appears to not generate bindings
with 〈v2.l

¯
partkey, v2.l

¯
suppkey〉 = 〈2, 10〉 at all. This is exactly what our final Marking 8

and the associated observation (Figure 12) indicates.3
Using HABITAT we have finally uncovered that the rewrite from Query 2 to Query 3

disregards the subtle semantics of grouping and aggregation over empty row sets
(GROUP BY yields no row at all whereas COUNT(*) returns 0). In fact, the rewrite in-
troduced an instance of the count bug [Kim 1982], a notorious class of bugs that went
unidentified for years before its cause and fix were described [Ganski and Wong 1987].

�

3Marking 8 is constant or closed, containing no free variables from enclosing scope s0.
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7

8


s0

SELECT v0.ps
¯
partkey,v0.ps

¯
suppkey

FROM Partsupp AS v0,s2
(SELECT v2.l

¯
partkey,v2.l

¯
suppkey,

COUNT(*) AS count
FROM Lineitem AS v2
GROUP BY v2.l

¯
partkey,v2.l

¯
suppkey) AS v1

WHERE v0.ps
¯
partkey = v1.l

¯
partkey AND v0.ps

¯
suppkey = v1.l

¯
suppkey

AND v0.ps
¯
availqty <= v1.count

Fig. 10. More suspect expressions marked in Query 3.

7

v0.ps
¯
partkey v0.ps

¯
suppkey v1.ps

¯
partkey v1.ps

¯
suppkey · AND ·

1 30 1 30 true
1 30 3 20 false
1 30 3 30 false
2 10 1 30 false
2 10 3 20 false
2 10 3 30 false
3 20 1 30 false
3 20 3 20 true
3 20 3 30 false
3 30 1 30 false
3 30 3 20 false
3 30 3 30 true

Fig. 11. Observations made for Marking 7 . Focus has been set on the bindings that satisfy the filter predi-
cate 〈v0.ps

¯
partkey, v0.ps

¯
suppkey〉 = 〈2, 10〉. Rows outside the focus are grayed out.

8

v2.l
¯
partkey v2.l

¯
suppkey count

1 30 1
3 20 2
3 30 1

Fig. 12. A closed observation in Query 3. The expected row with 〈v2.l
¯
partkey, v2.l

¯
suppkey〉 = 〈2, 10〉 is

missing.
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RDBMS

FS

parse
tree

SEL· · · v0.a > 42

FS

P

SEL· · · v0.a > 42

P P

o i v0.a ··>··
.
.
.
.
.
.

.

.

.
.
.
.

SELECT v0.a,v0.b
FROM T AS v0

WHERE v0.a > 42
(1)

SELECT v0.a,v0.b
FROM T AS v0

WHERE v0.a > 42

v0.a ··>··
.
.
.

.

.

.

H
A

B
IT

A
T

fr
on

t-
en

d
ta
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et

(2)

(3)

(4)

(5) (6)

(7)

(8)

(9)

Fig. 13. From marking to observation: sketch of HABITAT’s debugging procedure. Users see the front-end
layer only and thus operate on the SQL language level. The RDBMS host itself is the debugging target.

3. COMPILING SQL FOR OBSERVATION
We now turn to the internals of the HABITAT debugger and to its special-purpose SQL
compiler in particular. Figure 13 provides an overview of the stages and represen-
tations involved. The flow from marking to observation could be sketched as follows
(numbers in parentheses refer to Figure 13):

(1) Using the debugger’s front-end, the user marks an arbitrary query piece for ob-
servation. (2) The debugger creates the parse tree for the query, then (3) identifies and
(4) indicates the minimal complete SQL subexpression that contains the marking, in
this case the predicate P: v0.a > 42. (5) HABITAT invokes its built-in SQL compiler to
obtain an algebraic representation of the input query in which all of the query’s subex-
pressions are represented explicitly. (6) The particular plan fragment associated with
the marked predicate P is identified. (7) The isolated fragment (observer query) is com-
piled into SQL code and then shipped to the target RDBMS for evaluation. (8) This
evaluation yields observation data in tabular form which is then (9) rendered to dis-
play the final tabulation.

3.1. Syntactic Completion
An observation originates in a marking, i.e. a user-defined continuous sequence or
block of characters identifying an arbitrary piece of SQL text. HABITAT consults a
context-free SQL grammar to extend this piece to the minimal syntactically complete
subexpression that encloses the piece. Figure 14 shows a grammar that accepts the
SQL dialect considered in this article. Note that this grammar has been cut down
to aid the exposition—any standard grammar that reflects SQL’s expression-oriented
syntax will do, however.

Observable SQL Subexpression.. While non-terminal FS, defining a SQL fullse-
lect [ANSI/ISO, §7.11], is the start symbol of this grammar, any subexpression that
is derivable from a non-terminal in {FS, SC, P, TBL} is considered observable by the
debugger.

Non-terminal SC, for example, derives any scalar SQL expression, ranging from paren-
thesized fullselects to individual column references or literals.

The syntactic completion of a marked query text piece originates in the parse tree
leaf nodes that intersect the marking. The leaves’ lowest common ancestor node in the
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Observing SQL Queries in their Natural Habitat A:11

FS ::= SELECT SC AS ID,. .,SC AS ID
FROM TBL,. .,TBL
WHERE P ]
GROUP BY COL,. .,COL
HAVING P ]]
ORDER BY SC,. .,SC ]

fullselects
table access

[ row filter
[ grouping
[ group filter
[ ordering

SC ::= COL | 〈SQL literal〉 scalars
| SC + SC | SC * SC | · · · | ID(SC) application
| CASE WHEN P THEN SC ELSE SC END conditional
| COUNT(*) | COUNT(SC) | MAX(SC) | · · · aggregates
| (FS) scalar subquery

P ::= P AND P | P OR P | NOT P | (P) predicates
| SC CMP SC comparison
| SC [NOT] IN (FS) membership
| EXISTS(FS) emptiness
| SC CMP ALL (FS) | SC CMP ANY (FS) quantification

TBL ::= ID(ID,. .,ID) [AS ID] tables
| (FS) AS ID table subquery

CMP ::= < | <= | = | >= | > | <> comparison operators

COL ::= ID[.ID] column references

ID ::= 〈SQL identifier〉 identifiers

Fig. 14. SQL fragment considered in this article. Any SQL subexpression derivable from the non-terminals
FS, SC, P, or TBL may be observed by the HABITAT debugger.

set {FS, SC, P, TBL} defines the subexpression that will be observed by HABITAT. For
example, marking the piece “<= v1.count” in the text of Query 3 (Figure 7(b)) identi-
fies the gray parse tree leaves in Figure 15. A search for the lowest common ancestor
yields non-terminal P, representing the syntactically complete predicate “v0.ps

¯
availqty

<= v1.count” (Marking 4 of Figure 7(b)).

3.2. Observer Queries
HABITAT’s core is an original, strictly syntax-directed and compositional algebraic SQL
compiler that has been designed to support subexpression observation. The compiler
implements a separate custom translation rule for every SQL subexpression kind (from
entire fullselect blocks to syntactic atoms, like literals or column references). A trans-
lation rule emits a fragment of algebraic plan code. The translation for a composite
expression is built from the translations of the contained subexpressions. Most im-
portantly, the emitted plan fragment for any observable SQL subexpression may be
sensibly understood and evaluated on its own.

Observer query. As a consequence of this compilation scheme, each observable SQL
subexpression e identifies an algebraic operator in the final complete plan code. This
operator and its upstream sub-plan define the observer query for e.

Intermediate Table Algebra. Observer queries are expressed in a simple table algebra
dialect (Table I). This dialect has been designed to reflect the query capabilities of off-
the-shelf relational database engines. The simple semantics of its algebraic primitives
facilitate the generation of executable SQL code (see Section 3.4), which HABITAT sub-
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A:12 T. Grust and J. Rittinger

P

SC

COL

ID

v0

. ID

ps
¯
availqty

CMP

<=

SC

COL

ID

v1

. ID

count

Fig. 15. Snippet of the parse tree for Query 3 (see Figure 7(b)) representing the SQL predicate
“v0.ps

¯
availqty <= v1.count”.

Table I. Primitives of the intermediate algebraic language, with aggregation agg ∈
{count, sum, max, min, avg, any, . .}, built-in function f ∈ {+, -, =, <, . .}.

Primitive Semantics

πa1:b1,..,an:bn project onto columns bi, rename column bi into ai
@a:v attach column a containing constant value v
λ a:f〈b1,..,bn〉 apply n-ary scalar function f , attach result in column a

σp eliminate rows that fail to satisfy predicate p
1a , × equi-join on column a, Cartesian product
·∪ , \ disjoint union, difference

δ eliminate duplicate rows
agga:〈b〉/c group rows by c, then attach aggregate of b in column a
#a:〈b1,..,bn〉 attach row number in b1, . . , bn order in column a
#a attach arbitrary (yet deterministic) row identifier in column a
%a:〈b1,..,bn〉 attach row rank in b1, . . , bn order in column a

t access rows in table t

mits to the target RDBMS to collect the required observation data. Notable primitives
are the following:

— The binary primitive t1 1a t2 performs the natural join of its input tables t1,2 (their
common column a is indicated for clarity).

— Unary primitive λ a:f〈b1,..,bn〉(t) maps the n-ary function f over its input table t,
supplying the contents of columns b1, . . , bn as parameters to f (f needs to be a built-
in function, i.e. the algebra is not higher-order). The function result is attached in
the new column a. @a:v(t) serves as a shorthand if a nullary function (constant) v is
applied.

— Unary primitive # denotes SQL:1999’s OLAP amendment function ROW_NUMBER():
#a:〈b1,...,bn〉 is ROW_NUMBER() OVER (ORDER BY b1,. . . ,bn) AS a. Likewise, operator % de-
notes SQL:1999’s RANK(). In absence of ordering criteria, #a simply attaches arbi-
trary row identifiers in column a (SQL: RID()).

— The elimination of duplicate rows in table t is made explicit in terms of δ(t).

HABITAT’s compilation strategy revolves around the tabular representation of row
variable bindings (inputs, see Section 2) and the value of subexpressions under these
bindings (output). We address both in turn.

Row Variable Bindings (Input). Preliminarily, define the single-row single-column ta-
ble 1 ≡ i

1 and define function

LIFT(t1, t2) ≡ #i

(
πo:i,cols(t1)−{i}(t1)× t2

)
,

where t1, t2 denote expressions of the table algebra and cols(t) denotes the column set
(or schema) of table t.
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Observing SQL Queries in their Natural Habitat A:13

o i v0.p
¯
partkey v0.

1 1 1
1 2 2
1 3 3
1 4 4

Fig. 16. Tabular representation of values bound to row variable v0 in scope s0 of Query 1 (only column
p
¯
partkey shown here). (qv0 )

In SQL, a clause FROM e0 AS v0 is the only site that introduces row variables: each row
of the source expression e0 (table or subquery) creates one binding for the new row
variable v0. For a row variable v0 bound in a top-level FROM clause (i.e. those located
in scope s0 in Queries 1 to 3), HABITAT’s compiler emits the following fragment qv0 of
algebra code to represent these bindings:

qv0 ≡ LIFT(1, e0) = #i

(
πo:i(1)× e0

)
.

To demonstrate: if e0 is table Part of Figure 4, then qv0 computes the table of Figure 16.
HABITAT uses this table to encode the iterative SQL semantics: subexpressions in the
scope of v0 will be evaluated 4 times; the row 〈1, i, xi, . . . 〉, 1 6 i 6 4, indicates that
v0.p

¯
partkey will be bound to value xi in the ith iteration.

The introduction of further row variables follows the well-known nested-loop seman-
tics of SQL. Assume an additional binding site FROM e1 AS v1 that resides in a subquery
block. Subexpressions in the scope of v1 may refer to v0 as well as v1 and are evalu-
ated under all combinations of v0, v1 bindings. Again, LIFT computes the corresponding
table qv1 of row variable bindings:

qv1 ≡ LIFT(qv0 , e1) = LIFT(LIFT(1, e0), e1) .

Figure 17(a) depicts the resulting table of bindings if we apply this lifting scheme to the
row variables v0 and v1 introduced by FROMPart AS v0 and FROMPartsupp AS v1 in Query 1:
as required, subexpressions in scope s1 (see Figure 3) will be iteratively evaluated
under 4 · 4 = 16 bindings.

Such binding tables are invariantly wrapped by two leading columns o|i:
Invariant o|i. A pair 〈o, i〉 in columns o|i indicates that row variables from the en-
closing (outer) scope assume their oth binding while the subexpressions in the cur-
rent (inner) scope are evaluated for the ith time.

These o|i wrappers help to relate observations made in adjacent scopes of the debugged
query. Observations made in non-adjacent scopes may be transitively related in terms
of the o|i wrappers of their intermediary scopes. Appendix B includes details on how
a sequence of joins on the columns o|i can be used to construct a coherent display of
observations that span multiple scopes.

Value of SQL Subexpressions under Row Variable Bindings (Output). Variable bindings
make for the input half of an observation. An observer query refers to the bindings
tables to complete the tabulation and adds the output half: for each row of bindings,
the observer query evaluates its subexpression e and attaches the computed value to
that row.

Figure 17 exemplifies an observation for the predicate subexpression e ≡
v0.p

¯
partkey = v1.ps

¯
partkey of Query 1. The output half of Figure 17(b) is a table of

16 Boolean values resulting from the evaluation of the predicate under 16 bindings
for v0 and v1 provided by the input half of Figure 17(a). The debugger then uses the
complete tabulation, made up of both halves, to produce its output.
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o i v0.p
¯
partkey v1.ps

¯
partkey v1.x

1 1 1 1
1 2 1 2
1 3 1 3
1 4 1 3
2 5 2 1
2 6 2 2
2 7 2 3
2 8 2 3
3 9 3 1
3 10 3 2
3 11 3 3
3 12 3 3
4 13 4 1
4 14 4 2
4 15 4 3
4 16 4 3

(a) Input: Values bound to row variables v0,v1 once
scope s1 has been entered. (qv1 )

c
true
false
false
false
false
true
false
false
false
false
true
true
false
false
false
false

(b) Output: 4 ·4 = 16 evaluations
of the subexpression.

Fig. 17. Assembly of an observation: o|i wrapper, variable bindings for v0, v1 in Query 1, and the value of
the observed subexpression v0.p

¯
partkey = v1.ps

¯
partkey under these bindings.

Observer Query Construction Illustrated. Before we comment on details of HABITAT’s SQL
compiler in Section 3.3, let us gain a better intuition of compilation and observer query
construction. To this end, let e denote the flawed Query 1 of Figure 2 in which all
10 observable SQL subexpressions have been marked by 1 and a through i :4

e ≡

a SELECT p
¯
partkey b ,p

¯
name c ,

( 1 SELECT ps
¯
supplycost d

FROM Partsupp e

WHERE ps
¯
partkey f = g p

¯
partkey h)

FROM Part i

(for example, i marks the reference to base table Part, d marks the reference to col-
umn ps

¯
supplycost, g marks the equality predicate whose observation we have dis-

cussed in Figure 17, whereas a and 1 mark the associated fullselect blocks; Mark-
ing 1 has been discussed in Debug Session 2).

HABITAT compiles query e and obtains the algebraic plan of Figure 18. The unusual
plan shape results from the strictly syntax-directed compilation strategy: each of the
observable SQL subexpression identifies an algebraic operator in the plan—see the
10 annotations ( ) in Figure 18 that correspond to the just mentioned 10 observable
subexpressions.

To obtain debugger output for a given subexpression marked x ,

(1) extract its observer query root (identified by x in the plan) and its upstream
plan fragment,

(2) generate SQL code for the extracted plan fragment (see Section 3.4),
(3) evaluate the generated SQL code on the target host to obtain the tabulation for x ,

then
(4) render the final observation display (details in Appendix B).

In the plan of Figure 18, note that all rows (or: bindings) read from the two input
tables Part and Partsupp are extended with an (arbitrary) row identifier in column i0

4For clarity, here we omit the boxes that otherwise delineate individual markings.

ACM Transactions on Database Systems, Vol. V, No. N, Article A, Publication date: January YYYY.



Observing SQL Queries in their Natural Habitat A:15

i
1

πo:iπo:i,i0:i #i0

Part

×
#i:〈o,i0〉

πo,i,v0.p
¯
partkey:Part.p

¯
partkey,

v0.p
¯
name:Part.p

¯
name

1o

#i1:〈i0,i〉

πo,i:i1,v0.p
¯
partkey,

v0.p
¯
name

πo:i,i0:i πo:i

×
#i0

Partsupp

#i:〈o,i0〉

πo,i,v1.ps
¯
partkey:Partsupp.ps

¯
partkey,

v1.ps
¯
suppkey:Partsupp.ps

¯
suppkey,

v1.ps
¯
availqty:Partsupp.ps

¯
availqty,

v1.ps
¯
supplycost:Partsupp.ps

¯
supplycost

1o

#i1:〈i0,i〉

πo,i:i1,v1.ps
¯
partkey,

v1.ps
¯
suppkey,

v1.ps
¯
availqty,

v1.ps
¯
supplycost

1o

πo:i,v0.p
¯
partkey,

v0.p
¯
name

λ c: =〈v0.p
¯
partkey,v1.ps

¯
partkey〉

σc=true

πo,i, .ps
¯
supplycost:v1.ps

¯
supplycost

πi:o, .ps
¯
supplycost

1i

πo,i, .p
¯
partkey:v0.p

¯
partkey,

.p
¯
name:v0.p

¯
name,

.ps
¯
supplycost: .ps

¯
supplycost

i

e

hf

g

d1

cba

Fig. 18. 1 and a – i indicate the 10 observer query roots for all observable SQL subexpressions in Query 1.
To illustrate: the execution of the plan fragment marked is not required to make the observation at g .

(via #i0 ). The immediate downstream Cartesian products (×) implement the nested-
loop semantics of SQL by multiplying the incoming bindings with those bindings con-
tributed by enclosing scopes (cf. the definition of LIFT). Because the clause FROM Part
appears at the query top-level, its rows are multiplied (lifted) with table 1—effectively,
this indicates that there is no enclosing scope. The bindings contributed by tables Part
(row variable v0) and Partsupp (variable v1), now properly wrapped by o|i columns, are
observable at i and e , respectively.

At f h , a natural join 1o is used to relate the bindings contributed by the top-level
scope and the subquery’s nested scope. From here on, we may observe the variables v0,
v1 in the context of the subquery and can evaluate subexpressions that refer to both
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variables. One such subexpression is the predicate v0.p
¯
partkey = v1.ps

¯
partkey. At g ,

its value is computed by the application λ c: =〈··· 〉 and attached to the binding table. We
exactly obtain the tabulation of Figure 17. Finally, the top-level fullselect block a and
the subexpressions of its SELECT clause b c are observable at the plan root.

To support observation, HABITAT’s translation strategy deviates from techniques em-
ployed in off-the-shelf SQL compilers. Consider:

— At operator g , the Boolean value of the predicate v0.p
¯
partkey = v1.ps

¯
partkey is

made available for observation. Actual row filtering only happens later in the down-
stream plan (via σc=true). An off-the-shelf SQL compiler will merge predicate evalu-
ation and filtering.

— A typical SQL compiler will translate query e into a single equi-join between base
tables Part and Partsupp. Neither the two input legs nor the output of this join would
represent the result of the correlated subquery block. However, with HABITAT, the
block’s result becomes observable at operator 1 .

3.3. HABITAT’s SQL Compiler
HABITAT comes with its own SQL compiler that has been designed to support obser-
vational debugging for a given input query. Each subexpression of this query is trans-
lated into its associated observer query—taken together, these observer queries form
an algebraic plan for the entire input query (cf. the plan of Figure 18).

The SQL compiler is specified in terms of inference rules (Figure 19) which collec-
tively define function −−Z⇒. Read (cs, q), gs ` e −−Z⇒ (cs ′, q ′) as (gs addresses grouping, see
below; assume gs = ∅ for now):

— given algebraic query q that computes a table whose column set cs hold the bindings
of in-scope row variables, [input]

— construct an algebraic query q′ that computes a table whose column set cs ′ hold the
result of the evaluations of SQL subexpression e under the provided row variable
bindings. [output]

Compilation starts out with the input query’s top-level fullselect block expression
(no row variable bindings exist): HABITAT invokes

(∅,1),∅ ` SELECT · · · FROM · · · −−Z⇒ (cs ′, q′) .

The translation of each supported SQL syntactic language construct, from fullselect
block to scalar literal, is defined in terms of the construct’s custom inference rule. For a
composite expression e, the rule’s antecedent recursively invokes function−−Z⇒ to compile
the subexpressions of e in a compositional, bottom-up fashion. Variant 7→ (Figure 20)
is invoked to compile scalar subexpressions. Auxiliary function Z⇒ (Figure 21) com-
piles single-row or scalar fullselects that appear in place of a scalar expression [AN-
SI/ISO, §7.14]. The rule’s consequent constructs a fragment of algebraic plan code
that evaluates to a table wrapped in leading o|i columns. The final plan q′ will incor-
porate the plan fragments for all observable subexpressions of the input query. Ap-
pendix A illustrates how these compilation rules cooperate to infer the algebraic plan
for SQL Query 1 (of Figure 1 and under discussion in Section 3.2). The resulting plan
is that of Figure 18.

Rule () of Figure 19 is invoked for each base table reference in a FROM clause. The
consequent realizes row variable lifting as introduced above, seeding wrapper column i
with physical row identifiers (using #i0 ) such that observations encounter the base
table’s rows in a deterministic (yet arbitrary) order.
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FS-SFWGHO

FROM

(cs, q), gs ` FROM e2,1,e2,2,. . −−Z⇒ (cs2, q2)
cs ′2 ≡ cs2 + cs q′2 ≡ q2 1o πo:i,cs(q)

WHERE
(cs ′2, q

′
2), gs ` e3 7→ (c3, q3)
q′3 ≡ σc3=true(q3)

q′3 ≡ q′2 ���XXXWHERE

GROUP BY

g ≡ fresh() cs4 ≡ {t1.c1, t2.c2, . .} − cs q4 ≡ %g:〈o,cs4〉(q
′
3)

q′4 ≡ δ(πo,i:g,cs4(q4)) 1o πo:i,cs(q)
cs ′4 ≡ cs4 + cs q′′4 ≡ πo:g,i,cs2(q4) gs ′ ≡ {(cs2, q′′4 )}

cs ′4 ≡ cs ′2 ���XXXGROUP BY

HAVING
(cs ′4, q

′
4), gs

′ ` e5 7→ (c5, q5)
q′5 ≡ σc5=true(q5) gs ′′ ≡ {(cs2, q′′4 1o πo:i(q

′
5))}

q ′5 ≡ q ′3 gs ′′ ≡ ∅ ��XXHAVING

SELECT (cs ′4, q
′
5), gs

′′ ` SELECT e1,1 AS a1,e1,2 AS a2,. . −−Z⇒ (cs1, q1)

ORDER BY (cs1, q1), gs ` ORDER BY e6,1,e6,2,. . −−Z⇒ (cs6, q6) cs6 ≡ cs1 q6 ≡ q1 ���XXXORDER BY

(cs, q), gs `

SELECT e1,1 AS a1,e1,2 AS a2,. .
FROM e2,1,e2,2,. .

[ WHERE e3 ]
[ GROUP BY t1.c1,t2.c2,. .
[ HAVING e5 ]]
[ ORDER BY e6,1,e6,2,. . ]

−−Z⇒ (cs6, πo,i,cs6(q6))

()

FS-SELECT
cs0 ≡ ∅ ps0 ≡ ∅

(cs, qi−1), gs ` ei Z⇒ (ci, qi)
csi ≡ csi−1 + {_.ai}

psi ≡ psi−1 + {_.ai:ci}

∣∣∣∣∣
i=1,..,n

(cs, q0), gs ` SELECT e1 AS a1,. .,en AS an
−−Z⇒
(
csn, πo,i,psn(qn)

) ()

FS-FROM
cs ′0 ≡ ∅ q′0 ≡ πo:i,i0:i(q)

(cs, q), gs ` ei −−Z⇒ (csi, qi)
cs ′i ≡ cs ′i−1 + csi

q′i ≡ πo,ii,cs′i(#ii:〈ii−1,i〉(q
′
i−1 1o qi))

∣∣∣∣∣∣
i=1,..,n

(cs, q), gs ` FROM e1,. .,en
−−Z⇒ (cs ′n, πo,i:in,cs′n(q

′
n))

()

FS-ALIAS
cs0 ≡ ∅ ps0 ≡ ∅

(cs, q), gs ` e1 −−Z⇒ ({v.c1, . . , v.cn}, q1)
csi ≡ csi−1 + {t.ci}

psi ≡ psi−1 + {t.ci:v.ci}

∣∣∣∣
i=1,..,n

(cs, q), gs ` e1 AS t −−Z⇒
(
csn, πo,i,psn(q1)

) ()
FS-TABLE
q′0 ≡ #i:〈o,i0〉(πo:i(q)× #i0( t))

(cs, q), gs ` t(c1,. .,cn)
−−Z⇒
(
{t.c1, . . , t.cn}, q′0

) ()

FS-ORDER
(cs, qi−1), gs ` ei Z⇒ (ci, qi)

∣∣
i=1,..,n

(cs, q0), gs ` ORDER BY e1,. .,en
−−Z⇒ ({c1, . . , cn} ∪ cs, πo,i,c1,..,cn,cs(qn)))

()

Fig. 19. Definition of −−Z⇒: compositional compilation of SQL fullselects. Calls on Z⇒ and 7→. Entry point
is Rule (). The���XXXWHERE side of the antecedent is to be used if the input query lacks a WHERE clause (likewise
for GROUP BY, HAVING, and ORDER BY). fresh() returns a new, yet arbitrary, column name on each invocation.
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SC-VAL
c ≡ fresh()

(cs, q), gs ` val 7→ (c, @c:val(q))
()

SC-COL

(cs, q), gs ` t.c 7→ (t.c, q)
()

SC-APPLY
(cs, qi−1), gs ` ei Z⇒ (ci, qi)

∣∣
i=1,..,n

c ≡ fresh()

built-in n-ary scalar SQL function/operator f
(cs, q0), gs ` f(e1, . . , en) 7→

(
c, λ c:f〈c1,..,cn〉(qn)

) ()

SC-CASE
(cs, q), gs ` e1 7→ (c1, q1) c ≡ fresh()

(cs, σc1=true(q1)), gs ` e2 Z⇒ (c2, q2)
(cs, σc1=false(q1)), gs ` e3 Z⇒ (c3, q3)

(cs, q), gs ` CASE WHEN e1 THEN e2 ELSE e3 END
7→
(
c, πcols(q),c(q 1i (πi,c:c2(q2) ·∪ πi,c:c3(q3)))

) ()
SC-COUNT

c ≡ fresh() q0 ≡ countc:〈〉/o(qg)

(cs, q), {(csg, qg)} ` COUNT(*)
7→ (c, q 1i πi:o,c(q0 ·∪ (@c:0(πo:i(q) \ πo(q0))))

()

SC-AGG
AGG ∈ {COUNT, SUM, MAX, MIN, AVG}

(csg, qg),∅ ` e1 Z⇒ (c1, q1)
c ≡ fresh() q0 ≡ aggc:〈c1〉/o(q1)

(cs, q), {(csg, qg)} ` AGG(e1)
7→ (c, q 1i πi:o,c(q0 ·∪ (@c:null(πo:i(q) \ πo(q0))))

()

SC-IN
(cs, q), gs ` e1 Z⇒ (c1, q1) (cs, q), gs ` e2 −−Z⇒ ({c2}, q2)
c ≡ fresh() q0 ≡ anyc:〈c〉/o( λ c: =〈c1,c2〉(πo:i,c1(q1) 1o q2))

(cs, q), gs ` e1 IN e2
7→ (c, q 1i πi:o,c(q0 ·∪ @c:false(πo:i(q) \ πo(q0)))

()

SC-EXISTS
(cs, q), gs ` e −−Z⇒ (cs1, q1)

c ≡ fresh() q0 ≡ δ(πo(q1))
(cs, q), gs ` EXISTS(e1)

7→ (c, q 1i πi:o,c(@c:true(q0) ·∪ @c:false(πo:i(q) \ q0)))

()

Fig. 20. Definition of 7→. Compiles scalar SQL expressions (includes operator/function application, aggrega-
tion, and predicates). Note: Rules () and () compile aggregates under the bindings (csg , qg) provided by
an associated GROUP BY clause.

SC-FS

fullselect(e) (cs, q), gs ` e −−Z⇒ ({c}, q0)
(cs, q), gs ` (e) Z⇒ (c, q 1i πi:o,c(q0))

()

SC-SC

¬fullselect(e) (cs, q), gs ` e 7→ (c, q0)

(cs, q), gs ` e Z⇒ (c, q0)
()

Fig. 21. Definition of auxiliary function Z⇒. Enables the use of scalar and row subqueries in place of SQL
scalar expressions. fullselect(e) is true iff expression e constitutes a SQL fullselect [ANSI/ISO, § 7.11].
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Rule () translates a SELECT clause. The clause’s subexpressions e1, . . . , en are recur-
sively translated in reference to query q0 which provides a binding table for all free
variables used by the subexpressions. Besides the pervasive o|i wrapper, the resulting
table has n columns (whose names are collected in the set psn) containing the values
of e1, . . . , en under the bindings provided by q0.

Rule () embodies the application of an arbitrary n-ary scalar SQL function f (built-
in or user-defined). When the observer query is executed, the target database host will
call f with the required list of parameters and attach the result in column c.

Finally, grouping affects variable binding: after GROUP BY, row variables assume one
binding per group formed. Rule () makes these new bindings available in table gs ′′:
the rows of a group share a common value o in column o, which identifies such a set of
rows as the oth binding—see the Invariant o|i above. Table gs ′′ is passed to −−Z⇒ when the
function is invoked to compile aggregates in the SELECT clause (see Rules () and ()
in Figure 20).

3.4. Generating SQL Target Code
Observer queries are to be executed on the target database host itself: HABITAT thus
translates an observer query’s algebraic plan fragment (see Section 3.2) into regular
SQL:1999 statements. We note that the plan fragment may be subjected to regular
query simplification and optimization before code generation starts. A simple, yet us-
able, SQL code generator is obtained as follows:

(1) Perform a postorder walk of the plan fragment from the base tables up to the ob-
server query root, applying a straightforward primitive-by-primitive translation to
SQL.

(2) Assemble the resulting SQL fragments via SQL’s common table expression con-
struct WITH [ANSI/ISO, §7.12] to form a single executable statement.

A variant of this procedure that performs basic algebraic simplifications (see Section 4)
and then greedily collects multiple primitives to form a single SQL statement can gen-
erate compact SQL code [Grust et al. 2007a].

Figure 22 lists the SQL code generated for the observer query of Marking 3 (Query 2,
Figure 7(a)). A closer look elucidates HABITAT’s strategy. The function to tabulate is

f 3 (v0) = v0.ps
¯
availqty <= (SELECT COUNT(*)

FROM Lineitem AS v1
WHERE v0.ps

¯
partkey = v1.l

¯
partkey

AND v0.ps
¯
suppkey = v1.l

¯
suppkey) .

Function f 3 (v0) needs to be evaluated for all bindings of parameter v0. A consequence
of compositional compilation, the values of the subexpression v0.ps

¯
availqty and the

nested fullselect block in (· · ·) are computed separately in tables t0 and t3 (with t1,
t2), respectively. The final query block in lines 27 to 35 of Figure 22 ties both interme-
diate results together to evaluate the comparison (<=) of both subexpressions. The join
on column i (line 34) guarantees that intermediate results corresponding to the same
binding of v0 are compared. In effect, Query 2 has been turned “inside out” (cf. Sec-
tion 1): the comparison subexpression (<=) now appears at the observer query top-level
and thus becomes observable.

A few further notes on fragments of the generated SQL code:

t0: The bindings of v0 are supplied by table t0 in which the rows of table Partsupp
have been projected onto the columns (ps

¯
partkey, ps

¯
suppkey, ps

¯
availqty) relevant

for observation. Column i attaches an (arbitrary) row identifier to identify the
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1 WITH
2 t0 (ps_partkey,ps_suppkey,ps_availqty,o,i)
3 AS (SELECT Partsupp.ps_partkey,
4 Partsupp.ps_suppkey,
5 Partsupp.ps_availqty,
6 1 as o,
7 RID(Partsupp) AS i
8 FROM Partsupp),
9

10 t1 (c,o)
11 AS (SELECT COUNT(*) AS c, t0.i AS o
12 FROM t0, Lineitem
13 WHERE t0.ps_partkey = Lineitem.l_partkey
14 AND t0.ps_suppkey = Lineitem.l_suppkey
15 GROUP BY t0.i),
16

17 t2 (o)
18 AS (SELECT t0.i AS o FROM t0
19 EXCEPT ALL
20 SELECT t1.o FROM t1),
21

22 t3 (c,o)
23 AS (SELECT t1.c, t1.o FROM t1
24 UNION ALL
25 SELECT 0 AS c, t2.o FROM t2)
26

27 SELECT t0.ps_partkey,
28 t0.ps_suppkey,
29 t0.ps_availqty,
30 CASE WHEN t0.ps_availqty <= t3.c
31 THEN ’true’ ELSE ’false’ END AS "· <= ·",
32 t0.o, t0.i
33 FROM t0, t3
34 WHERE t0.i = t3.o
35 ORDER BY o, i;

Fig. 22. SQL target code generated for the observer query of Marking 3 (Figure 7(a)). The evaluation of the
“out of supply” (· <= ·) predicate now happens at the query top-level (see line 30).
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Table II. A quantification of the performance impact of HABITAT’s closure-based
SQL compilation strategy. Query timings (wall-clock execution time, in seconds).

Query SF1 (1 GB) SF10 (10 GB)
original HABITAT original HABITAT

# rows (s) (s) # rows (s) (s)

Q1 4 18.20 18.92 4 184.29 195.34
Q2 100 0.04 0.02 100 0.48 0.21
Q3 10 5.43 5.54 10 98.69 101.65
Q4 5 4.43 4.65 5 99.29 101.27
Q5 5 1.08 1.20 5 23.10 26.10
Q6 1 0.71 0.66 1 13.59 13.04
Q7 4 0.48 0.51 4 7.25 7.39
Q8 2 0.29 0.29 2 5.09 5.08
Q9 175 2.86 2.87 175 76.66 78.19
Q10 10 1.07 1.13 10 24.86 26.60
Q11 1,048 0.19 0.37 8,685 2.28 4.14
Q12 2 0.33 0.47 2 5.03 9.01
Q13 42 3.25 3.57 46 45.41 49.49
Q14 1 0.19 0.20 1 2.26 2.28

individual bindings. The value of subexpression v0.ps
¯
availqty can be directly

read off t0.
t1: Since v0 is free in the parenthesized nested fullselect block, a Cartesian product

with t0 is performed (line 12) to supply the bindings required for evaluation.
Grouping by column i evaluates the COUNT(*) aggregate for each binding sepa-
rately.

t2/t3: Table t1 will lack entries for those bindings that fail to satisfy the join predicate
in lines 13 and 14. To properly capture the semantics of COUNT(*) in f 3 (v0),
table t2 identifies these bindings. The definition of table t3 then uses t2 to add
the expected aggregate result of 0 (line 25). [See Rule () in Figure 20.]

4. INTERACTIVE DEBUGGING
Observational debugging is an interactive process. A user’s first guess of which piece
will provide insight into the behavior of a buggy query is sufficient to start a debug
session. Nonetheless, for more complex queries or subtle bugs, a typical session will re-
peatedly zoom into suspect query pieces and then out again. HABITAT’s non-standard
SQL compiler has not been primarily designed for performance. The explicit support
for expression observation requires the construction of algebraic plans that evaluate
expressions and produce the associated bindings of free row variables. Because it is to
be expected that this overhead affects query execution performance, in the following
we try to quantify HABITAT’s actual runtime impact.

The price of compositionality. We translated the queries Q1 to Q14 of the TPC-H bench-
mark [Transaction Processing Performance Council] using HABITAT’s compiler (func-
tion −−Z⇒, Section 3). The resulting algebraic plans thus explicitly compute the value of
every subexpression as well as the associated free variable bindings (cf. Figure 18). In
the experiment, we thus chose to observe the top-level fullselect block, i.e. observer
query root and plan root coincide. (We discuss the observation of non-top-level expres-
sions below.) Under this setup, the experiment assesses how well the system can cope
with the overhead of HABITAT’s unusual explicit compositional mode of compilation:
in comparison with a classical SQL compiler, plan size is larger and plan shape is tall:
join operations do not cluster in a join tree but appear distributed all over the plan
(recall Figure 18).
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Fig. 23. Relative execution times of debug-able queries ( =̂ SF1, =̂ SF10).

Experimental setup. All plans were then fed into a greedy SQL code generator that fol-
lows the principles described in [Grust et al. 2007a]. We executed the generated SQL
statements against two vanilla TPC-H database instances of scale factor SF ∈ {1, 10}.
Both instances were hosted by an IBM DB2 V9.7 database system, running on a con-
temporary Linux 2.6 host equipped with a 3.2 GHz Intel XeonTM CPU addressing 8 GB
of primary and SCSI-based secondary disk memory. The wall-clock execution times
of the original TPC-H queries, executed as-is as specified by the benchmark, provide
the performance baseline for the comparison of Table II. All timings were measured
under the index configuration suggested by IBM DB2’s index advisor db2advis once it
had been exposed to the original TPC-H workload. No HABITAT-specific adaptations
were made. Queries were executed with warm caches, modeling the state of the system
during an ongoing debug session: we performed 11 runs for each query and report the
average timings of the last 10 runs.

Discussion. Figure 23 reports on HABITAT’s relative performance impact in this sce-
nario. A mark on the line labeled “2” indicates that the use of HABITAT’s SQL
compiler leads to doubled query execution times, for example. We generally saw only
modest increases in query execution time. HABITAT’s low overhead is primarily due
to the fact that already very basic plan simplifications built into the SQL code gen-
erator succeeded in reducing plan size and complexity. One such simplification im-
plements the removal of unused columns. To illustrate, consider the operator pair
λc: =〈v0.p

¯
partkey,v1.ps

¯
partkey〉 1o at g in the plan of Figure 18. The role of the join 1o is to

perform the required multiplication of bindings for row variables v0 and v1 in Query 1.
The effective size of the join result would thus be that of the Cartesian product of
tables Part and Partsupp. Atop this join, compositional compilation has placed opera-
tor λ c: =〈··· 〉 to attach column c whose contents permit the observation of the equality
predicate v0.p

¯
partkey = v1.ps

¯
partkey (Rule () of Figure 20). In the current experi-

ment, the predicate is not under observation, however, and beyond the subsequent
selection σc=true, column c is not referenced in the downstream plan. Code generation
thus collapsed the three operators into the single θ-join 1o∧ v0.p

¯
partkey = v1.ps

¯
partkey. This

predicate pushdown effectively saved the query processor from evaluating the costly
multiplication of bindings just mentioned. The resulting θ-join is close to what an off-
the-shelf SQL compiler would have planned for this query.
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The presence of ROW_NUMBER() OVER (ORDER BY . . . ) in the generated SQL code (see Sec-
tion 3) negatively impacts query execution time. We saw this for queries Q10 and Q11
that clearly suffer from the sorting overhead that comes with this ordered variant
of row numbering. What, then, explains HABITAT’s surprising performance advan-
tage for TPC-H query Q2? The original formulation of this TPC-H query, featuring
a correlated subquery, led IBM DB2 to plan for a nested-loop join. HABITAT’s use of
ROW_NUMBER() in the observer query led the system to materialize the outer leg of this
join, which ultimately enabled to plan for an efficient hash join instead. This particu-
lar plan variant appears not to be included in IBM DB2’s usual optimizer search space.
Despite this artifact of IBM DB2’s approach to query optimization, as expected, HABI-
TAT-compiled plans pay a price for compositionality. The price appears to be sufficiently
low, however, and does not preclude interactive debugging.

Non-Top-Level Observations. In a typical debugging scenario, a user will concentrate on
one (or few) subexpressions at a time. Execution cost will incur for the relevant plan
fragment—the observer query—only. Yet, the size of the observation can exceed the
result size of the query that contains the piece.

To see this, reconsider Query 1 of Section 1. Below, we have annotated its query
pieces with the number of rows that an observation will return (let p = |Part|,
ps = |Partsupp|, and let 0 6 sel 6 1 denote the selectivity of the predicate
v0.p

¯
partkey = v1.ps

¯
partkey):

SELECT v0.p
¯
partkeyp,v0.p

¯
namep,

(SELECT v1.ps
¯
supplycostp·ps·sel

FROM Partsuppp·ps AS v1
WHERE v0.p

¯
partkeyp·ps =p·ps v1.ps

¯
partkeyp·ps)

FROM Partp AS v0 .

Note that, while the overall query result only has p rows, the observation of ta-
ble Partsupp yields p · ps (not ps) rows. Analogous remarks apply to all subexpressions
in the scope of the nested subquery. While query optimizers try to avoid the gener-
ation of such large intermediate results, proper query observation needs to preserve
this nested-loop semantics of SQL subqueries. If we consider Marking g again and
thus mark the equality predicate v0.p

¯
partkey = v1.ps

¯
partkey for observation, we ef-

fectively make the operator pair λc: =〈v0.p
¯
partkey,v1.ps

¯
partkey〉 1o the root of the observer

query (see g and its upstream plan fragment in Figure 18). This time, column c holds
the object of the (Boolean) observation and, since it defines the plan output, cannot be
optimized away: the database back-end will compute a tabulation of p · ps rows.

The placement of markings, thus, may inhibit operator fusion which a relational
query optimizer would otherwise exploit to keep the size of intermediate results in
check. In the worst case, markings may conjure a Cartesian product (e.g. when multiple
tables or subqueries of a common FROM clause are to be observed) where the original
query could employ a selective join.

4.1. Coping with Large Observations
Debugging a query against original instance data can be vital to hunt down specific
data-dependent bugs (see Debug Session 2), but may yield large observations as we
have just mentioned. HABITAT does not impose an unduly performance overhead in
such scenarios—nevertheless, detecting the cause of a bug in a sea of rows can be
hard.

The target database host itself can help to avoid the generation of such seas of rows
in the first place. Recall that markings are compiled into observer queries and then
translated into regular SQL code. Shipping this SQL code to the target RDBMS’s ex-

ACM Transactions on Database Systems, Vol. V, No. N, Article A, Publication date: January YYYY.



A:24 T. Grust and J. Rittinger

1 WITH
2 t0 (p_partkey,p_name,i)
3 AS (SELECT Part.p_partkey,
4 Part.p_name,
5 1 AS o,
6 RID(Part) AS i
7 FROM Part)
8

9 SELECT t0.p_partkey,
10 Partsupp.ps_partkey,
11 CASE WHEN t0.p_partkey = Partsupp.ps_partkey
12 THEN ’true’ ELSE ’false’ END AS "· = ·",
13 t0.i AS o,
14 RID(Partsupp) AS i
15 FROM t0, Partsupp -- ⊗
16 ORDER BY o, i;

Fig. 24. Generated SQL code for the observer query of Marking g . RDBMS explain facilities predict the
Cartesian product at ⊗—and thus the overall observation—to yield p · ps rows (p = |Part|, ps = |Partsupp|).

plain plan facility5 provides an estimate of the size of an observation before the ob-
server query code is actually executed. Figure 24 shows the SQL code generated for
the observer query of Marking g discussed above. The explain plan facilities of all
mentioned RDBMSs correctly predicted the exact tabulation size of p · ps rows. Note,
though, that already a rough estimate of the expected row count is useful—such an
estimate suffices to tell observations of size p from those of size p · ps, for example. If
a size threshold is exceeded, HABITAT warns the user and prompts for action, e.g. the
application of focus filters or the debugging with small example data instances.

Focus Filters. HABITAT’s use of tabulations suggests to let users formulate filter predi-
cates against these tables. A filter predicate defines a subset of interesting observations
that should be in focus from now on. In Figure 11, such a focus was defined using the
predicate

v0.ps
¯
partkey = 2 ∧ v0.ps

¯
suppkey = 10

while searching for a missing row carrying these two column values. Once a focus has
been set, Invariant o|i of Section 3 helps the debugger to highlight related rows in other
observation displays defined for the same query. Filters can be

(1) implemented by a visual debugger front-end, or
(2) added to the algebraic observer query to let the target database host only compute

the row set that is in focus.

The preferable option (2) saves the debugger client from receiving out-of-focus data at
all.

Since HABITAT’s SQL compositional compilation strategy considers subexpressions
independently and guarantees that the bindings for all in-scope variables are avail-
able, users may formulate focus filters in terms of arbitrary SQL predicate syntax.
More precisely, a focus filter is acceptable if it is derviable from non-terminal P
(Boolean subexpressions) of the grammar in Figure 14 and does refer to in-scope row
variables only. In the case of Query 1 of Figure 2, for example, a debugger shell may

5Explain plan facilities and client-accessible row count estimates are available in all major RDBMS imple-
mentations, including IBM DB2, MS SQL Server, MySQL, Oracle, and PostgreSQL.
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allow users to define the focus predicate

COUNT( 1 ) > 1

that restricts the tabulation to only include those evaluations of Marking 1 , which
indeed violate the single-row cardinality constraint (e.g. the problematic third row
with p

¯
partkey = 3 in Figure 5). The algebraic code that evaluates the focus filter pred-

icate is attached on top the observer query root operator before SQL code generation is
invoked.

Debugging with Small Example Data. Alternatively, we can perceive an algebraic observer
query as a specific dataflow program. It is likely that we are able to spot bugs buried
in this program if we make sure that all its primitives are indeed “exercised”. Sets of
input rows exercise an algebraic primitive [Chopra et al. 2009] if the primitive’s key
semantics all come into effect during program evaluation (selection σp both rejects and
accepts at least one row in the set, ·∪ produces duplicate as well as unique rows, etc.).

To this end, HABITAT could adapt an algorithm that has originally been designed to
generate instructive example data for Pig Latin programs [Chopra et al. 2009]. This
algorithm performs a multi-pass traversal of the algebraic program to ensure that the
resulting input row sets are exercising as well as concise, so that users would not be
required to observe equivalent expression behavior multiple times. At the plan leaves
(i.e. LOAD t(· · ·) in Pig Latin or t in the case of HABITAT), the data generator aims
to draw rows from actual instance data in an attempt to display observations that
contain realistic example rows. These compact example data would then be used in
place of the target’s database instance—other than that, HABITAT operates as before.

Nonetheless, the effective use of any debugger involves a learning phase in which users
develop an understanding of which markings yield tractable and insightful observa-
tions [Katz and Anderson 1987]. The same is true for HABITAT.

5. RELATED WORK
HABITAT’s language-level debugging approach marks a deviation from plan-level de-
bugging that exposes the query engine’s internal plan representation [Bati et al. 2007;
Bruno et al. 2009]. Laying plans bare facilitates performance analysis but appears to
be of limited use in fixing logical flaws:

(1) With today’s capable and complex query optimizers, the shape of a plan is largely
disconnected from its surface query. Views may have been unfolded, subqueries
unnested and turned into joins, tables removed, joins reordered, predicates elim-
inated or introduced, etc. [Liang 2009].

(2) Even minimal surface query edits may very well lead to disruptive plan
changes [Haritsa and Reddy 2005], thus impeding interactive debug sessions in
which users gradually introduce query fixes.

(3) Finally, a (physical) plan is not the appropriate spot to address a logical flaw: recall
that there has been no issue with the plan for Query 1 per se, rather its data-
dependent bug only occurred at query runtime.

Contemporary SQL debuggers for RDBMSs implement a stateful paradigm that helps
to monitor the execution of SQL stored procedures or scripts: variable updates and
procedure call stacks are watched as the script advances line by line. The invocation of
a SQL query from within a script, however, makes for a monolithic opaque action that
cannot be traced or inspected [Microsoft Corporation; Embarcadero Technologies]. In-
stead, HABITAT operates at the level of individual (suspect) SQL query subexpressions,
promoting debugging at a considerably finer granularity.
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Quite different from programming languages, support for language-level query debug-
ging is rarely found in the database domain. Various notions of provenance [Cheney
et al. 2009] that explain the presence or absence of expected rows in a query result
are close to HABITAT’s objective of declarative query debugging [Tran and Chan 2010;
Chapman and Jagadish 2009; Herschel and Hernández 2010]. However, explanations
are either

(1) plan-based, at the level of algebraic primitives, and thus disconnected from the
user-facing syntax [Chapman and Jagadish 2009; Tran and Chan 2010], or

(2) instance-based and thus fail to address bugs in the query itself—the missing
row 〈2, 10〉 of Debug Session 3 is a so-called never answer that cannot be explained
by these approaches [Herschel and Hernández 2010].

Further, as of today, these techniques cover a limited subset of SQL (conjunctive
queries with UNION plus restricted forms of grouping and aggregation). None of the
debugged SQL queries that we discussed in this article would fall into this class.

In fact, plan-based approaches to query explanation and performance debugging
abound [Binnig and Kossmann 2007; Bruno et al. 2009]. Their usage requires an apri-
ori understanding of how user-facing query constructs emerge in algebraic plans. Ad-
vances in query compilation, optimization, and execution largely disassociate surface
syntax from plan internals (see Section 1), rendering these approaches and tools—
e.g. visualizers for plan differences with respect to index usage, join method or order
changes [Liang 2009]—useful only if in the hands of database engine experts. PerfX-
plain [Khoussainova et al. 2012] offers explanations for the unexpected disappointing
performance of MapReduce jobs. Explanations take the form of conjunctive predicates
that refer to physical parameters (e.g. the block size in use) of the underlying compute
cluster, aiming to provide output that may be interpreted by MapReduce application
developers (as opposed to the cluster’s administrator). Finally, the database engine
itself is the debugged subject in recent developments that promote the systematic syn-
thetization of SQL text to exercise database kernel features and to assess their correct
operation [Bruno 2010; Bati et al. 2007].

Rover [Grust et al. 2007b] realizes observational debugging for XQuery. Un-
like HABITAT, Rover requires changes to the underlying database kernel (a new trace
operator / is injected into MonetDB/XQuery) to support the collection of observation
data. HABITAT’s closure-based compiler follows a different and much less invasive ap-
proach that (1) is applicable to any off-the-shelf SQL RDBMS and (2) comes with a
significantly lighter runtime impact.

Inspector Gadget [Olston and Reed 2011], a debugging framework for the Pig Latin
dataflow language, shares with HABITAT a non-invasive approach to debugger con-
struction: debugging affects the query layer (as opposed to the system layer) only.
While HABITAT’s operation revolves around the concept of observable SQL subexpres-
sions (Section 3.1), users of Inspector Gadget instrument existing dataflows with mon-
itor agents that collect observations about passing data items but otherwise act like
the identity. The placement and coordination (via a simple messaging API) of these
agents is a coding activity but allows for the implementation of a variety of debugging
behaviors, including performance debugging. In this respect, HABITAT’s mark and ob-
serve model is less flexible but stays true to its principle to exclusively operate on the
surface language level (arguably a better fit for SQL’s declarative nature).

Understanding a SQL subexpression as a closure that captures variable bindings as
well as expression value, makes HABITAT a relative of declarative debuggers for func-
tional programming languages [Pope and Naish 2003; Marlow et al. 2007]. Much
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like HABITAT, these debuggers transform the debugged program—through lambda
lifting (β-abstraction, essentially) [Johnsson 1985]—such that subexpressions with
free variables may be observed in isolation.

We close by noting that HABITAT lays the complete groundwork for the application of
algorithmic debugging to SQL. Originally devised in the context of logic programming
languages, in this particular debugging style a debugger automatically generates a
minimal set of simple yes/no? questions about the observed and expected behavior of
a program [Silva 2011; Shapiro 1983]. Starting from the program’s errorneous output,
the user’s answers guide a backwards traversal of a detailed computation trace—or
computation tree—to identify the suspect subcomputation(s) that led to the error. The
computation tree is obtained through meta-interpretation [Naish 1997]: the buggy sub-
ject program is instrumented (or transformed) such that its subcomputations return
computation subtrees along with the normal result. HABITAT’s compilation scheme en-
ables the construction of such computation trees for SQL: subexpressions are compiled
such that their evaluation returns all bindings of free row variables along with the
normal result. This captures everything that is required to enable the user to judge
correctness (responding with yes/no?) when she observes subexpression evaluation.

Work reported in [Caballero et al. 2012] indeed suggests that algorithmic debugging
is effective for SQL. This recent approach transforms SQL views into a logic program
that is then subjected to algorithmic debugging. The debugger operates at the gran-
ularity of table or view definitions, however. The subcomputations of a view are the
views and base tables it refers to. Consequently, view definitions as a whole are being
identified as correct or erroneous: subqueries are not considered as computations of
their own and the debugger would not be able to spot the bugs present in Queries 1
and 3. In comparison, HABITAT operates at a considerable finer granularity. Compu-
tation trees based on the SQL compiler of Section 3.3 can guide users to faulty query
pieces at the level of individual subexpressions.

6. CONCLUSION
Authoring bug-free SQL queries can be tricky at times and the language clearly de-
serves a debugging approach that fits its set-oriented computational model: the iter-
ated evaluation of expressions under varying row variable bindings. HABITAT’s mark
and observe implements such a debugging paradigm via a new type of SQL compiler
based on the notion of closures. Users are permitted to think in terms of SQL’s surface
syntax (mark) and simple tabular representations of evaluated expressions (observe).
HABITAT innovates the unimpeded observation of expressions, including those that
yield runtime errors if evaluated in the context of the original query. Observation data
is collected on and by the target database host itself, i.e. in the most authentic execu-
tion environment.

Usability aspects of a complete HABITAT prototype (see Figure 25) and the effective-
ness of the mark and observe paradigm for SQL debugging have already been demon-
strated [Grust et al. 2011]. HABITAT constitutes a tool that supports the dissection and
understanding of SQL queries also for those users that have not been exposed to query
engine internals yet [Murphy et al. 2008]. Bug hunting aside, we have successfully
used HABITAT in classes to teach the intricacies of the SQL language and the seman-
tics of correlated subqueries, in particular. We noticed that HABITAT enables students
to acquaint themselves with complex query authoring more quickly.

Further work will shed light on how more advanced debugging methodologies that
rest on HABITAT’s groundwork can benefit query authors. Among others, the following
options appear interesting to pursue:
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Fig. 25. Placing the markings of Figure 7(b) using the prototypical HABITAT debugger.

(1) Complementary to mark and observe, a granular algorithmic debugging front-
end for HABITAT (Section 5) now becomes a possibility. Offering the use of Pig Latin-
style generated example data (Section 4.1) will help users to respond to the yes/no?
questions being asked.

(2) Users are not only able to observe the result of arbitrary subexpressions. Ob-
servations could also be edited and query evaluation would then resume based on the
modified intermediary result—enabling live debugging in terms of what if? scenarios.
Such a stop-and-go discipline of query execution is supported by compositional com-
pilation and Invariant o|i (Section 3.2): on resumption, the residual observer query
can read its input off the user-edited tabulation. The immediate connection of query
authors with their creation would be strengthened, a crucial principle of (database)
usability [Victor 2012; Jagadish et al. 2007].
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APPENDIX
A. COMPILING QUERY 1
HABITAT’s SQL compiler is defined in terms of three functions that map SQL con-
structs to algebraic plan fragments:
— −−Z⇒ (translates the syntactic components of a SQL fullselect expression),
— Z⇒ (admits the use of single-row, single-column subqueries in place of scalars), and
— 7→ (compiles scalar subexpressions, including predicates and aggregates).
Figures 19 to 21 of Section 3.3 use inference rules to specify these functions on a per-
construct basis. In a rule

a1 · · · an

c
,

the consequent c defines how to infer an algebraic plan fragment for a given SQL lan-
guage construct e. Rules recursively invoke their antecedents a1, . . . , an—again speci-
ficied in terms of inference rules—to infer the plan fragments for the subconstructs
contained in e (if any). It is a feature of HABITAT’s approach that the consequents of
all rules infer a plan fragment that may be sensibly evaluated on its own—this is key
to enable the observation of arbitrary SQL constructs.

Figure 26 shows the resulting stack of inference rules, or proof tree, for SQL Query 1
(discussed in Section 3.2):

SELECT v0.p
¯
partkey AS p

¯
partkey,

v0.p
¯
name AS p

¯
name,

(SELECT v1.ps
¯
supplycost AS ps

¯
supplycost

FROM Partsupp AS v1
WHERE v0.p

¯
partkey = v1.ps

¯
partkey) AS ps

¯
supplycost

FROM Part AS v0 .

Due to its size we have split the proof tree and display it in two separate figures: Fig-
ure 27 replaces the dashed rectangle in Figure 26. (Note that both proof trees refer to
each other: the proof subtree of Figure 27 refers to the (column set, query) pair (cs2, q2)
defined in Figure 26. The latter refers to q8 to receive the algebraic plan fragment
for the nested subquery in Query 1). To remove clutter, we have omitted the compo-
nent gs = ∅ in these figures; gs addresses grouping and is immaterial for this example,
see Section 3.2.

The output of this compilation process, inferred by the proof tree’s root (see the conse-
quent of the bottom rule in Figure 26), is the table algebra expression

πo,i,cs3(πo,i,ps3(q2 1i πi:o,
¯
.ps

¯
supplycost(q8)))

where column set cs3 = {
¯
.p

¯
partkey,

¯
.p

¯
name,

¯
.ps

¯
supplycost}. A plan diagram of this

algebraic expression is displayed in Figure 18 of Section 3.2. In the diagram, adjacent
projection operations have been collapsed to aid the rendering.
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q0 ≡ #i:〈o,i0〉(πo:i(1)× #i0
( Part))

(∅, 1) ` Part −−Z⇒ ({Part.p
¯
partkey,

Part.p
¯
name, . . . }, q0)

cs0 ≡ {v0.p
¯
partkey, v0.p

¯
name, . . . }

ps0 ≡ {v0.p¯
partkey:Part.p

¯
partkey,

v0.p
¯
name:Part.p

¯
name, . . . }

()

(∅, 1) ` Part AS v0 −−Z⇒
(
cs0, πo,i,ps0 (q0)

)
cs1 ≡ cs0

q1 ≡ πo,i1,cs1
(#i1:〈i0,i〉(πo:i,i0:i

(1) 1o πo,i,ps0 (q0)))

()

(∅, 1) ` FROMPart AS v0 −−Z⇒
(
cs1, πo,i:i1,cs1

(q1)
)

cs2 ≡ cs1 q2 ≡ πo,i:i1,cs1
(q1) 1o πo:i(1)

()

(cs2, q2) ` v0.p
¯
partkey

7→ (v0.p
¯
partkey, q2)

()

(cs2, q2) ` v0.p
¯
partkey

Z⇒ (v0.p
¯
partkey, q2)

()

(cs2, q2) ` v0.p
¯
name

7→ (v0.p
¯
name, q2)

()

(cs2, q2) ` v0.p
¯
name

Z⇒ (v0.p
¯
name, q2)

()

insert
Figure 27

(cs2, q2) `
(SELECT v1.ps

¯
supplycost AS ps

¯
supplycost

FROM Partsupp AS v1
WHERE v0.p

¯
partkey = v1.ps

¯
partkey)

Z⇒
(̄
.ps

¯
supplycost, q2 1i πi:o,

¯
.ps

¯
supplycost(q8)

)
()

cs3 ≡ {
¯
.p

¯
partkey,

¯
.p

¯
name,

¯
.ps

¯
supplycost}

ps3 ≡ {¯
.p

¯
partkey:v0.p

¯
partkey,

¯
.p

¯
name:v0.p

¯
name,

¯
.ps

¯
supplycost:

¯
.ps

¯
supplycost}

(cs2, q2) `

SELECT v0.p
¯
partkey AS p

¯
partkey,

v0.p
¯
name AS p

¯
name,

(SELECT v1.ps
¯
supplycost AS ps

¯
supplycost

FROM Partsupp AS v1
WHERE v0.p

¯
partkey = v1.ps

¯
partkey) AS ps

¯
supplycost

−−Z⇒
(
cs3, πo,i,ps3 (q2 1i πi:o,

¯
.ps

¯
supplycost(q8))

)

()

(∅, 1) `

SELECT v0.p
¯
partkey AS p

¯
partkey,

v0.p
¯
name AS p

¯
name,

(SELECT v1.ps
¯
supplycost AS ps

¯
supplycost

FROM Partsupp AS v1
WHERE v0.p

¯
partkey = v1.ps

¯
partkey) AS ps

¯
supplycost

FROM Part AS v0

−−Z⇒
(
cs3, πo,i,cs3 (πo,i,ps3 (q2 1i πi:o,

¯
.ps

¯
supplycost(q8)))

)
()

Fig. 26. Proof tree that infers the algebraic plan for Query 1 (continued in Figure 27). Inference rules are numbered according to Figures 19 to 21.

q4 ≡ #i:〈o,i0〉(πo:i(q2)× #i0 ( Partsupp))

(cs2, q2) ` Partsupp −−Z⇒ ({Partsupp.ps
¯
partkey, . . . ,

Partsupp.ps
¯
supplycost}, q4)

cs4 ≡ {v1.ps
¯
partkey, . . . , v1.ps

¯
supplycost}

ps4 ≡ {v1.ps¯
partkey:Partsupp.ps

¯
partkey, . . . ,

v1.ps
¯
supplycost:Partsupp.ps

¯
supplycost}

()

(cs2, q2) ` Partsupp AS v1 −−Z⇒
(
cs4, πo,i,ps4 (q4)

)
cs5 ≡ cs4

q5 ≡ πo,i1,cs5
(#i1:〈i0,i〉(πo:i,i0:i(q2) 1o πo,i,ps4 (q4)))

()

(cs2, q2) ` FROMPartsupp AS v1 −−Z⇒
(
cs5, πo,i:i1,cs5

(q5)
)

cs6 ≡ cs5 + cs2 q6 ≡ πo,i:i1,cs5
(q5) 1o πo:i,cs2 (q2)

()

(cs6, q6) ` v0.p
¯
partkey

7→ (v0.p
¯
partkey, q6)

()

(cs6, q6) ` v0.p
¯
partkey

Z⇒ (v0.p
¯
partkey, q6)

()

(cs6, q6) ` v1.ps
¯
partkey

7→ (v1.ps
¯
partkey, q6)

()

(cs6, q6) ` v1.ps
¯
partkey

Z⇒ (v1.ps
¯
partkey, q6)

()

(cs6, q6) ` v0.p
¯
partkey = v1.ps

¯
partkey

7→
(
c, λ c: =〈v0.p¯

partkey,v1.ps¯
partkey〉(q6)

)
cs7 ≡ cs6

q7 ≡ σc=true(λ c: =〈v0.p¯
partkey,v1.ps¯

partkey〉(q6))

()
(cs7, q7) ` v1.ps

¯
supplycost

7→ (v1.ps
¯
supplycost, q7)

()

(cs7, q7) ` v1.ps
¯
supplycost

Z⇒ (v1.ps
¯
supplycost, q7)

()

(cs7, q7) ` SELECT v1.ps
¯
supplycost AS ps

¯
supplycost

−−Z⇒
(
{
¯
.ps

¯
supplycost}, πo,i,

¯
.ps

¯
supplycost:v1.ps¯

supplycost(q7)
) ()

(cs2, q2) `
SELECT v1.ps

¯
supplycost AS ps

¯
supplycost

FROM Partsupp AS v1
WHERE v0.p

¯
partkey = v1.ps

¯
partkey

−−Z⇒
(
{
¯
.ps

¯
supplycost}, πo,i,

¯
.ps

¯
supplycost(πo,i,

¯
.ps

¯
supplycost:v1.ps¯

supplycost(q7))
)

q8 ≡ πo,i,
¯
.ps

¯
supplycost(πo,i,

¯
.ps

¯
supplycost:v1.ps¯

supplycost(q7))

()

Fig. 27. Continuation of the proof tree for Query 1 (replaces dashed rectangle in Figure 26).
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B. RENDERING TABULATIONS
A HABITAT observation display for a Marking x is a tabular representation of a clo-
sure that captures the value of the marked SQL subexpression, together with the free
in-scope row variables, say v0, v1, . . . , vn−1. (Equivalently: the display will tabulate the
n-ary function f x (v0, v1, . . . , vn−1).) To create the display, HABITAT merges

(1) the n binding tables qv0 , qv1 , . . . , qvn−1
, [input]

and
(2) table q x that holds the results of the individual evaluations of the marked subex-

pression (Section 3). [output]

As the row variables’ binding sites as well as Marking x itself may reside in sepa-
rate (yet nested) scopes, HABITAT consults the n + 1 participating tables’ leading o|i
columns to perform the merge (recall Invariant o|i of Section 3). Let si denote the
parent scope enclosing scope si+1, i > 0. Define s(t) ≡ i if o|i-wrapped table t repre-
sents a subexpression evaluated (or a row variable bound) in scope si. Wlog, assume
s(qv0) 6 s(qv1) 6 · · · 6 s(qvn−1) 6 s(q x ).6

HABITAT constructs the display according to

!(qv0 ,!(qv1 ,!(. . . ,!(qvn−1
, q x ) · · · )))

where

!(q, q′) ≡
{
q c q′ if s(q) < s(q′)

q ‖ q′ if s(q) = s(q′)

and s(!(q, q′)) ≡ s(q′). The two cases are as follows:

(1) q c q′: We have πi(q) ⊇ πo(q
′) as a consequence of the lifting scheme (Section 3).

Conceptually, perform the right outerjoin q i=o q
′ to merge the two tables. Then

render the outerjoin result as an observation display. If q′ represents a table-valued
SQL subexpression, draw a nested display and render null as an empty nested table
(see Figure 28 from which the display in Figure 5 is derived.).

(2) q ‖ q′: We have πi(q) ⊇ πi(q
′) or πi(q

′) ⊇ πi(q), due to unsatisfied WHERE or
HAVING predicates that may inhibit expression evaluation under particular bind-
ings. Align tables q, q′ with respect to their i-columns; if required for alignment,
insert rows—i.e. conceptually perform the full outerjoin q i q

′ and render
null as (see Figure 9).

A further Marking y may be incrementally merged into an existing display D, giving
!(D, qy ), if D includes the free variables of y (see Debug Session 3). To exemplify, the
observation displays of Figures 8 and 9 have been rendered according to qv0 c (q 2 ‖ q 3 )
and qv0 ‖ qv1 ‖ q 4 ‖ q 5 ‖ q 6 , respectively.
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!

o i v0.p
¯
partkey v1.ps

¯
supplycost

1 1 1 20.00
1 2 2 10.00
1 3 3 30.00
1 3 3 10.00
1 4 4 null

o i v0.p
¯
partkey

1 1 1
1 2 2
1 3 3
1 4 4

(a) Binding table qv0 in scope s0.

o i v1.ps
¯
supplycost

1 1 20.00
2 2 10.00
3 3 30.00
3 4 10.00

(b) Table q 1 of results for Marking 1 in
scope s1.

Fig. 28. HABITAT merges the tables qv0 , q 1 to prepare the rendering of the nested observation display
of Figure 5 (q 1 represents a table-valued observation). Since v0 is bound in scope s0 enclosing scope s1, we
have !(qv0 , q 1 ) = qv0 c q 1 ≈ qv0 i=o q 1 (modulo column renaming).
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