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Abstract
This paper is about a Glasgow Haskell Compiler (GHC) extension
that generalises Haskell’s list comprehension notation to monads.
The monad comprehension notation implemented by the extension
supports generator and filter clauses, as was the case in the Haskell
1.4 standard. In addition, the extension generalises the recently
proposed parallel and SQL-like list comprehension notations to
monads. The aforementioned generalisations are formally defined
in this paper. The extension will be available in GHC 7.2.

This paper gives several instructive examples that we hope will
facilitate wide adoption of the extension by the Haskell commu-
nity. We also argue why the do notation is not always a good fit for
monadic libraries and embedded domain-specific languages, espe-
cially for those that are based on collection monads. Should the
question of how to integrate the extension into the Haskell standard
arise, the paper proposes a solution to the problem that led to the
removal of the monad comprehension notation from the language
standard.

Categories and Subject Descriptors D.3.3 [Language Constructs
and Features]: Data types and structures; H.2.3 [Languages]:
Query languages

General Terms Languages, Design, Theory

Keywords Haskell, monad, comprehension

1. Introduction
List comprehensions provide for a concise and expressive notation
for writing list-processing code. Although the notation itself is
extremely useful, Haskell’s built-in list data structure is not always
a good choice. Performance and memory requirements, and the
need to use data structures admitting strict and parallel operations
are just a few factors that may render Haskell lists unsuitable
for many applications. Currently, in Haskell, the comprehension
notation only works for lists.

We think that the notation is too good for being confined to just
lists. In this paper, we present a language extension that generalises
the list comprehension notation to monads. When it comes to the
generator and filter clauses of the standard list comprehension nota-
tion, the extension is based on the generalisation that was proposed
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by Wadler [28] and was subsequently integrated in the Haskell 1.4
standard [4]. In addition, we generalise recently proposed exten-
sions to the list comprehension notation to monads: SQL-like list
comprehensions and parallel list comprehensions.

SQL-like list comprehensions [25] extend the notation with
SQL-inspired clauses, most notably for grouping. Currently, GHC
supports SQL-like comprehensions only for lists. Parallel list com-
prehensions as implemented by GHC and Hugs [2] extend the list
comprehension with a clause that supports zipping of lists. Gener-
alisations of the two aforementioned list comprehension notation
extensions are formally described in this paper.

The extension has been implemented in the Glasgow Haskell
Compiler (GHC) [3] and will be available in GHC 7.2. A GHC
patch that implements the monad comprehensions extension was
implemented by the third author. The patch was subsequently mod-
ified and applied to the GHC source tree by Simon Peyton Jones.

This paper gives several instructive examples that we hope will
facilitate wide adoption of the extension by the Haskell community.
Some of the examples demonstrate that the do notation is not
always a good fit for monadic libraries and embedded domain-
specific languages (EDSLs), especially for those that are based on
collection monads. We also show that monad comprehensions can
be used for data-parallel programming as a drop-in replacement for
array comprehensions [9]. This obviates the need for the special
array comprehension notation currently implemented in GHC.

As we have already mentioned, monad comprehensions, once
part of the Haskell standard, were dropped from the language
[4, 24]. The reasons included monad-comprehensions–related er-
ror messages produced by Haskell implementations. This was con-
sidered as a barrier too high for new users of Haskell [15]. Type
ambiguity errors were of particular concern. Should the question
of how to integrate the extension into the Haskell standard arise,
this paper proposes to extend Haskell’s defaulting mechanism and
use it for disambiguation of comprehension-based code just like
defaulting is used for disambiguation of numerical code.

The following list outlines the contributions of this paper.

• We present a language extension that brings back monad com-
prehensions to GHC. In addition to the well-known generalisa-
tion of the standard list comprehension notation with generator
and filter clauses, we also generalise the clauses introduced by
SQL-like and parallel list comprehensions to monads.

• We formally define typing and desugaring rules implemented
by the language extension.

• We provide several instructive examples that make use of
monad comprehensions and demonstrate that the do notation is
not always a good fit for monadic programming. We also show
that monad comprehensions subsume array comprehensions.



quickSort :: Ord α⇒ [α ]→ [α ]
quickSort ys
| null ys = mzero
| otherwise = quickSort [x | x ← ys, x < y ] ‘mplus‘

[x | x ← ys, x ≡ y ] ‘mplus‘
quickSort [x | x ← ys, x > y ]

where
y = head ys

Figure 1. Quicksort for lists.

• We overview the reasons that led to the removal of monad com-
prehensions from the language standard and propose a possible
solution.

The rest of this paper is structured as follows: Section 2 infor-
mally introduces monad comprehensions by means of instructive
examples; Section 3 formalises the syntax, typing rules, and desug-
aring translation of monad comprehensions; Section 4 overviews
the GHC extension that implements monad comprehensions; Sec-
tion 5 proposes a solution to the type ambiguity problem that in-
fluenced the removal of monad comprehensions from the Haskell
language standard and proposes a Haskell extension for list literal
overloading; Section 6 reviews related work; and finally, Section 7
concludes the paper.

2. Monad Comprehension Examples
The purpose of this section is twofold; firstly to informally intro-
duce monad comprehensions by means of examples and secondly
to show the reader that monad comprehensions can be used as an
expressive and concise notation in a range of application domains.
The examples provided in this section should provide enough in-
sight in the use of monad comprehensions for the reader to make
use of monad comprehensions in her own code. For further details,
the reader can consult a formal description of the monad compre-
hensions syntax, typing rules and desugaring translation given in
Section 3.

2.1 Quicksort
Let us consider how monad comprehensions can be used to gener-
alise existing code that is based on list comprehensions to work
with other monadic structures. We use the well-known Haskell
implementation of the Quicksort algorithm given in Figure 1 to
demonstrate several possible generalisations.

The quickSort definition makes use of the overloaded func-
tions mzero and mplus for empty list construction and list con-
catenation, respectively. These overloaded functions come from the
MonadPlus class, which is defined in the Control .Monad mod-
ule of the standard Haskell library. The MonadPlus class is a sub-
class of Monad for those monads that are monoids as well. The
comprehension expressions, and the null and head functions are
specific to lists.

Consider the sub-expression [x | x ← ys, x < y ] from the
Quicksort example. This sub-expression is, in the case of normal
list comprehensions, desugared into the following code:

concat (map (λx → map (λ()→ x )
(if (x < y) then [()] else [ ]))

ys)

Note the use of the concat and map list processing combinators.
When the monad comprehension extension is turned on, GHC

considers the same comprehension expression as a monad compre-
hension and desugars it to the following code:

join (liftM (λx → liftM (λ()→ x )
(guard (x < y)))

ys)

Note the use of the join , liftM and guard monadic combinators.
The monad comprehensions extension can be turned on by placing
the following pragma on top of a Haskell module:

{-# LANGUAGE MonadComprehensions #-}

By overloading the comprehension notation and hiding the Haskell
Prelude definitions of the null and head functions, the quickSort
definition can be given any of the following type signatures:

quickSort :: Ord α⇒ Seq α → Seq α
quickSort :: Ord α⇒ DList α→ DList α
quickSort :: Ord α⇒ AList α→ AList α

• The first type signature allows the quickSort definition to be
used for the strict sequence type defined in the containers
package. This version benefits fromO(log n) append compared
to the O(n) append used in the list version.

• The second type signature allows the quickSort definition to
be used for the difference list type defined in the difference-
list package. This version benefits from O(1) append.

• The third type signature allows the quickSort definition to be
used for the catenation list type defined in the monad -par
package. This version benefits from O(1) append and parallel
filters.
The package ListLike provides a type class that overloads reg-

ular list functions (including null and head ). Using this package
it is possible to give the quickSort definition the following type
signature:

quickSort :: (Ord α,ListLike m α,MonadPlus m)⇒
m α→ m α

With this type signature the definition works for any list-like struc-
ture that is also a monad and a monoid. This includes the four data
structures described earlier in this section. Note that when perform-
ing the generalisation described in this section, we do not have to
change the definition of quickSort , we only have to change its type
signature.

2.2 Data-Parallel Arrays
GHC supports array comprehensions for processing strict, data-
parallel arrays [9]. For example, the following function, that mul-
tiplies a sparse vector with a dense vector, makes use of the array
comprehension notation:

sparseMul :: [: (Int ,Float) :]→ [ : Float : ]→ Float
sparseMul sv v = sumP [ : f ∗ (v !: i) | (i , f )← sv : ]

GHC desugars array comprehensions into array processing
combinators. Because a monad instance for data-parallel arrays is
provided by the data-parallel programming library that is shipped
with GHC, monad comprehensions can be used as a drop-in re-
placement for array comprehensions. For example, the sparse vec-
tor multiplication can now be defined as follows (note that the array
comprehension notation has been replaced with monad comprehen-
sion notation):

sparseMul :: [: (Int ,Float) :]→ [ : Float : ]→ Float
sparseMul sv v = sumP [f ∗ (v !: i) | (i , f )← sv ]

Because monad comprehensions subsume array comprehen-
sions, it would be possible to drop support for array compre-
hensions in favour of the more general comprehension construct.
This will simplify the maintenance of GHC’s front-end. Currently,
GHC provides comprehension notation for lists, as specified in the



Haskell language standard; for data-parallel arrays as implemented
in the data-parallel Haskell extension; and for monads as imple-
mented in the present monad comprehensions extension.

2.3 Zip Comprehensions
GHC and Hugs support the ParallelListComp extension that al-
lows for drawing elements from lists in parallel. To our knowledge,
parallel list comprehensions were first introduced in a nested data-
parallel language called NESL [6]. The ParallelListComp exten-
sion featured in Haskell was ported from Cryptol [19], a purely
functional DSL for writing cryptographic applications. We refer to
the notation supported by this extension as zip comprehensions, be-
cause it is syntactic sugar for the zip combinator from the standard
Haskell Prelude. For example, consider the following function that
multiplies two dense vectors of floating point numbers:

denseMult :: [Float ]→ [Float ]→ [Float ]
denseMult xs ys = sum [x ∗ y | x ← xs | y ← ys ]

Here, vectors are represented as lists. This definition is desugared
into the following code:

denseMult :: [Float ]→ [Float ]→ [Float ]
denseMult xs ys = sum [x ∗ y | (x , y)← zip xs ys ]

If the ParallelListComp extension is used in conjunction with
the MonadComprehensions extension, the aforementioned zip
comprehension is desugared to the following code:

denseMult :: [Float ]→ [Float ]→ [Float ]
denseMult xs ys = sum [x ∗ y | (x , y)← mzip xs ys ]

The mzip function is a member of the MonadZip type class
that we have introduced to support generalisation of zip compre-
hensions as a subclass of monads that admit zipping. The class
MonadZip is defined as follows:

class Monad m ⇒ MonadZip m where
mzip :: m α→ m β → m (α, β)
mzip = mzipWith (, )

mzipWith :: (α→ β → c)→ m α→ m β → m c
mzipWith f ma mb = liftM (uncurry f ) (mzip ma mb)

munzip :: m (α, β)→ (m α,m β)
munzip mab = (liftM fst mab, liftM snd mab)

The laws that the class methods are expected to satisfy are given
in Section 3. As a minimal definition of a MonadZip instance
one needs to provide either an implementation of mzip or an
implementation of mzipWith . The default implementation of the
munzip method can be overridden by a more efficient, instance-
specific version. The instance for lists, for example, is defined as
follows:

instance MonadZip [ ] where
mzip = zip
munzip = unzip

Let us demonstrate how to use monad comprehensions to imple-
ment a data-parallel version of the denseMult function. We start
by defining a MonadZip instance for data-parallel arrays as fol-
lows:

instance MonadZip [ ::] where
mzip = zipP
munzip = unzipP

The zipP and unzipP functions are defined in the data-parallel
programming library that ships with GHC. We can now implement
data-parallel, dense-vector multiplication using the monad compre-

hension notation, instead of array comprehension notation, as fol-
lows:

denseMultP :: [: Float : ]→ [ : Float : ]→ [ : Float : ]
denseMultP xs ys = sumP [x ∗ y | x ← xs | y ← ys ]

In a recently published article, Patricek demonstrates several ex-
amples that make use of zip comprehensions and are complemen-
tary to the examples given in this paper [23]. Specifically, the arti-
cle demonstrates the usefulness of zip comprehensions for several
monads that are not collections (e.g., monads for parallel parsing
and parallel evaluation).

2.4 SQL-like Comprehensions
GHC supports the TransformListComp language extension1 that
allows SQL-like constructs to be used for transforming and group-
ing of results of list comprehension expressions. Consider the fol-
lowing example (adapted from [25]):

employees :: [(String ,String , Integer)]
employees = [ ("Dilbert", "Eng", 80)

, ("Alice", "Eng", 100)
, ("Wally", "Eng", 40)
, ("Catbert", "HR", 150)
, ("Dogbert", "Con", 500)
, ("Ratbert", "HR", 90)
]

query :: [(String , Integer)]
query = [ (the dept , sum salary)

| (name, dept , salary)← employees
, then group by dept using groupWith
, then sortWith by (sum salary)
]

The SQL-like list comprehension expression groups the em-
ployees by department, sorts the departments by cumulative salaries
of its employees, and returns the sorted list of departments and cor-
responding cumulative salaries. The SQL-like list comprehension
expression evaluates to the following list of tuples:

[("Eng", 220), ("HR", 240), ("Con", 500)]

The SQL-like comprehension desugars into the following code:

map
(λ( , dept , salary)→ (the dept , sum salary))
sortWith

(λ( , , salary)→ sum salary)
(map (λl → (map (λ(name, , ) → name) l

,map (λ( , dept , ) → dept) l
,map (λ( , , salary)→ salary) l))

(groupWith (λ( , dept , )→ dept) employees))

The functions the , sortWith and groupWith are exported from
the GHC .Exts module and have the following type signatures:

the :: Eq α ⇒ [α ]→ α
sortWith :: Ord β ⇒ (α→ β)→ [α ]→ [α ]
groupWith :: Ord β ⇒ (α→ β)→ [α ]→ [ [α ] ]

The the function returns an element of a given list if all elements
of the list are equal, otherwise it returns bottom. The sortWith
function sorts a list by using the provided function to calculate
the sorting criteria for each element of the list. The groupWith
function groups a given list elements by using the provided function
to calculate the grouping criteria for each element of the list.

1 {-# LANGUAGE MonadComprehensions, TransformListComp #-}
enables SQL-like monad comprehensions.



data Tree α = Leaf α | Branch (Tree α) (Tree α)

fmapT :: (α→ β)→ Tree α→ Tree β
fmapT f (Leaf x ) = Leaf (f x )
fmapT f (Branch l r) = Branch (fmapT f l)

(fmapT f r)

instance Functor Tree where
fmap = fmapT

joinT :: Tree (Tree α)→ Tree α
joinT (Leaf x ) = x
joinT (Branch l r) = Branch (joinT l) (joinT r)

instance Monad Tree where
return = Leaf
xs >>= f = joinT (fmap f xs)

Figure 2. The monad of binary trees with labelled leaves.

Intuitively, the then clause provides two types of transforma-
tions of list comprehension expressions; namely, transformations
of type [α ]→ [α ] and transformations of type [α ]→ [ [α ] ]. Note
that, just like its SQL counterpart, the then group clause changes
types of already bound variables: in our example, the salary vari-
able is of type Integer at the binding site, but its type changes to
[Integer ] after the then group clause.

The SQL-like comprehension example considered in this sec-
tion makes use of only two syntactic forms of the then clause.
The notation also supports three other forms of the then clause.
Having said that, all forms fall into the two types of transforma-
tions discussed earlier. A detailed description of all five forms of
the then clause is given in Section 3.

The monad comprehensions extension generalises SQL-like list
comprehensions to monads. Specifically, it generalises the afore-
mentioned types of transformations to Monad m ⇒ m α→ m α
and Monad m ⇒ m α → m (m α), respectively. Section 2.5
presents an instructive example that makes use of this generalisa-
tion.

2.5 Tree Comprehensions and Scans
The variety of monad instances that have been—and undoubtedly
will be—developed and deployed in Haskell code is enormous. Just
as diverse are the potential uses of monad comprehension syntax.
Consider the monad Tree α of full binary trees whose leaves carry
labels of type α (Figure 2). Associated with this monad instance
are tree comprehensions which provide a natural way to express
tree traversals.

Here, let us consider scans over trees, essential building blocks
in the construction of parallel algorithms over lists and tree-shaped
structures [5]. On his blog2, Conal Elliott recently discussed the
derivation of such left and right tree scans. His specification starts
out with functions initTs and tailTs , variants of the similarly
named list combinators (Figure 3). These functions immediately
lead to succinct formulations of scans in terms of SQL-like tree
comprehensions:

instance Foldable Tree where
fold (Leaf x ) = x
fold (Branch l r) = fold l ‘mappend ‘ fold r

scanlT , scanrT :: (Monoid α)⇒ Tree α→ Tree α
scanlT t = [fold x | x ← t, then group using initTs ]
scanrT t = [fold x | x ← t, then group using tailTs ]

2 http://conal.net/blog/posts/deriving-parallel-tree-scans/

initTs, tailTs :: Tree α→ Tree (Tree α)
initTs (Leaf x ) = Leaf (Leaf x )
initTs (Branch l r) = Branch

(initTs l)
(fmap (l ‘Branch‘) (initTs r))

tailTs (Leaf x ) = Leaf (Leaf x )
tailTs (Branch l r) = Branch

(fmap (‘Branch‘r) (tailTs l))
(tailTs r)

Figure 3. Conal Elliot’s tree variants of inits and tails (originally
defined over lists).

As we have mentioned earlier in this paper, in these comprehen-
sions, variable x is of type α before the group using qualifier
but of type Tree α in the comprehensions’ heads. In the definition
of scanlT t, the clause group using initTs groups leaf x with
those leaves that appear before x in a preorder traversal of t. Note
that these groups take the shape of a Tree α themselves. The fi-
nal fold flattens out the resulting groups’ structure, leaving us with
the desired left scan result. The right scan scanrT behaves accord-
ingly.

2.6 Rebindable Syntax and Set Comprehensions
The MonadComprehensions extension can be used in conjunc-
tion with the RebindableSyntax extension. This combination of
extensions allows the user to rebind the monadic combinators from
the Haskell Prelude. This opens further opportunities to make use
of monad comprehensions in Haskell libraries and EDSLs.

One such application is to use monad comprehensions as set
comprehensions. This can be done by hiding the monadic combina-
tors from the Haskell Prelude and importing the Control .RMonad
module from the rmonad package. This module exports the
RMonad class that allows its instances to introduce constraints
on the type contained by the monad. This is how the rmonad
package defines a monad instance for the Set data type from the
containers package.

Having done the aforementioned preparatory step, monad com-
prehensions can be used to recreate the original mathematical nota-
tion of set comprehensions that inspired list comprehensions in the
first place. We leave this as an exercise to the reader.

2.7 Database-Supported Haskell (DSH)
Our initial motivation for bringing back monad comprehensions
to GHC, was to improve the Database-Supported Haskell (DSH)
library [1, 12]. DSH is a Haskell library for database-supported
program execution. Using the library, a relational database man-
agement system (RDBMS) can be used as a coprocessor for the
Haskell programming language, especially for those program frag-
ments that carry out data-intensive and data-parallel computations.
Rather than embedding a relational language into Haskell, DSH
turns idiomatic Haskell programs into SQL queries.

In order to use the monad comprehension notation to write
database-executable program fragments, we had to re-implement
the SQL-like comprehension notation in terms of a quasiquoter.
The example from Section 2.4, which makes use of the group by
clause for lists, can be turned into the database-executable program
fragment given in Figure 4.

The quasiquoter qc parses the enclosed comprehension and gen-
erates the corresponding database-executable combinators at com-
pile time before type checking takes place. These combinators, in
the tradition of deep embeddings, construct the query representa-
tion as data in order to compile the query into equivalent SQL



query :: Q [(String , Integer)]
query = [qc | (the dept , sum salary)

| (name, dept , salary)← table "employees"

, then group by dept using groupWith
, then sortWith by (sum salary)

| ]

Figure 4. Database-executable program fragment.

code. Queries of type Q [(String , Integer)] evaluate to Haskell
values of type [(String , Integer)] when executed on a database
back-end. The function table is used to reference database-resident
tables. In this example we assume that the table employees exists
in the database executing the query.

While workable, the quasiquoting approach has two limitations.
Firstly, it requires additional implementation effort from the library
developer. Secondly, the error messages that are presented to the
library user reference generated code that was not written by the
user herself.

By using the monad comprehensions extension that is imple-
mented in GHC and is described in this paper, we managed to solve
the aforementioned two problems for DSH. Specifically, we imple-
mented queryable lists as restricted monads. We restricted the types
contained by the monad to basic types supported by the underlying
database as well as arbitrarily nested tuples and lists of these basic
types.

We have not yet released the new monad-comprehensions–
based DSH because final details (e.g., how desugaring of the
group by clause interacts with the RebindableSyntax exten-
sion) still need to be worked out3.

We think that, just like DSH, other Haskell libraries and EDSLs
will also benefit from the extension, especially those that are based
on collection monads.

2.8 The do Notation
The do notation is probably the most popular notation for writing
monadic program fragments in Haskell. However, we think that the
do notation is, for some applications, not always a good fit and the
monad comprehension notation provides a useful alternative.

Although resulting in an arguably less elegant formulation, it
is manageable to use the do notation as a substitute for monad
comprehension expressions that only use generators and filters; for
example, the comprehension [x | x ← xs, x > 0] can be written as
follows:

do x ← xs
guard (x > 0)
return x

Having said that, the do notation is a poor fit as a substitute for
SQL-like monad comprehensions; for example the query expres-
sion given in Section 2.4 has the following equivalent formulation
using the do notation:

do let g = do l ← groupWith (λ( , dept , )→ dept)
employees

return (liftM (λ(name, , ) → name) l
, liftM (λ( , dept , ) → dept) l
, liftM (λ( , , salary)→ salary) l)

( , dept , salary)← sortWith (λ( , , s)→ sum s) g
return (the dept , sum salary)

3 http://hackage.haskell.org/trac/ghc/ticket/4370

Of course one could extend the do notation with SQL-like
clauses, but we decided to generalise the SQL-like list compre-
hensions instead. From the (query) language design point of view,
our decision was inspired by the fact that ordering and group-
ing constructs have already found their place in other successful
comprehensions-based languages (see Section 6). From the lan-
guage implementation point of view, our decision was influenced
by the fact that GHC already had syntactic constructs for the then
and then group clauses for list comprehensions. We think that
SQL-like monad comprehensions are a better fit for applications
considered in this paper; that is, processing of collection monads
and declarative querying facilities.

3. Formalisation
In this section we define how monad comprehensions are typed
(Section 3.2), desugared (Section 3.3) and how the standard li-
braries have to be extended to support monad comprehensions
(Section 3.1). Monad comprehensions are syntactically identical
to list comprehensions. However, in order to make this paper self-
contained, and to make the translation rules easier to read we in-
clude the full syntax diagram for monad comprehensions in Fig-
ure 5.

Variables
x , y , z

Expressions
e, f , g ::= . . . | [e | q ]

Patterns
w ::= x | (w1, . . . , wn)

Qualifiers
p, q ::= w ← e generator

| let w = e let binding
| g guard
| p,q Cartesian product
| p|q zipping
| q,then f transformation
| q,then f by e and projection
| q,then group by e grouping
| q,then group using f user-defined
| q,then group by e using f grouping

Figure 5. Monad comprehension syntax.

3.1 Proposed Library Additions
In order to deal with basic comprehension syntax, the type classes
provided in the standard libraries suffice. To generalise the syntac-
tic extensions made to list comprehensions with parallel list com-
prehensions and SQL-like list comprehensions [25], a few new
monad-related type classes have to be introduced.

The type class MonadZip is introduced to support parallel
list comprehensions. Its class definition is given in Figure 6. A
minimal complete instance has to provide one of the first two
member functions. We also introduce three laws with the type
class (Figure 7), that instances should conform with. The first
law, the naturality law, states that the mzip function is a natural
transformation (i.e., it is structure preserving). The second law, the
associativity law, states that the mzip function, which is a binary
function, is associative. The third law, the information preservation
law, states that if the mzip function is applied to two monadic
values with same effect the monadic values can be recovered by
the munzip function.

We point out that the first two MonadZip laws have equiva-
lent applicative functor laws [20] and the third MonadZip law



extends the applicative laws. This suggests that, in principle, the
MonadZip class should be a subclass of the Applicative class. Be-
cause the Monad class is not declared as a subclass of Applicative
and our generalisation is based on monads, we decided to introduce
the MonadZip class as a subclass of Monad for those monads that
support zipping.

class Monad m ⇒ MonadZip m where
mzip :: m α→ m β → m (α, β)
mzip = mzipWith (, )
mzipWith :: (α→ β → c)→ m α→ m β → m c
mzipWith f ma mb = liftM (uncurry f ) (mzip ma mb)
munzip :: m (α, β)→ (m α,m β)
munzip mab = (liftM fst mab, liftM snd mab)

Figure 6. Definition of class MonadZip.

Naturality

liftM (f ∗∗∗ g) (mzip ma mb)
≡ mzip (liftM f ma) (liftM g mb)

Associativity

liftM (λ(α, (β, c))→ ((α, β), c)) (mzip ma (mzip mb mc))
≡ mzip (mzip ma mb) mc

Information Preservation

liftM (const ()) ma = liftM (const ()) mb
⇒ munzip (mzip ma mb) ≡ (ma,mb)

Figure 7. The three MonadZip laws.

To generalise the grouping parts of the SQL-like list compre-
hensions, we depend on a generalised version of groupWith . This
function is provided through the type class MonadGroup (see Fig-
ure 8). The groupWith function transforms a collection of ele-
ments into a collection of collections using a given function of type
α→ τ that extracts a grouping criterion of type τ .

Shall that grouping criterion be special? One sensible sample
instance of MonadGroup could be defined for [Int], where the
extraction function determines whether a list element is even or
odd (i.e., τ = Bool) and then groups the elements accordingly.
This particular instance of MonadGroup suggests the constraint
(Eq τ). Just as sensible is the supplied MonadGroup instance
for lists which sorts the list elements based on the extract group-
ing criterion—runs of elements with identical criteria will form a
group. This instance rather suggests an (Ord τ) constraint.

As a result, we decided to not pose constraints on the type τ of
the grouping criterion: appropriate constraints may very well differ
for different monads. Requiring the Ord constraint for an instance
for a set monad, for example, does not make sense as a set is not
ordered. Also, there is no immediately obvious notion of grouping
for certain monads (e.g., for IO and State). This should, however,
not imply that a programmer cannot come up with a useful instance
and be able to use the then group by syntax.

class Monad m ⇒ MonadGroup m τ where
mgroupWith :: (α→ τ)→ m α→ m (m α)

Figure 8. Definition of class MonadGroup.

3.2 Typing rules
Figure 9 provides the typing rules for monad comprehensions. At
first glance these typing rules look similar to the typing rules for
comprehensive list comprehensions [25]. The rules are similar in-
deed, but feature the appropriate generalisations needed to type
monad comprehensions. We will only discuss those rules that are
notably different. In these rules τ ranges over types, m and α range
over type variables. We define ∆ and Γ to range over type environ-
ments, and P to range over sets of predicates. Most typing rules
propagate a set of predicates P along with a type environment Γ.

The predicate environment is used to record which type classes
have to be defined for the comprehension to be typeable. In the case
of list comprehensions such an environment is not needed as all
involved functions are defined for lists. For the more general monad
comprehensions this might not be the case. It is, for example,
not required that an instance for MonadGroup is available if a
comprehension does not use then group by e qualifiers.

A rule of the form ` w ⇒ ∆ is read as the variables in
pattern w have types described in environment ∆. Rule of the form
P ,Γ ` e : τ are read as under predicate environment P and
type environment Γ expression e has the type τ . Finally, m ∆ is
a shorthand for: {m τ | τ ∈ ∆}.

We will now discuss the notable changes in the typing rules for
basic monad comprehensions. In the rule [Comp ], the constraint
Monad m is added to the predicate environment to ensure that
the resulting structure of the comprehension is indeed a monad. To
deal with filters, a zero function for monads is needed [28]. Such
a function is provided by the type class MonadPlus . We thus add
a constraint requiring an instance for MonadPlus to the predicate
environment in the rule [Guard ].

To cater for parallel monad comprehensions, the MonadZip
class was introduced (Section 3.1). The typing rule for parallel
comprehensions is very similar to the rule for products [Comma ]:
on the type level, these two rules are indeed equivalent except for
the additional MonadZip constraint.

The typing rules for dealing with then clauses is very similar
to the rules for SQL-like list comprehensions. The only notable
difference is the added constraint in the [groupBy ] rule.

3.3 Translation rules
Desugaring basic monad comprehensions into monadic combina-
tors has been discussed by Wadler [28]. A generalisation for the
extensions to list comprehensions (SQL-like list comprehensions,
and parallel comprehensions) has not been described before. In this
section, we will discuss how monad comprehensions can be desug-
ared. The strategy is very similar to the desugaring of list compre-
hensions presented by Wadler and Peyton Jones [25].

The desugaring rules are presented in Figure 10. The main
difference with the desugaring of list comprehensions is that all
list combinators have been replaced by their monadic counterparts.
Putting an element into a list has been replaced by lifting an element
into a monad using return (let-bindings). Occurrences of map
have been replaced with liftM (Cartesian products, then group
clauses and unzip). The function concat , originally used to flatten
nested lists, is replaced by join . The difference between desugaring
parallel monad comprehensions with parallel list comprehensions
is the replacement of zip by mzip (member of class MonadZip,
Section 3.1). The group by clause uses mgroupWith instead of
groupWith .

4. Implementation
4.1 Summary of GHC changes
The implementation of monad comprehensions in GHC mainly
affects the type checker and desugarer phases of the compiler.



List comprehensions P ,Γ ` e : τ

P ,Γ ` q ⇒ (m,∆) Γ,∆ ` e : τ

{Monad m } ∪ P ,Γ ` [e | q ] : m τ
[Comp]

Variables ` w ⇒ ∆

` x : τ ⇒ {x : τ } [Var]
` w1 : τ1 ⇒ ∆1 . . . ` wn : τn ⇒ ∆n

` (w1, . . . , wn) : (τ1, . . . , τn)⇒ ∆1 ∪ . . . ∪ ∆n
[Tup]

Basic list comprehension body P ,Γ ` e ⇒ ∆

Γ ` e : Bool

{MonadPlus m },Γ ` e ⇒ (m, ∅) [Guard] ∅,Γ ` ()⇒ (m, ∅) [Unit]
Γ ` e : m τ ` w : τ ⇒ ∆

∅,Γ ` w ← e ⇒ (m,∆)
[Gen]

Γ ` e : τ ` x : τ ⇒ ∆

∅,Γ ` let x = e ⇒ (m,∆)
[Let]

P ,Γ ` p ⇒ (m,∆) P ′,Γ ∪ ∆ ` q ⇒ (m,∆′)

P ∪ P ′,Γ ` p, q ⇒ (m,∆ ∪ ∆′)
[Comma]

Parallel list comprehension body P ,Γ ` e ⇒ ∆

P ,Γ ` p ⇒ (m,∆) P ′,Γ ∪ ∆ ` q (m,∆′)

{MonadZip m } ∪ P ∪ P ′,Γ ` p | q ⇒ (m,∆ ∪ ∆′)
[Bar]

Comprehensive list comprehension body P ,Γ ` e ⇒ ∆

P ,Γ ` q ⇒ (m,∆) Γ ` f : ∀α.m α→ m α

P ,Γ ` q , then f ⇒ (m,∆)
[then]

P ,Γ ` q ⇒ (m,∆) Γ ∪ ∆ ` e : τ
Γ ` f : ∀α. (α→ τ)→ m α→ m α

P ,Γ ` q , then f by e ⇒ (m,∆)
[thenBy]

P ,Γ ` q ⇒ (m,∆) Γ ∪ ∆ ` e : τ

P ∪ {MonadGroup m },Γ ` q , then group by e ⇒ m ∆
[groupBy]

P ,Γ ` q ⇒ (m,∆) Γ ` f : ∀α.m α→ m (m α)

P ,Γ ` q , then group using f ⇒ m ∆
[groupUsing]

P ,Γ ` q ⇒ (m,∆) Γ ∪ ∆ ` e : τ
Γ ` f : ∀α. (α→ τ)→ m α→ m (m α)

P ,Γ ` q , then group by e using f ⇒ m ∆
[groupByUsing]

Figure 9. Typing monad comprehensions.

For parts of the implementation, existing rules in both the type
checker and desugarer have been reused (e.g., binding statements
and pattern matches from do-notation). Other parts required more
technical changes to existing rules (e.g., grouping and parallel
statements).

Small changes have also been made to GHC’s representation
of syntax trees. More specifically, we changed the data type that
represents the body of do blocks, list comprehensions, and monad
comprehensions. This change was necessary so that the different
types of qualifiers as well as rebindable syntax could be supported.

As stated in Section 3.1, the MonadZip laws require the mzip
function to be associative. For law abiding MonadZip instances
the implementation can desugar parallel monad comprehensions in
a left or right associative manner without changing the program’s
semantics. The implementation in GHC is right associative.

The exact details of these changes to GHC, their motivation,
and the alternatives considered are documented in a discussion on
GHC Trac4.

4.2 Error Messages
As discussed in the previous section, monad comprehensions are
type checked before being desugared. Late desugaring enables the
generation of warning and error messages that may refer to the ac-
tual code the programmer wrote. Error messages relating to monad

4 http://hackage.haskell.org/trac/ghc/ticket/4370

comprehension thus should be as readable as their list comprehen-
sion counterparts.

Consider for example the following monad comprehension ex-
pression: [(x , y) | x ← [1], y ← Just 5]. In this expression, the
generators draw elements out of different monadic structures. For
endo-monadic comprehensions, this is forbidden, as it is not pos-
sible to determine a unique monadic type for the final result. GHC
will emit the error message presented in Figure 11 when given an
input file containing the above expression. The monad used in the
first generator is the expected monadic type for any following gen-
erator. We believe that this error message accurately explains that
the Maybe type is not compatible with the expected list type.

5. Proposals
The monad comprehension extension for Haskell described in this
paper will be available in GHC 7.2. In this section we propose two
additional extensions that are closely related to monad comprehen-
sions, both of which we have not implemented yet. In Section 5.1
we discuss a proposal to extend the defaulting mechanism to rem-
edy potential ambiguity errors. In Section 5.2 we propose a way for
overloading list literals.

5.1 Defaulting Proposal
The question whether the monad comprehension extension will be
incorporated into the Haskell language standard or not depends
on several factors. Perhaps the two most important factors are the



[e | q ] = liftM (λqv → e)JqK

Jw ← eK = e
Jlet w = dK = return d

JgK = guard g
Jp, qK = join (liftM

(λpv → liftM
(λqv → (pv, qv))JqK)

JpK)
Jp | qK = mzipJpKJqK

Jq , then f K = f JqK
Jq , then f by eK = f (λqv → e) JqK

Jq , then group by eK = liftM unzipqv
(mgroupWith

(λqv → e)JqK)
Jq , then group by e using f K = liftM unzipqv

(f (λqv → e)JqK)
Jq , then group using f K = (liftM unzipqv (f JqK)

(w ← e)v = w
(let w = d)v = w

(g)v = ()
(p, q)v = (pv, qv)

(p | q)v = (pv, qv)
(q , then f )v = qv

(q , then f by e)v = qv
(q , then group by e)v = qv

(q , then group by e using f )v = qv
(q , then group using f )v = qv

unzip() = id
unzipx = id

unzip(w1,w2) = λe → (unzipw1 (liftM (λ(x , y)→ x ) e)
, unzipw2 (liftM (λ(x , y)→ y) e))

Figure 10. Desugaring monad comprehensions

Code/Error.hs:45:30:
Couldn’t match expected type ‘[t0]’
with actual type ‘Maybe a0’

In the return type of a call of ‘Just’
In a stmt of a monad comprehension: y <- Just 5
In the expression:
[(x, y) | x <- [1], y <- Just 5]

Figure 11. Monad comprehension error message.

uptake of the extension by the Haskell community and ease of
integration into the existing standard.

Monad comprehensions, once part of the Haskell standard, were
removed from the language [4, 24]. The reasons included monad-
comprehensions–related error messages produced by Haskell im-
plementations. The error messages were considered too compli-
cated for new users of Haskell [15].

As we briefly discussed in Section 4, monad-comprehensions–
related error messages produced by GHC are reasonable. In fact,
the error messages are almost the same as for list comprehensions,
the only difference being the mention of “monad comprehensions”
instead of “list comprehensions”. We do not consider this aspect of
error messages as problematic.

Having said that, should the monad comprehensions extension
become a part of the Haskell language standard, type ambiguity
errors may occur that would not occur before. This may especially

class IsList l where
type Item l
fromList :: [Item l ]→ l

Figure 12. Definition of class IsList . The associated type syn-
onym family Item is used to specify the type of list items from
which the structure l is constructed.

be problematic for existing list-comprehensions–based code. In
fact, John Hughes identified this problem as one of the main reasons
that led to the removal of monad comprehensions from the Haskell
standard5.

To address the aforementioned problem, we propose to extend
Haskell’s defaulting mechanism to type classes and use it for dis-
ambiguation of comprehension-based code just like defaulting is
used for disambiguation of numerical code; for example, the fol-
lowing declaration could be used to state that ambiguous type vari-
ables in the Monad class must default to lists:

default Monad ([ ])

Note that currently Haskell’s defaulting mechanism is only used to
disambiguate type variables in the Num class.

The proposed defaulting mechanism would also affect monadic
code written using the do notation or monadic combinators. In
some cases, this behaviour may not be desirable as the type am-
biguity error messages may point to problems that are better re-
solved manually (e.g., by providing explicit type signatures). Com-
piler warnings can be used to address this problem. GHC already
supports the -fwarn-type-defaults compiler flag which can be
used to warn users when type variables in the Num class are de-
faulted. A similar approach can be used for the type class defaulting
proposal briefly discussed here.

The defaulting proposal discussed in this section is an informal
one. Many details still need to be worked out. However, we think
that it is still worthwhile to point out that Haskell already provides
a language construct that can be generalised to address undesirable
type ambiguity errors that arise from overloading.

5.2 Overloading List Literals
The MonadComprehensions extension does not overload literal
lists. We recognise that overloading literal lists can be useful for
Haskell libraries and EDSLs. However, we think that the list literal
overloading should not be tied to the concept of monad because the
overloading can be useful for Haskell structures that are not monads
(e.g., for sets, bags, maps and hash tables).

We propose to introduce an extension that supports overloading
of literal lists by using the type class definition that is given in
Figure 12. The idea is that when the extension is turned on the
Haskell compiler applies the fromList function to every literal list
in the source code.

The IsList instance for lists given in Figure 13 would allow
literal lists to represent the same values as in standard Haskell.
The IsList instances for the Set and Map data types given in
Figure 14, on the other hand, would allow the use of literal lists for
construction of sets and maps. The type class defaulting proposal
given in Section 5.1 would also be useful for disambiguating code
involving overloaded literal lists.

The proposed definitions of the IsList type class and its in-
stances make use of the TypeFamilies extension. Equivalent def-
initions can also be written using the FunctionalDependencies
extension.

5 http://web.archive.org/web/20010720221805/www.dcs.gla.
ac.uk/mail-www/haskell/msg00172.html



instance IsList [α ] where
type Item [α ] = α
fromList = id

Figure 13. Definition of IsList instance for lists.

import qualified Data.Set as Set
import Data.Set (Set)

import qualified Data.Map as Map
import Data.Map (Map)

instance (Ord α)⇒ IsList (Set α) where
type Item (Set α) = α
fromList = Set .fromList

instance (Ord k)⇒ IsList (Map k v) where
type Item (Map k v) = (k , v)
fromList = Map.fromList

Figure 14. Definition of IsList instances for the Set , and Map
data types.

6. Related Work
Any monad immediately yields its associated comprehension struc-
ture (see Section 3). Conversely, any comprehension structure gives
rise to a monad. Philip Wadler [28] has been the first to observe
that monads and comprehensions are inseparable. We could go as
far and argue that a language’s support for monads is incomplete as
long as it lacks comprehensions.

From the early days of NPL [8] and KRC [27] until today, com-
prehensions have indeed found their way into a large number of
programming languages, including some in the mainstream. Vari-
ants of comprehension syntax are found, for example, in Erlang,
Perl 6, and Python. These languages, however, fix a small set of
collection types over which comprehensions may be defined—lists,
sets, or dictionaries are typical. True general monad comprehen-
sions were first provided by Gofer [17] and applications of com-
prehensions over non-collection monads (e.g., for parser construc-
tion [16]) readily appeared.

Monad operations have been deeply built into LINQ [21, 22],
a framework that seamlessly integrates queries into the languages
supported by the .NET platform (C#, F#, and Visual Basic): LINQ’s
SelectMany operator is the monadic bind (>>=), for example.
Based on these operations, LINQ defines a comprehension-style
syntax that provides a uniform way to query a diversity of collec-
tion types, including XML documents, relational tables, and class
extents. To date, LINQ may well be considered as the programming
environment that popularised monad comprehensions.

Outside the programming language community, monad com-
prehensions had a notable impact on the study of the semantics
and optimisation of database query languages [7, 13, 30]. Many
query languages—this includes LINQ, SQL, XQuery—may be un-
derstood in terms of (1) operations that are specific to a given data
model, and (2) a “backbone” that provides generic iteration facil-
ities. Monad comprehensions have been found to provide an ideal
backbone: their syntax quite closely resembles that of the pervasive
relational calculus while their semantics constitute a considerable
generalisation of the calculus. Comprehensions can uniformly de-
scribe iteration, joins, as well as grouping, an observation that led to
the SQL-like comprehensions (see Section 2.4) [25] and motivated
our use of monad comprehensions as the query surface syntax in

DSH (Section 2.7). Aggregation, quantification, and updates have
been expressed in terms of comprehensions as well [11, 26].

Monad comprehensions succeed in extracting and emphasising
the structural gist of a query rather than to stress the diversity
of query constructs. Different types of query nesting lead to few
nested forms of monad comprehensions. Much of the seminal work
on query optimisation and unnesting [18] can be understood in
terms of simple syntactical rewrites, the monad comprehension
normalisation rules [14, 28, 29].

In [10], Martin Erwig discusses a generalised comprehension
syntax for any abstract data type (ADT) whose constructors and
destructors can be combined to define a monad. These monads
feature a bind operation that is parameterised by source and tar-
get ADTs, ultimately resulting in ADT comprehensions that may
be non-endomorphic and thus allow mappings between different
types.

7. Conclusions
We presented a Glasgow Haskell Compiler extension that gener-
alises Haskell’s list comprehension notation to monads. The exten-
sion implements well-known generalisations of generator and filter
clauses, as well as new generalisations of parallel and SQL-like
clauses. We formally described the generalisations. The formal de-
scription allows other Haskell implementations to incorporate the
extension.

We hope that the extensive set of instructive examples presented
in this paper will facilitate wide adoption of the monad comprehen-
sions extension by the Haskell community. We briefly discussed
how to integrate monad comprehensions in the Haskell language
standard. Also we proposed an extension that allows overloading
of literal lists. A thorough treatment of both the integration into
the language standard and overloading of literal lists are subject of
future work.
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