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Abstract

The seamless integration of relational databases and programming
languages remains a major challenge. Mapping rich data types fea-
tured in general-purpose programming languages to the relational
data model is one aspect of this challenge. We present a novel tech-
nique for mapping arbitrary (nonrecursive) algebraic data types to
a relational data model, based on previous work on the relational
representation of nested tables. Algebraic data types may be freely
constructed and deconstructed in queries and may show up in the
result type. The number of relational queries generated is small
and statically determined by the type of the query. We have im-
plemented the mapping in the Database Supported Haskell (DSH)
library.

Categories and Subject Descriptors D.3.3 [Language Constructs
and Features]: Data types and structures; H.2.3 [Languages]:
Query languages

General Terms Languages, design, theory

Keywords Programming language, database, algebraic data type

1. Introduction

Language-integrated queries allow relational database management
systems (RDBMSs) to participate in the execution of program frag-
ments written in high-level, general-purpose host programming
languages. This approach to program execution is particularly ben-
eficial for offloading data-intensive and data-parallel computations
from the programming languages’ runtime system to an RDBMS.
The popular and widely used LINQ extension of the .NET family of
languages [14], as well as the Links programming language [6] and
the Database Supported Haskell (DSH) library [8] are examples of
language-integrated query facilities.

These and other language-integrated query facilities differ
in what types of computations they consider executable by the
database backend. It is clear that when a larger set of the host
language’s constructs are faithfully and efficiently supported in
a query context, more applications can benefit from the backend’s
processing capabilities. Some facilities, such as the Links language,
only consider computations as database-executable if they have a
flat bag type. LINQ supports a richer set of types, including more
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collection types, but many order-sensitive operations (e.g., index-
ing, zipping and splitting) are not considered database executable.

In this context, the Ferry framework [11] and its query compila-
tion strategy deserve a particular mention. Ferry supports arbitrar-
ily nested lists of tuples (or records) of basic types. Order-sensitive
operations are faithfully implemented on the relational backend.
Moreover, the number of relational queries generated by Ferry only
depends on the static type of the compiled program’s result. Ferry’s
compilation strategy, called loop lifting, has been used to develop
language-integrated query facilities for the Haskell language in the
form of DSH [8] and a number of other languages [10, 12, 16].

So far, work in the context of Ferry focused on supporting a rich
set of operations for the supported types, especially for nested and
ordered collections [12]. We now shift the focus towards extending
the set of types which are supported in queries from the program-
mer’s point of view. Algebraic data types (ADTs) are the essential
data modelling tool of a number of functional programming lan-
guages like Haskell, OCaml and F#. We claim that faithful sup-
port for ADTs and operations on them in a query context consid-
erably increases the expressiveness of language-integrated queries
for these languages.

The key insight of this paper is that a facility that already sup-
ports arbitrarily nested lists of tuples of basic types can be extended
to support (nonrecursive) ADTs without the need to modify its re-
lational backend. This can be achieved by mapping ADTs to the
already supported types of arbitrarily nested lists of tuples and re-
alising operations on values of ADTs with already supported opera-
tions on lists and tuples. We demonstrate this by extending the DSH
library. Specifically, DSH now considers construction and elimina-
tion of values of user-defined ADTs as database-executable com-
putations. In addition, our approach benefits from earlier work on
the generation of efficient relational code for the already supported
types and operations [12].

A version of the Links language implemented by the third au-
thor [16], considered construction and elimination of values of
ADTs as database-executable. This was achieved by developing a
significantly extended variant of the loop lifting compilation strat-
egy; that is, the functionality has been implemented in the backend
of the compiler. In this paper we describe a simpler approach. By
realising construction and elimination of ADTs in terms of the al-
ready supported operations, we reuse the original loop lifting com-
pilation strategy without extending it; that is, we implement the
functionality in DSH’s frontend. As such, the present approach
should carry over to similar language-integrated query facilities.

So far, significant amount of work has gone into realising
object-relational mappings (ORMs) for object-oriented languages
[5, 7], while relational mappings for ADTs, which are prevalent in
functional languages, received relatively little attention. With this
paper we aim to tackle this problem. In the following, we list our
contributions.



employment
id dept status since

stud_id name topic advisor

professors

salaries
prof_id name chair

emp._id salary

Figure 1. Table schemata for the university employees example.

e This paper presents a novel technique for mapping (nonrecur-
sive) ADTs and operations on values of such types to the rela-
tional model and relational queries, respectively.

The mapping is implemented in the DSH library. As a result,

DSH now considers the construction and elimination of ADT

values as database-executable computations. To the best of our

knowledge, DSH is the first language-integrated query facility
that supports arbitrarily nested lists, tuples and ADTs.

The described DSH extension is implemented in its frontend

without extending its relational backend. We think that this is a

simpler approach that can be easily ported to other systems.

The number of relational queries generated by DSH only de-

pends on the static type of the compiled program’s result. We

describe how programmers can compute this number for pro-
gram fragments whose type involves ADTs.

e The presented relational realisation of ADTs and operations
on such types can be used in other integrations of relational
databases in programming languages that support ADTs (e.g.,
OCaml, SML, and F#).

2. Queries and Algebraic Data Types

In this section, we give two examples to motivate the support for
ADTs in DSH queries. Both examples consider university depart-
ments and use the table schemata shown in Figure 1.

As a first example, we fetch the information for all employees,
sorted by seniority. Consider that there are multiple types of em-
ployees (e.g., professors and PhD students), each characterised by
different properties. Naturally, in Haskell this would be modelled
in terms of an ADT:

data Employee = Prof {name :: String, chair :: String,
advisedStudents :: [ String] }
| Stud { name :: String, topic :: String,
advisor :: String }

Instead of piecing together this heterogeneous result from multiple
DSH queries, with support for ADTs we can write a single query
which computes the desired answer:

employeesBySeniority :: Q [ Employee]
employeesBySeniority = concat
[ if eStatus = "student"
then [ stud sName sTopic sAdvisor
| (sID, sName
, sTopic, sAdvisor) < table "students"
, eID = sID]
else [ prof pName pChair sAdvised

| (pID, pName, pChair) < table "professors"

, elD = pID
, let sAdvised =
[ sName
| (=, sName
, —, sAdvisor) < table "students"
, sAdvisor = pName]|
| (eID, _, eStatus, ) + sortWith (A(—, -, -, d) — d)

(table "employment")]

The query is formulated using a mixture of comprehensions [9] and
combinators, thus resembling a vanilla Haskell list-processing pro-
gram, with two notable differences: (1) the table function is used to
reference database-resident tables and (2) the query’s result type is
wrapped in the @ type constructor. In DSH, the type @) a describes
a query that returns a value of type a. Lastly, the expressions prof
and stud are not regular Haskell data constructors but smart con-
structors which are automatically generated by DSH for the type
Employee (see Section 4).

At first sight, we could simply employ two queries to fetch
students and professors separately and then use regular in-heap
Haskell processing to append the two resulting lists. Observe how-
ever, that the outer comprehension orders the employees, a job that
DSH dispatches to the database backend. Otherwise, to construct
the result in the proper order from two separate queries, we would
need to sort and/or merge the two intermediate lists in-memory. Not
only does this violate the “compute close to the data” principle but
it also incurs extra Haskell logic that is unnecessary in this case.

It is even worse to fetch general employment data first (the ta-
ble "employment") and then issue a separate query for each em-
ployee to read her information (leading to the well-known n+1-
queries problem which is prevalent in language-integrated query
facilities [12]). Instead, DSH issues exactly four relational queries
to generate the result (see Section 3). The increased query expres-
siveness through ADTs allows us to specify a single DSH query
which delivers the desired result and avoids a potentially costly
post-processing step in main memory.

While the first example only constructed ADT values, the abil-
ity to eliminate such values (i.e., to perform case analysis) in
queries is as crucial. As a second example, we are interested in
minimum salaries (per department). We assume that there may be
unpaid employees. Still, departments with unpaid members only
(their associated list of salaries will be empty) shall be included in
the result.

The Haskell list combinator minimum :: Ord a = [a] — a
is a partial function that throws an exception when applied to the
empty list. Exceptions are certainly not desirable, especially when
sending code to remote execution facilities such as an RDBMS.
With support for ADTs, we are able to provide a DSH function
called safeMinimum. This function wraps its result in the Maybe
type constructor:

safeMinimum :: (Ord a, QA a) = Q [a] = Q (Maybe a)

The result is then Just min for a nonempty list and Nothing other-
wise, making the error case explicit. The annotation QA a restricts
the type variable a to queryable types [8]. With this combinator,
we are able to implement the desired query in a safe way:

salPerDept :: Q [(String, [Integer])]
salPerDept =
[ (dept, [ salary
| (sID, salary) < table "salaries"
, (dID, _, _, _) < deptMembers
, sID = dID))
| (dept, deptMembers) < groupBy (A, d, _, ) — d)

(table "employment")]

minSalPerDept :: Q [(String, Integer)]
minSalPerDept =
[(dept, case_ (safeMinimum sals)

(Amin — min))
| (dept, sals) < salPerDept]



The elimination function case_ performs case distinction based on
its first argument (a value of an ADT sum type)'. All remaining
arguments handle the different cases. The second argument deals
with the nullary Nothing constructor by returning the salary 0
as a default value. Otherwise, case_ applies a lambda expression
(here: Amin — min) to values tagged by Just, i.e., the actual
minima of the non-empty lists. Note that—although not necessary
in this example—the body of the lambda expression for the Just
case could be an arbitrary (database-executable) expression (see
Section 4).

3. Representing Algebraic Data Types

Mapping nested data—non-first normal form (NF?) data in which
collections and tuples nest arbitrarily—onto the flat tables imple-
mented by RDBMSs has been extensively studied by Van den Buss-
che [17] and in the context of Ferry [12]. Here, we present a tech-
nique to map arbitrary nonrecursive ADTs onto this nested data
model. We provide an implementation of this technique in DSH
[1, 8] which, in turn, is based on the Ferry work.
Consider the data type Either with two constructors:

data FEither a b = Left a | Right b

We map type FEither a b to its representation type ([a],[b]),
where the pair components represent the Left and Right construc-
tors, respectively. A value of type Either a b, then, is represented
as a pair of a singleton and an empty list: Left e maps onto the pair
([e],[]) while Right e maps onto ([],[e]).

In the following, we will consider algebraic data types as sum-
of-product types as is common in the literature on data type generic
programming [2]: an ADT with n > 1 constructors is an n-ary
sum () whose summands are product types (®). The representa-
tion scheme for the binary Fither type sketched above generalises
to general sum types with n constructors: an n-ary sum type is
mapped to a representation type consisting of an n-tuple in which
each of the tuple components correspond to one summand. Func-
tion rep derives the representation type—exclusively formed by list
and tuple constructors—for this general case:

rep (11 @ @ 7) = ([rep 11], ..y [TED T0])
rep (1 @ ... @ Tp) = (rep T1,...,T€P Tn)
rep 7] = [rep 7]

TEP Tprim = Tprim

Applying this function to Fither (which has the generic type
a @ b)indeed results in the representation type ([a],[b]). Sim-
ilarly, the sum-of-products representation of the E'mployee data
type from Section 2 is:

(String ® String ® [String])
@ (String ® String ® String)

Using function rep, the representation type for an Employee
value takes the form of a tuple-of-lists type:>

([(String, String, [ String])]
, [(String, String, String)])

In our earlier work on Ferry we have studied how values of such
nested types efficiently map onto the flat relational data model [8,
12]. We do not repeat this here but illustrate with Figure 2, how
a Haskell value (of type [ Employee]), its tuple-of-lists equivalent,

! Elimination via case_ is only used for types with multiple constructors.
For tuple matching as used in both examples, we use View Patterns [1]
instead. See the DSH source code for the fully worked out example.

2 Remember that these are internal types. Programmers continue to think in
terms of their self-documenting Haskell types.

[P?”Of nwTn npp" [uJ’n7 IIAUL
Stud ||Jll npn II'I'II7
Stud "A" " "T"]

([, "B, (3%, 4] ),
,[("J","P","T")D,
7[(IIA||7"QII7|IT"):|)]

ref pos name chair advised>tuaents

Do 0"t ["DB"

Figure 2. A value of type [ Employee] in three representations:
ADT (top), generic tuple-of-lists (center), flat relational (bottom).

and its relational representation relate. A couple of points are worth
noting:

e Columns named ref contain foreign keys: t2.ref and t¢s.ref
refer to ¢1 to supply the properties of professors and students,
respectively. ¢4.ref refers to t2 and collects all students advised
by a professor.

Columns named pos encode list positions (e.g., "A" occurs at
position 1 in its containing list, see t4.pos).

Looking at the key values p; and s; in ¢1, either p; or s; is
never referred to in the database (for any 4). This implements
the semantics of a (binary) ADT sum whose values are either of
one or the other type. In Ferry, the absence of references is used
to encode [] which coincides with our tuple-of-lists encoding of
sum types (see beginning of this section).

It is important to observe that knowing the type @ 7 of a DSH
expression suffices to predict the number of database tables || that
are required to hold its values: in a nutshell, this number depends
on the number of list type constructors in rep 7. With a look at rep,
it is straightforward to define function |7|:

[[7]l =1+ tab T

7] =14tabT

tab (11 ® ... @ ™) =n+tab7 + ...+ tab 1,

tab (11 ® ... ® o) =tab 71+ ...+ tab 7y

tab [7] =1+tabr

tab Tprim =0

As already shown in Figure 2, | - | indicates that four tables are

required to encode a value of type [ Employee]. In [12], we discuss
how DSH will issue a bundle of exactly four database queries—
each query yielding one of the ¢;,—to evaluate a DSH expression of
type @ [ Employee]. In other words, DSH does not suffer from the
n+1-queries problem.

4. Construction and Elimination

In this section we describe how ADT values can be constructed and
eliminated in DSH queries. Let us start again by considering the
construction and elimination for the Fither data type. For this data
type, DSH provides the following two (automatically generated)
smart constructors:

left = (QAa,QA D)= Q a— Q (Either a b)
right :: (QA a, QA b) = Q b — Q (Fither a b)



By exploiting the representation of ADTs described in Section 3,
these two smart constructors are implemented in terms of the func-
tions Ae — ([e],[]) and Ae — ([], [e]), respectively. Again, this
internal representation of queries of type @ (FEither a b) is not
exposed to the library users [1]. As we will see later in this section,
this is important to provide the guarantee that the tuple-of-lists rep-
resentation of sum ADTs contain exactly one singleton list.

The previous example has only dealt with the smart constructors
for the Fither data type. In general, smart constructors for the ADT
with the sums-of-products representation 71 & 7 B ... B T,
(with n > 1) can be conceptually defined as follows:

[])
()

en = Man 7)) = ([, (], oo [an])

In DSH, the names of the smart constructors are automatically de-
rived from the constructor names of the original ADT. For example,
the names of the left and right smart constructors are derived from
the Left and Right constructors of the Either data type.

We now turn to the elimination of ADT values in DSH queries.
As an example, consider the following type signature of the elimi-
nator (i.e., case distinction) for the Either data type:

either :: (Qa— Q)
- (Qb—Qr)
— Q (FEither a b)
- Qr

cr=Mar 1) = ([aa], ][],
Cco = )\(a2 b TQ) — (H, [az],

)

For the Left a case, either applies its first argument to a. For the
Right b case, it applies its second argument to b. Internally, DSH
exploits the representation of ADTs as a tuple of lists and imple-
ments this function by using the list processing combinators map,
+-, and head, for all of which DSH provides efficient implemen-
tations on the relational backend [8]. More specifically, either is
implemented in terms of the following expression:

A g (a1,a2) — head (map f a1 H map g a2)

Note that in this case and in the following general definition, the
use of the head function is safe because it is applied to a non-empty
singleton list. As we have already mentioned, the smart construc-
tors guarantee that exactly one field of the tuple (in the tuple-of-lists
representation) is a singleton list. In DSH, the relational represen-
tation of a value e and a singleton list [ e] is exactly the same [11].
We can exploit this fact by removing the head call just before query
generation.

DSH compiles the map and +- functions into relational queries
involving projections and unions [16]. RDBMSs are heavily opti-
mised for queries with these two relational operations.

Generalizing the example of the FEither data type, an elim-
inator for an ADT with the sums-of-products representation of
1D ™ D @ 7, (with n > 1) can be conceptually de-
fined as follows:

elim (a1 = [11], a2 = [12], .0y an 22 [T0])
(fizimi—r)
(foume—T)

(frnoiTn—r)=
head (map fi a1 H map f2 az H ... H+ map frn an)

In DSH, the names of the eliminator functions are automatically
derived from the type constructor of the original ADT. In addition
to these type-specific eliminators, we provide overloaded, type-
indexed eliminators (e.g., the case_ function used in Section 2) that
work with any nonrecursive ADT.

Currently, DSH makes use of Template Haskell [15] for compile-
time generation of ADT constructors and eliminators. We are con-
sidering the Glasgow Haskell Compiler’s new generic deriving
mechanism [13] as an alternative to Template Haskell for this
purpose. Generic deriving may provide for a simpler automatic
derivation of ADT constructors and eliminators. For this and other
implementation aspects of DSH we refer the interested reader to
the DSH source code and documentation [1].

5. Future Work

We conclude this paper by outlining a number of items for future
work.

e Although our initial results are encouraging, a comprehensive
performance evaluation of language-integrated queries that op-
erate on ADTs still lies ahead.

In this work we have only dealt with nonrecursive ADTs. A
natural next step would be to consider recursive types. We al-
ready support the recursive list type as a crucial, special case.
Efficient relational support for arbitrary recursive ADTs (and
recursive functions on them) is a harder problem. Although it is
relatively straightforward to represent recursive data types rela-
tionally, compilation of various recursion schemes to efficient
relational queries is challenging.

The relational ADT encoding described in this paper bears
strong similarities to the representation of ADTs in work on
nested data parallelism in Data Parallel Haskell [4] which is
based on the flattening transformation [3]. We currently explore
harnessing the flattening transformation for query compilation.
Ferry and DSH currently focus on the guery aspect of database
integration, we have not yet addressed the update aspect.
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