
Haskell Boards the Ferry

Database-Supported Program Execution for Haskell

George Giorgidze, Torsten Grust, Tom Schreiber, and Jeroen Weijers

Wilhelm-Schickard-Institut für Informatik,
Eberhard Karls Universität Tübingen

{george.giorgidze,torsten.grust,tom.schreiber,jeroen.weijers}@uni-tuebingen.de

Abstract. Relational database management systems can be used as a
coprocessor for general-purpose programming languages, especially for
those program fragments that carry out data-intensive and data-parallel
computations. In this paper we present a Haskell library for database-
supported program execution. Data-intensive and data-parallel compu-
tations are expressed using familiar combinators from the standard list
prelude and are entirely executed on the database coprocessor. Program-
ming with the expressive list comprehension notation is also supported.
The library, in addition to queries of basic types, supports computa-
tions over arbitrarily nested tuples and lists. The implementation avoids
unnecessary data transfer and context switching between the database
coprocessor and the programming language runtime by ensuring that
the number of generated relational queries is only determined by the
program fragment’s type and not by the database size.

1 Introduction

Relational database management systems (RDBMSs) provide well-understood
and carefully engineered query processing capabilities. However, RDBMSs are
often operated as plain stores that do little more than reproduce stored data
items for further processing outside the database host, in the general-purpose
programming language heap. One reason for this is that the query processing
capabilities of RDBMSs require mastering of advanced features of specialised
query languages, such as SQL, in addition to the general-purpose language the
application is programmed in. Moreover, query languages are often inadequately
integrated into host programming languages.

An application that is programmed in the aforementioned manner may per-
form substantial data transfers even when the final result of the computation is
very small. Instead, it may be much more efficient (and sometimes the only op-
tion when dealing with data that can not be fitted in the heap) to transfer a part
of the program to the database and then let the database perform the computa-
tion. Database kernels are optimised for intra-query parallel execution and can
thus very efficiently carry out data-intensive and data-parallel computations.

A number of approaches have been proposed providing for better integration
of database query languages into programming languages. Well-known exam-
ples include: Kleisli [18], LINQ [21] and Links [8]. Although very successful (e.g.,

LINQ is distributed with the Microsoft .NET framework and is widely adopted),
current language-integrated approaches have a number of limitations. For exam-
ple, Links only permits the database-supported execution of program fragments
that compute a flat result (i.e., a list of tuples of basic types), while Kleisli and
LINQ support data nesting but may compile the fragment into queries whose
number is proportional to the size of the queried data (i.e., they do not feature
the so-called avalanche-safety property). In addition, LINQ’s standard query
operators do not maintain list order and thus may fail to preserve the host
programming language’s semantics.

Recently, in order to solve the aforementioned problems with the current
language-integrated approaches, and more generally, to investigate to what ex-
tent one can push the idea of RDBMSs that directly and seamlessly participate
in program evaluation, the Ferry language has been proposed [12]. Ferry is a
functional programming language that is designed to be entirely executed on
RDBMSs. So far, the most notable feature of Ferry has been its compilation
technique that supports database execution of programs of nested types, main-
tains list order and provides avalanche-safety guarantees [13].

Although the Haskell programming language [23] has inspired a number
of language-integrated query facilities (most notably LINQ which is based on
monad comprehensions) so far no such system has been proposed or implemented
for Haskell. With Database-Supported Haskell (DSH) we provide a library that
executes parts of a Haskell program on an RDBMS. The library is available on-
line [2]. The design and implementation of the library is influenced by Ferry and
it can be considered as a Haskell-embedded implementation of Ferry.

The library is based on Haskell’s list comprehensions and the underlying
list-processing combinators and provides a convenient query integration into the
host language. The library, just like the Ferry language, in addition to queries
of basic types, supports computations over arbitrarily nested tuples and lists.
The implementation minimises unnecessary data transfer and context switch-
ing between the database coprocessor and the programming language runtime.
Specifically, in DSH, the number of queries is only dependent on the number of
list type constructors in the result type of the computation and does not depend
on the size of the queried data.

Our contribution with this paper is the first proposal and implementation of
a library for database-supported program execution in Haskell.

2 DSH by Example

Consider the database table facilities in Figure 1 which lists a sample of contem-
porary facilities (query languages, APIs, etc.) that are used to query database-
resident data. We have attempted to categorise these facilities (see column cat
of table facilities): query language (QLA), library (LIB), application program-
ming interface (API), host language integration (LIN), and object-relational map-
ping (ORM). Furthermore, each of these facilities has particular features (ta-
ble features). A verbose description of these features is given by the table meanings.

facilities
fac cat
SQL QLA
ODBC API
LINQ LIN
Links LIN
Rails ORM
DSH LIB

ADO.NET ORM
Kleisli QLA

HaskellDB LIB

meanings
feature meaning
list respects list order
nest supports data nesting
aval avoids query avalanches
type is statically type-checked
SQL! guarantees translation to SQL
maps admits user-defined object mappings
comp has compositional syntax and semantics

features
fac feature
SQL aval
SQL type
SQL SQL!
LINQ nest
LINQ comp
LINQ type
Links comp
Links type
Links SQL!
Rails nest
Rails maps
DSH list
DSH nest
DSH comp
DSH aval
DSH type
DSH SQL!

ADO.NET maps
ADO.NET comp
ADO.NET type
Kleisli list
Kleisli nest
Kleisli comp
Kleisli type
HaskellDB comp
HaskellDB type
HaskellDB SQL!

Fig. 1. Database-resident input tables for example program.

Given this base data, an interesting question would be: What features are
characteristic for the various query facility categories (column cat) introduced
above? Interpreting a table as a list of tuples, this question can be answered
with the following list-based Haskell program:

descrFacility :: String → [String]
descrFacility f = [mean | (feat ,mean)← meanings,

(fac, feat ′) ← features,
feat ≡ feat ′ ∧ fac ≡ f]

query :: [(String , [String])]
query = [(the cat ,nub (concatMap descrFacility fac))

| (fac, cat)← facilities, then group by cat]

The program consists of the actual query and the helper function descrFacility .
Function descrFacility , given a query facility f , returns a list of descriptions of
its features. We deliberately use a combination of list comprehension notation
and list-processing combinators in this example program to demonstrate the
breadth of DSH. Evaluating this program results in a nested list like:

[("API", []),
("LIB", ["respects list order", ...]),
("LIN", ["supports data nesting", ...]),
("ORM", ["supports data nesting", ...]),
("QLA", ["avoids query avalanches", ...])]

As the example program processes database-resident data, it would be most
efficient to perform the computation close to the data and let the database query
engine itself execute the program. With DSH, this is exactly what we propose
and provide. The program is translated into two SQL queries (see Appendix).
These queries fully represent the program and can completely be executed on
the database.

In order to execute the program on the database we have to apply a few
modest changes to the example program. These changes turn the program into
a DSH program. We will discuss these changes in the remainder of this section.
The adapted program will be our running example in the remainder of this
paper.

First, consider the function descrFacility . There are three modest changes
to this function related to its type signature, the comprehension notation and a
new combinator named table. The new function looks as follows:

descrFacility :: Q String → Q [String]
descrFacility f = [qc | mean | (feat ,mean)← table "meanings",

(fac, feat ′) ← table "features",
feat ≡ feat ′ ∧ fac ≡ f |]

The slight change of the list comprehension syntax is due to quasi-quotes [19],
namely [qc | and |]. Otherwise, the syntax and semantics of quasiquoted com-
prehensions match those of regular Haskell list comprehensions with the only
exception that, instead of having type [a], a quasiquoted comprehension has
type Q [a] (to be read as “a query that returns a value of type [a]”). This
explains the change in the type signature of function descrFacility . The last
change that has to be made is to direct the program to use database-resident
data instead of heap data. This is achieved by using the table combinator that
introduces the name of the queried table.

Finally let us consider the main function, query . With DSH, we support most
of the Haskell list prelude functions, modified to work with queries that return
lists. Once the changes are applied, the code looks as follows:

query :: IO [(String , [String])]
query = fromQ connection

[qc | (the cat ,nub (concatMap descrFacility fac))
| (cat , fac)← table "facilities", then group by cat |]

The list comprehension in this function is adapted as in the descrFacility func-
tion. Function fromQ , when provided with a connection parameter, executes its
query argument on the database and returns the result as a regular Haskell value.
This value is wrapped inside the IO monad as database updates may alter the
queried data between two invocations of fromQ (i.e., this is not a referentially
transparent computation).

The following section describes how DSH programs are compiled and exe-
cuted by effectively using RDBMSs as coprocessors supporting the Haskell run-
time.

3 Internals

The execution model of DSH is presented in Figure 2. By using the quasi-
quoter that implements the well-known desugaring approach [16], list compre-
hensions are translated into list-processing combinators at Haskell compile-time
(1 , Figure 2). With a translation technique coined loop-lifting [13], these list-
processing combinators are compiled into an intermediate representation called
table algebra, a simple variant of relational algebra (2 , Figure 2). Through
Pathfinder [10, 11], a table algebra optimiser and code generation facility, the
intermediate representation is optimised and compiled into relational queries
(3 , Figure 2). Pathfinder supports a number of relational back-end languages
(e.g., SQL:1999 and the MonetDB Interpreter Language (MIL) [5]). The result-
ing relational queries can then be executed on off-the-shelf relational database
systems (4 , Figure 2). The tabular query results are transferred back into the
heap and then transformed into vanilla Haskell values (5 and 6 , Figure 2). In
the remainder of this section we describe the aforementioned steps in further
detail.

Compile time Run time

Heap

Database

List
Comprehensions

Combinators Table
Algebra SQL

Tabular
resultValue

1 2
3 4

56

...

MIL

Fig. 2. Code Motion in DSH

3.1 Haskell Front-End

The following provides an incomplete lineup of the supported Haskell list com-
binators along with their types:

map :: (QA a,QA b) ⇒ (Q a → Q b)→ Q [a]→ Q [b]
filter :: (QA a) ⇒ (Q a → Q Bool)→ Q [a]→ Q [a]
concat :: (QA a) ⇒ Q [[a]]→ Q [a]
groupWith :: (Ord b,QA a,QA b)⇒ (Q a → Q b)→ Q [a]→ Q [[a]]
sortWith :: (Ord b,QA a,QA b)⇒ (Q a → Q b)→ Q [a]→ Q [a]
the :: (Eq a,QA a) ⇒ Q [a]→ Q a
nub :: (Eq a,QA a) ⇒ Q [a]→ Q [a]
table :: (TA a) ⇒ String → Q [a]

These combinators behave as their namesakes in the Haskell list prelude, but
instead of operating on regular lists and values they work on queryable lists and
values. This is reflected in their type signatures. It is easy to arrive at the type
signature of a DSH combinator starting from the type signature of its namesake
in the Haskell list prelude: (1) the Q type constructor needs to be applied to
all types except function types, and (2) the QA type class constraint (read:
queryable) needs to be applied to all type variables in the signature.

In order to restrict the combinators to only work with the data types that
we are able to represent relationally, the QA type class is used:

class QA a where
toQ :: a → Q a
fromQ :: Connection → Q a → IO a

DSH provides QA instances for the basic types (i.e., Boolean, character, integer,
real, text, date and time types), as well as arbitrarily nested lists and tuples of
these basic types. In addition, by leveraging metaprogramming capabilities of
Template Haskell [25], we provide for automatic derivation of QA instances for
any user-defined product type (including Haskell records) and automatic gener-
ation of Haskell records from database schemas. The relational representation of
the supported Haskell types is given in Section 3.2.

The current implementation of DSH does not support general folds (e.g.,
foldr and foldl). All other functions from the list prelude are supported, includ-
ing the special folds. The compilation of general folds and user-defined recursive
definitions would yield relational queries that build on recursion constructs of
the underlying query language (e.g., recursive queries using common table ex-
pressions in SQL:1999). This is something that we are currently investigating.

DSH also lacks sum types. However, this is easier to address than the missing
support for general folds and recursion. In fact, in related work (which remains
to be published), we have already devised a relational representation for sum
types and compilation rules for functions on sum types. The aforementioned
related work addresses the shortcomings of Links that are outlined in Section 1
by leveraging and extending the compilation technology developed for the Ferry
language.

The QA type class provides functions to convert Haskell values into queries
(i.e, the toQ function) and vice versa (fromQ). The latter function triggers the
compilation of queries, communicates with the database, submits the generated
relational queries to the database, fetches the results and converts them into
Haskell values. These values can be used in the program for further in-heap
processing as well as for the generation of new database-executable program
fragments. Thus, DSH supports iterative staging of embedded programs [9, 20]
by allowing for runtime code generation, compilation, and execution of database-
executable programs.

The combinator table deserves special attention. As can be seen in the lineup
of combinators, its type features a type class constraint TA a. The constraint
restricts the type variable a, which represents the table rows, to the basic types

and flat tuples of the basic types. Use of the table combinator does not result
in I/O, as it does not initiate communication with the database: it just ref-
erences the database-resident table by its unique name. In the case that the
table has multiple columns, these columns are gathered in a flat tuple whose
components are ordered alphabetically by column name. With the current DSH
implementation, it is the user’s responsibility to make sure that the referenced
table does exist in the database and that type a indeed matches the table’s row
type—otherwise, an error is thrown at runtime.

The DSH combinators, in the tradition of deep embeddings, construct an
internal data representation of the embedded program fragment they represent.
The subsequent optimisation and compilation into relational queries is based on
this representation. The following presents the data type that is used to represent
the DSH combinators internally:

data Exp = BoolE Bool Type
| IntegerE Integer Type -- ... and other basic types
| TupleE [Exp] Type
| ListE [Exp] Type
| VarE String Type
| TableE String Type
| LamE String Exp Type
| AppE Exp Exp Type

The type annotations are used to map the DSH-supported data types to their
relational encodings (see Section 3.2). The Exp data type features type annota-
tions at the value-level, represented by elements of the algebraic datatype Type.
As a direct result of this, the internal representation is not guaranteed to repre-
sent a type-correct expression. However, this data type is not exposed to the user
of the library and extra care has been taken to make sure that the combinators
map to a consistent underlying representation.

The DSH combinators are typed using a technique called phantom typ-
ing [17, 24]. In particular, the Q data type is defined as data Q a = Q Exp
featuring the type variable a that does not occur in the type definition. Instead,
as shown above, this type variable is used to give the required Haskell types to
the DSH combinators. Thus, we obviate the need for type-checking the internal
representation by delegating this task to the host language type-checker.

The abstract data type Q a and its representation is not exposed to the user.
As a consequence, direct pattern matching on values of type Q a is not possible.
However, we do provide a limited form of pattern matching on queries of product
types using view patterns, a syntactic extension of the Glasgow Haskell Compiler
(GHC) [3]. To illustrate, the following expression that contains a view pattern
λ(view → pat)→ expr is desugared to λx → case view x of pat → expr . A view
pattern can match on values of an abstract type if it is given a view function
that maps between the abstract type and a matchable data type. In order to
support multiple types with the same view function, we introduce a type class
View as follows:

class View a b | a → b where
view :: a → b

Instead of projecting all data types onto the same matchable type, we use a type
variable b that is uniquely determined by the type a. The signature of the View
instance for pairs, for example, reads:

instance (QA a,QA b)⇒ View (Q (a, b)) (Q a,Q b)

DSH provides for automatic derivation of View instances for any user-defined
product type.

Regular Haskell list comprehensions only support generators, guards and lo-
cal bindings [23, Section 3.11]. List comprehensions extended with SQL-inspired
order by and group by constructs were added as a language extension to im-
prove the expressiveness of the list comprehensions notation [16]. Further, par-
allel list comprehensions are supported by GHC as an extension. DSH supports
standard list comprehensions as well as both extensions through quasi-quoting
machinery [19, 25]. This results only in a slight syntactic overhead. A DSH list
comprehension is thus written as:

[qc | expr | quals |]

where qc (read: query comprehension) is a quasi-quoter that desugars list com-
prehensions into DSH list-processing combinators.

3.2 Turning Haskell into SQL

After building the type-annotated abstract syntax tree (AST) of a DSH program,
we use a syntax-directed and compositional translation technique called loop-
lifting to compile this AST into table algebra plan(s) [13]. This intermediate
representation has been designed to reflect the query capabilities of modern off-
the-shelf relational database engines.

Loop-lifting implements DSH computations over arbitrarily nested data us-
ing a flat data-parallel evaluation strategy (see Section 4.2) executable by any
relational database system. Specific database engines are targeted by code gen-
erators that derive tailored back-end queries from the generic table algebra
plans. A SQL:1999 code generator allows us to target any standards-compliant
RDBMS [11], a MIL back-end enables DSH to target the MonetDB database
system [5] .

All data types and operations supported by DSH are turned into relational
representations that faithfully preserve the DSH semantics on a relational back-
end. We will discuss this relational encoding in the following.

Atomic values and (nested) tuples. DSH values of atomic types are di-
rectly mapped into values of a corresponding table column type. An n-tuple
(v1, ..., vn),n > 1, of such values maps into a table row of width n. A singleton tu-
ple (v) and value v are treated alike. A nested tuple ((v1, ..., vn), ..., (vn+k, ..., vm))
is represented like its flat variant (v1, ..., vn, ..., vn+k, ..., vm).

Ordered lists. Relational back-ends normally cannot provide ordering guaran-
tees for rows of a table. We therefore let the compiler create a runtime-accessible
encoding of row order. A list value [x1, x2, ..., xl]—where xi denotes the n-tuple
(vi1, ..., vin)—is mapped into a table of width 1 + n as shown in Figure 3(a).
Again, a singleton list [x] and its element x are represented alike. A dedicated
column pos is used to encode the order of a list’s elements.

Nested lists. Relational tables are flat data structures and special consideration
is given to the representation of nested lists. If a DSH program produces the
list [[x11, x12, ..., x1m], ..., [xn1, xn2, ..., xno]] (with m,n, o > 0) which exhibits a
nesting depth of two, the compiler will translate the program into a bundle of
two separate relational queries, say Q1 and Q2. Figure 3(b) shows the resulting
tabular encodings produced by the relational query bundle:

Q1, a query that computes the relational encoding of the outer list [@1,. . . ,@n]
in which all inner lists (including empty lists) are represented by surrogate
keys @i, and

Q2, a query that produces the encodings of all inner lists—assembled into a
single table. If the ith inner list is empty, its surrogate @i will not appear in
the nest column of this second table.

pos item1 · · · itemn

1 v11 · · · v1n
2 v21 · · · v2n
: :
` v`1 · · · v`n

(a) Encoding a
flat ordered list.

Q2

nestpos item1 · · · itemn

@1 1 x11
: : :
@1 m x1m
: : :
@n 1 xn1

: : :
@n o xno

Q1

pos item1

1 @1
: :
n @n

(b) Encoding a nested list (Q1:
outer list, Q2: all inner lists).

Fig. 3. Relational encoding of order and nesting on the database backend.

This use of the surrogates @i resembles van den Bussche’s simulation of the
nested algebra via the flat relational algebra [27]. In effect, our compiler uses a
non-parametric representation for list elements [15] in which the element types
determine their efficient relational representation: either in-line (for tuples of
atomic items) or surrogate-based (for lists)—we come back to this in Section 4.2.
In [13], we describe a compile-time analysis phase—coined (un)boxing—that
infers the correct non-parametric representation for all subexpressions of a DSH
program.

The most important consequence of this design is that it is exclusively the
number of list constructors [·] in the program’s result type that determines the

number of queries contained in the emitted relational query bundle. We refer to
this crucial property as avalanche safety.

For the example program from Section 2 with type [(String , [String])], the
bundle size thus is two. This is radically different from related approaches like
LINQ [21] or HaskellDB [17] which may yield sequences of SQL statements whose
size is dependent on the size of the queried database instance (see Section 4.1).
The two SQL queries that are generated by the SQL:1999 code generator for the
example program are given in the Appendix.

Operations. Relational query processors are specialists in bulk-oriented evalu-
ation: in this mode of evaluation, the system applies an operation to all rows in
a given table. In absence of inter-row dependencies, the system may process the
individual rows in any order or even in parallel. To actually operate the database
back-end in this data-parallel fashion, our compiler draws the necessary amount
of independent work from DSH’s list combinators (see Section 3.1). Consider
this application of map,

map (λx → e) [v1, ..., vn] = [e [v1/x] , ..., e [vn/x]]

which performs n independent evaluations of expression e under different bind-
ings of x (e [v/x] denotes the consistent replacement of free occurrences of x
in e by v). Loop lifting exploits this semantics and compiles map into an alge-
braic plan that evaluates e [vi/x] (i = 1, ...,n) in a data-parallel fashion: all n
bindings for x are supplied in a single table and the database system is free to
consider these bindings and the corresponding evaluations of e in any order it
sees fit (or in parallel). Loop-lifting thus fully realises the independence of the
iterated evaluations and enables the relational query engine to take advantage
of its bulk-oriented processing paradigm. A detailed account of the loop-lifting
of operations is given in [13].

4 Related Work

Embedding database query capabilities into a functional programming language
is not a new idea. The most notable examples include Kleisli [18], Links [8],
LINQ [21, 26] and HaskellDB [17].

Kleisli [18] is a data integration system mainly used to query bioinformat-
ics data. The system features the Collection Programming Language (CPL) for
specifying queries. This language supports a rich data model with arbitrarily
nested sets, bags, lists, tuples, records and variants. CPL queries can be formu-
lated using comprehension notation for the supported collection types. However,
the Kleisli system does not provide for avalanche safety, the feature that DSH
inherits from the Ferry language. The Kleisli system supports querying of dis-
parate data that resides in different databases—this is something we have not
yet considered in the design and implementation of DSH.

Links [8] is a web programming language that provides for tier-less web de-
velopment. That is, a Links program is compiled into client-side, server-side

and database-executable fragments. The Links system only supports database
execution of program fragments that deal with flat data.

LINQ seamlessly embeds a declarative query language facility into Microsoft’s
.NET language framework [21, 26]. Similar to DSH, a LINQ query against
database-resident relational tables is compiled into a sequence of SQL state-
ments, but without DSH’s avalanche safety guarantee. Also, LINQ does not
provide any relational encoding of order. As a consequence, in LINQ, particular
order-sensitive operations are either flagged as being unsupported or are mapped
into database queries that return list elements in some arbitrary order [13].

HaskellDB [17] is a combinator library for Haskell that enables the con-
struction of SQL queries in a type-safe and declarative fashion. As HaskellDB
is a well-known system in the Haskell community that is related to DSH’s ap-
proach of letting developers use the Haskell programming language itself to for-
mulate (type-safe) queries against database-resident data, we will compare DSH
to HaskellDB in more detail in the following.

4.1 HaskellDB

As with DSH, a HaskellDB [17] query is formulated completely within Haskell
without having to resort to SQL syntax. Let us highlight two significant differ-
ences between HaskellDB and DSH.
Query Avalanches DSH provides a guarantee that the number of SQL queries

issued to implement a given program is exclusively determined by the pro-
gram’s static type: each occurrence of a list type constructor [t] accounts
for exactly one SQL query. Our running example from Section 2 with its
result type of shape [[·]] thus led to the bundle of two SQL queries shown in
Appendix. This marks a significant deviation from HaskellDB: in this sys-
tem, the length of the SQL statement sequence may depend on the database
instance size, resulting in an avalanche of queries.
To make this concrete, we reformulated the example program in HaskellDB
(Figure 4). Table 1 shows the number of SQL queries emitted by HaskellDB
and DSH in dependence of the number of distinct categories in column cat
of table facilities. Table 1 also gives the overall runtimes of both programs for
the different category counts. To measure these times we ran both programs
on the same 2.8 GHz Intel Core 2 Duo computer (running Mac OS X 10.6.6)
with 8 GB of RAM. PostgreSQL 9.0.2-1 was used as the database back-end.
We executed each program ten times. Table 1 lists the average runtimes for
the two programs along with upper and lower bounds with 95% confidence
interval, as calculated by the criterion library [1].
For HaskellDB, the query avalanche effect is clearly visible: the number of
queries generated depends on the population of column cat and the relational
database back-end is easily overwhelmed by the resulting query workload.
With DSH, the number of queries issued remains constant significantly re-
ducing the overall runtime.

List Order Preservation List element order is inherent to the Haskell data
model. DSH relationally encodes list order (column pos) and carefully trans-

getCats :: Query (Rel (RecCons Cat (Expr String) RecNil))
getCats = do

facs ← table facilities
cats ← project (cat << facs ! cat)
unique
return cats

getCatFeatures :: String → Query (Rel (RecCons Meaning (Expr String) RecNil))
getCatFeatures cat = do

facs ← table facilities
feats ← table features
means ← table meanings
restrict $ feats ! feature . == .means ! feature .&&.

facs ! cat . == . constant cat .&&.
facs ! fac . == . feats ! fac

m ← project (meaning <<means ! meaning)
unique
return m

query :: IO [(Record (RecCons Cat String RecNil)
, [Record (RecCons Meaning String RecNil)])]

query = do
cs ← doQuery getCats
sequence $ map (λc → do

m ← doQuery $ getCatFeatures $ c ! cat
return (c,m)) cs

Fig. 4. HaskellDB version of running example.

lates operations such that this order encoding is preserved (see Section 3.2).
In contrast, HaskellDB does not provide any relational encoding of order.
As a consequence, HaskellDB does not support order-sensitive operations.

4.2 Data Parallel Haskell

RDBMSs are carefully tuned and highly efficient table processors. A look under
the hood reveals that, indeed, database query engines provide a sophisticated flat
data-parallel execution environment: most of the engine’s primitives—typically
a variant of the relational algebra—apply a single operation to all rows of an
input table (consider relational selection, projection, or join, for example).

In this sense, DSH is a close relative of Data Parallel Haskell (DPH) [6, 7, 15]:
both accept very similar comprehension-centric Haskell fragments, both yield
code that is amenable for execution on flat data-parallel backends (relational
query engines or contemporary multi-core CPUs). We shed light on a few striking
similarities here.
Parallel arrays vs. tables DPH programs operate over so-called parallel ar-

rays of type [:a :], the primary abstraction of a vector of values that is subject

Table 1. Number of SQL queries emitted and observed overall program execution
times in dependence of the population of column cat for the HaskellDB and DSH
implementations of the running example (DNF: did not finish within hours).

HaskellDB DSH

categories # queries � (sec) # queries � (sec)

1 000 1 001 11.712+0.2%
−0.2% 2 0.604+1.1%

−0.3%

10 000 10 001 291.369+3.2%
−2.4% 2 6.419+1.5%

−2.0%

100 000 100 001 DNF 2 74.709+0.5%
−0.3%

type Vector = [:Float :]
type SparseVector = [:(Int ,Float) :]

sumP :: Num a ⇒ [:a :]→ a
(! :) :: [:a :]→ Int → a

dotp :: SparseVector → Vector → Float
dotp sv v = sumP [:x ∗ (v ! : i) | (i , x)← sv :]

Fig. 5. DPH example: sparse vector multiplication (taken from [7]).

to bulk computation. Positional indexing into these arrays (via ! :) is ubiq-
uitous. Parallel arrays are strict: evaluating one array element evaluates the
entire array.
In comparison, the DSH-generated database primitives operate over (un-
ordered) tables in which a dedicated column pos explicitly encodes element
indexes (see Section 3.2). Primitive operations are always applied to all rows
of their input tables.

Non-parametric data representation In DPH, arrays of tuples [: (a, b) :] are
represented as tuples of arrays ([:a :], [:b :]) of identical length. The rep-
resentation of a nested array [: [:a :] :] has two components: (1) an array
of (offset , length) descriptors, and (2) a flat data array [:a :] holding the
actual elements.
In DSH, the fields of a tuple live in adjacent columns of the same table. A
nested list is represented in terms of two tables: (1) a table of surrogate keys,
each of which identifies a nested list, and (2) a table of data elements, each
accompanied by a foreign surrogate key to encode list membership.
This foreign-key-based representation of nesting can readily benefit from
relational indexes that map any data element x to the surrogate key of
its containing list. A direct adoption of DPH’s (offset , length) descriptor-
based representation, instead, would ultimately lead to range queries of the
form x .pos BETWEEN offset AND offset + length— a workable but less
efficient alternative on off-the-shelf relational database back-ends.

Note that it is crucial, though, that DPH’s as well as DSH’s representation
preserve the locality of the actual elements held in nested data structures.

Lifting operations In DPH, operations of type a → b are lifted to apply to en-
tire arrays of values: [:a :]→ [:b :]. Consider a DPH variant of sparse vector
multiplication (Figure 5). The comprehension defines an iterative compu-
tation to be applied to each element of sparse vector sv : project onto the
components i and x , perform positional array access into v (! :), multiply.
With vectorisation, Data Parallel Haskell trades comprehension notation for
data-parallel combinators (e.g., fstˆ, ∗ˆ, bpermuteP), all operating over en-
tire arrays (Figure 6, left).
DSH’s translation strategy, loop-lifting, compiles a family of Haskell list com-
binators into algebraic primitives, all of which operate over entire tables (i.e.,
the relational engine performs lifted application by definition) [13].
Intermediate code produced by DPH and DSH indeed exhibits structural
similarities. To illustrate, we have identified the database primitives that
implement the sparse vector multiplication program of Figure 5 in Figure 6
(right): bpermuteP , which performs bulk indexed array lookup, turns into a
relational equi-join over column pos, for example.

A study of the exact relationship between DPH and DSH still lies ahead. We
conjecture that DSH’s loop-lifting compilation strategy does have an equivalent
formulation in terms of vectorisation or Blelloch’s flattening transformation [4].

fstˆ :: [: (a, b) :]→ [:a :]
sndˆ :: [: (a, b) :]→ [:b :]
bpermuteP :: [:a :]→ [:Int :]→ [:a :]

let sv = [:(1, 0.1), (3, 1.0), (4, 0.0) :]
v = [:10, 20, 30, 40, 50:]

in
sumP (sndˆ sv ∗ˆ bpermuteP v (fstˆ sv))

sndˆ svfstˆ sv

v

∗ˆ

bpermuteP

sumP

pos1 item1 item2
0 1 0.1
1 3 1.0
2 4 0.0

pos2 item3
0 10
1 20
2 30
3 40
4 50

onitem1=pos2

πpos1,item4:item2*item3

sumitem5:〈item4〉

@pos3:0

Fig. 6. Intermediate code generated for the sparse vector multiplication example
of Fig. 5: DPH (left) vs. DSH (right).

4.3 Embedding Approaches

The DSH implementation is realised through a combination of a number of estab-
lished language embedding techniques. In the tradition of deep embeddings [14]
DSH’s list processing combinators construct data representation of embedded
queries allowing for domain-specific optimisation and code generation. Haskell’s

template meta-programming and quasiquoting facilities are used to provide con-
venient syntactic sugar (i.e., the list comprehension notation with extensions)
for the list-processing combinators. Type correctness of the embedded queries
is ensured by phantom typing [17, 24]. View patterns [28] provide for pattern
matching on otherwise abstract data representation of embedded queries.

5 Future Work and Conclusions

In this paper we presented Database Supported Haskell (DSH), a library that
allows the use of a relational database management system (RDBMS) as a co-
processor for the Haskell runtime. Thus, DSH is capable of processing large scale
data, that would otherwise exceed heap capacity. Database-executable program
fragments are written in a style that has been designed to imitate the syntax,
types and semantics of typical Haskell functions over lists. The expressive list
comprehension notation is supported with only slight syntactic overhead (due
to our use of quasi-quoting).

Overall, as a host language, Haskell served our needs well in the process of
DSH design and implementation. However, there is room for improvements. In
particular, if the comprehension notation would have been supported not only
for lists but for any monad [29], as was the case in Haskell 1.4 [22], we could
define DSH combinators as monadic combinators and reuse monad comprehen-
sion notation instead of implementing our own quasi-quoter. This would save the
implementation effort, eliminate the syntactic overhead and lead to better error
messages referring to the original source code instead of the generated code.

We think that monadic do notation is a poor fit for DSH and, more generally,
for list-based libraries and Domain Specific Languages (DSLs). Thus, we are
bringing back monad comprehensions to Haskell, and are currently working on
an implementation as an extension for the Glasgow Haskell Compiler [3]. We
are also generalising the recently proposed extensions of the list comprehension
notation [16] to monads so that those extensions could also be used in the monad
comprehension notation. Although we think that list-based libraries and DSLs
would benefit most, this extension could have other interesting applications.

DSH uses compilation technology developed for the Ferry language. Thus,
we support nested lists, preserve list order and guarantee that the number of
generated relational queries only depends on the static type of the query result
and remains unaffected by the database instance size. We expect to continue
work on DSH and Ferry in the following directions:

– support for functions as first-class citizens (so that the result of a sub-query
can also be a function),

– support for sum types,

– support for general folds and recursion,

– the application of DSH to large-scale data analysis problems, and

– an exploration of DSH’s relationship to Data Parallel Haskell.

Acknowledgements. Tom and Jeroen have been supported by the German
Research Foundation (DFG), Grant GR 2036/3-1. George has received support
from the ScienceCampus Tübingen: Informational Environments. We would also
like to acknowledge Alexander Ulrich, Jan Rittinger and the anonymous review-
ers for their helpful comments and feedback.

Bibliography

[1] Criterion. http://hackage.haskell.org/package/criterion.
[2] Database Supported Haskell. http://hackage.haskell.org/package/DSH.
[3] The Glasgow Haskell Compiler. http://www.haskell.org/ghc/.
[4] Guy E. Blelloch and Gary W. Sabot. Compiling Collection-Oriented Languages

onto Massively Parallel Computers. Journal of Parallel and Distributed Comput-
ing, 8:119–134, February 1990.

[5] Peter A. Boncz and Martin L. Kersten. MIL primitives for querying a fragmented
world. The VLDB Journal, 8:101–119, October 1999.

[6] Manuel M. T. Chakravarty and Gabriele Keller. More Types for Nested Data
Parallel Programming. In Proceedings of the Fifth ACM SIGPLAN International
Conference on Functional Programming (ICFP), pages 94–105, Montreal, Canada,
2000. ACM.

[7] Manuel M. T. Chakravarty, Roman Leshchinskiy, Simon Peyton Jones, Gabriele
Keller, and Simon Marlow. Data Parallel Haskell: a status report. In Proceedings
of the 2007 Workshop on Declarative Aspects of Multicore Programming (DAMP),
pages 10–18, Nice, France, 2007. ACM.

[8] Ezra Cooper, Sam Lindley, Philip Wadler, and Jeremy Yallop. Links: Web pro-
gramming without tiers. In Proceedings of the 5th International Symposium on
Formal Methods for Components and Objects (FMCO), pages 266–296, Amster-
dam, The Netherlands, 2006. Springer-Verlag.

[9] George Giorgidze and Henrik Nilsson. Mixed-level Embedding and JIT Compi-
lation for an Iteratively Staged DSL. In Proceedings of the 19th International
Workshop on Functional and (Constraint) Logic Programming (WFLP), Madrid,
Spain, Jan 2010. Springer-Verlag.

[10] Torsten Grust, Manuel Mayr, and Jan Rittinger. Let SQL Drive the XQuery
Workhorse (XQuery Join Graph Isolation). In Proceedings of the 13th Interna-
tional Conference on Extending Database Technology (EDBT), pages 147–158,
Lausanne, Switzerland, 2010. ACM.

[11] Torsten Grust, Manuel Mayr, Jan Rittinger, Sherif Sakr, and Jens Teubner. A
SQL: 1999 Code Generator for the Pathfinder XQuery Compiler. In Proceedings
of the 2007 ACM SIGMOD International Conference on Management of Data
(SIGMOD), pages 1162–1164, Beijing, China, 2007. ACM.

[12] Torsten Grust, Manuel Mayr, Jan Rittinger, and Tom Schreiber. FERRY:
Database-Supported Program Execution. In Proceedings of the 35th SIGMOD
International Conference on Management of Data (SIGMOD), pages 1063–1066,
Providence, RI, USA, 2009. ACM.

[13] Torsten Grust, Jan Rittinger, and Tom Schreiber. Avalanche-Safe LINQ Compila-
tion. In Proceedings of the 36th International Conference on Very Large Databases
(VLDB), pages 162–172, Singapore, Sep 2010. VLDB Endowment.

[14] Paul Hudak. Modular Domain Specific Languages and Tools. In Proceedings of
Fifth International Conference on Software Reuse (ICSR), pages 134–142, June
1998.

[15] Simon Peyton Jones, Roman Leshchinskiy, Gabriele Keller, and Manuel M. T.
Chakravarty. Harnessing the Multicores: Nested Data Parallelism in Haskell. In
IARCS Annual Conference on Foundations of Software Technology and Theoretical
Computer Science (FSTTCS), volume 2, pages 383–414, Bangalore, India, 2008.
Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik.

[16] Simon Peyton Jones and Philip Wadler. Comprehensive Comprehensions. In
Proceedings of the ACM SIGPLAN Workshop on Haskell, pages 61–72, Freiburg,
Germany, 2007. ACM.

[17] Daan Leijen and Erik Meijer. Domain Specific Embedded Compilers. In Proceed-
ings of the 2nd Conference on Domain-Specific Languages (DSL), pages 109–122,
Austin, Texas, United States, 1999. ACM.

[18] Wong Limsoon. Kleisli, a functional query system. Journal of Functional Pro-
gramming, 10:19–56, January 2000.

[19] Geoffrey Mainland. Why It’s Nice to be Quoted: Quasiquoting for Haskell. In
Proceedings of the ACM SIGPLAN Workshop on Haskell, pages 73–82, Freiburg,
Germany, 2007. ACM.

[20] Geoffrey Mainland and Greg Morrisett. Nikola: Embedding Compiled GPU Func-
tions in Haskell. In Proceedings of the Third ACM Haskell Symposium on Haskell,
pages 67–78, Baltimore, Maryland, USA, 2010. ACM.

[21] Erik Meijer, Brian Beckman, and Gavin Bierman. LINQ: Reconciling Objects,
Relations and XML in the .NET Framework. In Proceedings of the 2006 ACM
SIGMOD International Conference on Management of Data (SIGMOD), pages
706–706, Chicago, IL, USA, 2006. ACM.

[22] John Peterson and Kevin Hammond. Haskell 1.4: A Non-strict, Purely Functional
Language. Technical Report YALEU/DCS/RR-1106, Department of Computer
Science, Yale University, 1997.

[23] Simon Peyton Jones, editor. Haskell 98 Language and Libraries – The Revised
Report. Cambridge University Press, Cambridge, England, 2003.

[24] Morten Rhiger. A Foundation for Embedded Languages. ACM Transactions on
Programming Languages and Systems (TOPLAS), 25:291–315, May 2003.

[25] Tim Sheard and Simon Peyton Jones. Template Meta-programming for Haskell. In
Proceedings of the ACM SIGPLAN Workshop on Haskell, pages 1–16, Pittsburgh,
PA, USA, October 2002. ACM.

[26] Don Syme. Leveraging .NET Meta-programming Components from F#: Inte-
grated Queries and Interoperable Heterogeneous Execution. In Proceedings of the
2006 Workshop on ML, pages 43–54, Portland, Oregon, USA, 2006. ACM.

[27] Jan Van den Bussche. Simulation of the nested relational algebra by the flat
relational algebra, with an application to the complexity of evaluating powerset
algebra expressions. Theoretical Computer Science, 254:363–377, March 2001.

[28] Philip Wadler. Views: A way for pattern matching to cohabit with data abstrac-
tion. In Proceedings of the 14th ACM SIGACT-SIGPLAN Symposium on Princi-
ples of Programming Languages (POPL), pages 307–313, Munich, West Germany,
1987. ACM.

[29] Philip Wadler. Comprehending monads. In Proceedings of the 1990 ACM Con-
ference on LISP and Functional Programming (LFP), pages 61–78, Nice, France,
1990. ACM.

Appendix

DSH’s SQL:1999 code generator emits the following bundle of two SQL queries for the
Haskell example program of Section 2:

WITH
-- binding due to duplicate elimination

t0000 (item1 str) AS
(SELECT DISTINCT a0000 .categorie AS item1 str

FROM facilities AS a0000)

SELECT
DENSE RANK () OVER

(ORDER BY a0001 .item1 str ASC) AS item4 nat ,
1 AS iter3 nat , a0001 .item1 str

FROM t0000 AS a0001
ORDER BY a0001 .item1 str ASC;

WITH
-- binding due to rank operator

t0000 (item9 str , item10 str , item37 nat) AS
(SELECT a0000 .categorie AS item9 str , a0000 .facility AS item10 str ,

DENSE RANK () OVER
(ORDER BY a0000 .categorie ASC) AS item37 nat

FROM facilities AS a0000),

-- binding due to rank operator
t0001 (item9 str , item10 str , item37 nat , item3 str , item4 str ,

item1 str , item2 str , item38 nat) AS
(SELECT a0001 .item9 str , a0001 .item10 str , a0001 .item37 nat ,

a0002 .feature AS item3 str , a0002 .meaning AS item4 str ,
a0003 .facility AS item1 str , a0003 .feature AS item2 str ,
DENSE RANK () OVER
(ORDER BY a0001 .item9 str ASC, a0001 .item10 str ASC,

a0002 .feature ASC, a0002 .meaning ASC,
a0003 .facility ASC, a0003 .feature ASC) AS item38 nat

FROM t0000 AS a0001 ,
meanings AS a0002 ,
features AS a0003

WHERE a0002 .feature = a0003 .feature
AND a0001 .item10 str = a0003 .facility),

-- binding due to aggregate
t0002 (pos29 nat , iter30 nat , item31 str) AS

(SELECT MIN (a0004 .item38 nat) AS pos29 nat ,
a0004 .item37 nat AS iter30 nat ,
a0004 .item4 str AS item31 str

FROM t0001 AS a0004
GROUP BY a0004 .item37 nat , a0004 .item4 str)

SELECT a0005 .item31 str , a0005 .iter30 nat
FROM t0002 AS a0005
ORDER BY a0005 .iter30 nat ASC, a0005 .pos29 nat ASC;

