
Comp. by: sunselvakumar Stage: Revises1 ChapterID: 000000A811 Date:15/6/09 Time:19:26:29

in Database Technology, Proc. 8th Int. Conf. on Extending

Database Technology, 2002, pp. 477–495.

8. XML Path Language (XPath) 2.0. W3C Recommendation. Avail-

able at: http://www.w3.org/TR/xpath20/

9. XQuery 1.0: An XML Query Language. W3C Recommendation.

Available at: http://www.w3.org/TR/xquery/

10. XQuery 1.0 and XPath 2.0 Data Model (XDM). W3C

Recommendation. Available at: http://www.w3.org/TR/xpath-

datamodel/

11. XQuery 1.0 and XPath 2.0 Full-Text 1.0. W3C Working Draft.

Available at: http://www.w3.org/TR/xpath-full-text-10/

12. XQuery 1.0 and XPath 2.0 Full-Text 1.0 Requirements. W3C

Working Draft. Available at: http://www.w3.org/TR/xpath-full-

text-10-requirements/

13. XQuery 1.0 and XPath 2.0 Full-Text 1.0 Use Cases. W3C Work-

ing Draft. Available at: http://www.w3.org/TR/xpath-full-text-

10-use-cases/

XQuery Interpreter

▶XQuery Processors

XQuery Processors

TORSTEN GRUST
1, H. V. JAGADISH

2, FATMA ÖZCAN
3,

CONG YU
4

1University of Tübingen, Tübingen, Germany
2University of Michigan, Ann Arbor, MI, USA
3IBM Almaden Research Center, San Jose, CA, USA
4Yahoo! Research, New York, NY, USA

Synonyms
XML database system; XQuery compiler; XQuery

interpreter

Definition
XQuery processors are systems for efficient storage and

retrieval of XML data using XML queries written in the

XQuery language. A typical XQuery processor includes

the data model, which dictates the storage component;

the query model, which defines how queries are pro-

cessed; and the optimization modules, which leverage

various algorithmic and indexing techniques to im-

prove the performance of query processing.

Historical Background
The first W3C working draft of XQuery was published

in early 2001 by a group of industrial experts. It

is heavily influenced by several earlier XML query

languages including Lorel, Quilt, XML-QL, and XQL.

XQuery is a strongly-typed functional language, whose

basic principals include simplicity, compositionality,

closure, schema conformance, XPath compatibility,

generality and completeness. Its type system is based

on XML schema, and it contains XPath language as a

subset. Over the years, several software vendors have

developed products based on XQuery in varying degrees

of conformance. A current list of XQuery implementa-

tions is maintained on the W3 XML Query working

group’s homepage (http://www.w3.org/XML/XQuery).

There are three main approaches of XQuery proces-

sors. The first one is to leverage existing relational

database systems as much as possible, and evaluate

XQuery in a purely relational way by translating

queries into SQL queries, evaluating them using SQL

database engine, and reformatting the output tuples

back into XML results. The second approach is to

retain the native structure of the XML data both in

the storage component and during the query evalua-

tion process. One native XQuery processor is Michael

Kay’s Saxon, which provides one of the most complete

and conforming implementations of the language

available at the time of writing. Compared with the

first approach, this native approach avoids the over-

head of translating back and forth between XML and

relational structures, but it also faces the significant

challenge of designing new indexing and evaluation

techniques. Finally, the third approach is a hybrid

style that integrates native XML storage and XPath

navigation techniques with existing relational techni-

ques for query processing.

Foundations

Pathfinder: Purely Relational XQuery

The Pathfinder XQuery compiler has been developed

under the main hypothesis that the well-understood

relational database kernels also make for efficient XQu-

ery processors. Such a relational account of XQuery

processing can indeed yield scalable XQuery imple-

mentations – provided that the system exploits suitable

relational encodings of both, (i) the XQuery Data

Model (XDM), i.e. tree fragments as well as ordered

item sequences, and (ii) the dynamic semantics of

XQuery that allow the database back-end to play its

trump: set-oriented evaluation. Pathfinder deter-

minedly implements this approach, effectively

XQuery Processors X 101



Comp. by: sunselvakumar Stage: Revises1 ChapterID: 000000A811 Date:15/6/09 Time:19:26:30

realizing the dashed path in Fig. 1b. Any relational

database system may assume the role of Pathfinder’s

back-end database; the compiler does not rely on XQu-

ery-specific builtin functionality and requires no

changes to the underlying database kernel.

Internal XQuery and Data Model Representation. To

represent XML fragments, i.e. ordered unranked trees

of XML nodes, Pathfinder can operate with any node-

level tabular encoding of trees (node ¼̂ row) that –

along other XDM specifics like tag name, node kind,

etc. – preserves node identity and document order.

A variety of such encodings are available, among

these are variations of pre/post region encodings [8]

or ORDPATH identifiers [15]. Ordered sequences of

items are mapped into tables in which a dedicated

column preserves sequence order.

Pathfinder compiles incoming XQuery expression

into plans of relational algebra operators. To actually

operate the database back-end in a set-oriented fashion,

Pathfinder draws the necessary amount of independent

work from XQuery’s for-loops. The evaluation of a

subexpression e in the scope of a for-loop yields an

ordered sequence of zero or more items in each loop

iteration. In Pathfinders relational encoding, these

items are laid out in a single table for all loop iterations,

one item per row. A plan consuming this loop-lifted

or ‘‘unrolled’’ representation of e may, effectively,
process the results of the individual iterated evaluations
of e in any order it sees fit – or in parallel [10]. In some
sense, such a plan is the embodiment of the indepen-
dence of the individual evaluations of an XQuery for-

loop body.

Exploitation of Type and Schema Information. Path-

finder’s node-level tree encoding is schema-oblivious

and does not depend on XML Schema information to

represent XML documents or fragments. If the DTD of

the XML documents consumed by an expression is avail-

able, the compiler annotates its plans with node location

and fan-out information that assists XPath location

path evaluation but is also used to reduce a query’s

runtime effort invested in node construction and atomi-

zation. Pathfinder additionally infers static type infor-

mation for a query to further prune plans, e.g. to

control the impact of polymorphic item sequences

which present a challenge for the strictly typed table

column content in standard relational database systems.

Query Runtime. Internally, Pathfinder analyzes

the data flow between the algebraic operators of the

XQuery Processors. Figure 1. (a) DB2 XML system architecture. (b) Pathfinder: purely relational XQuery on top of vanilla

database back-ends. (c) Timber architecture overview [11].

102X XQuery Processors



Comp. by: sunselvakumar Stage: Revises1 ChapterID: 000000A811 Date:15/6/09 Time:19:26:33

generated plan to derive a series of operator annota-

tions (keys, multi-valued dependencies, etc.) that

drive plan simplification and reshaping. A number of

XQuery-specific optimization problems, e.g. the stable

detection of value-based joins or XPath twigs and

the exploitation of local order indifference, may be

approached with simple or well-known relational

query processing techniques.

The Pathfinder XQuery compiler is retargetable:

its internal table algebra has been designed to match

the processing capabilities of modern SQL database

systems. Standard B-trees provide excellent index sup-

port. Code generators exist that emit sequences of

SQL:1999 statements [9] (no SQL/XML functionality

is used but the code benefits if OLAP primitives like

DENSE_RANK are available). Bundled with its code

generator targeting the extensible column store kernel

MonetDB, Pathfinder constitutes XQuery technology

that processes XML documents in the Gigabyte-range

in interactive time [7].

Timber: A Native XML Database System

Timber [11] is an XML database system which man-

ages XML data natively: i.e. the XML data instances are

stored in their actual format and the XQueries are

processed directly. Because of this native representa-

tion, there is no overhead for converting the data

between the XML format and the relational represen-

tation or for translating queries from the XQuery for-

mat into the SQL format. While many components of

the traditional database can be reused (for example,

the transaction management facilities), other compo-

nents need to be modified to accommodate the new

data model and query language. The key contribution

of the Timber system is a comprehensive set-at-a-time

query evaluation engine based on an XML manipula-

tion algebra, which incorporates novel access methods

and algebraic rewriting and cost based optimizations.

An architecture overview of Timber is shown in Fig. 1c,

as presented in [11].

XML Data Model Representation. When XML

documents are loaded into the system, Timber auto-

matically assigns each XML node with four labels hD, S,
E, Li, where D indicates which document the node

belongs to, and S, E, L represents the start key, end

key, and level of the node, respectively. These labels

allow quick detection of relationships between nodes.

For example, a node hd1,s1,e1,l1i is an ancestor of an-

other node hd1,s2,e2,l2i iff s1 <s2 ∧ e1> e2. Each node,

along with the labels, are stored natively, and in the

order of their start keys (which correspond to their

document order), into the Timber storage backend.

XQuery Representation. A central concept in the

Timber system is the TLC (Tree Logical Class) algebra

[12,18,17], which manipulates sets (or sequences) of

heterogeneous, ordered, labeled trees. Each operator

in the TLC algebra takes as input one or more sets

(or sequences) of trees and produces as output a

set (sequence) of trees. The main operators in TLC

include filter, select, project, join, reordering, duplicate-

elimination, grouping, construct, flatten, shadow/illumi-

nate. There are several important features of the TLC

algebra. First, like the relational algebra, TLC is a

‘‘proper’’ algebra with compositionality and closure.

Second, TLC efficiently manages the heterogeneity

arising in XML query processing. In particular, heter-

ogenous input trees are reduced to homogenous sets

for bulk manipulation through tree pattern matching.

This tree pattern matching mechanism is also useful in

selecting portions of interest in a large XML tree.

Third, TLC can efficiently handle both set and se-

quence semantics, as well as a hybrid semantics,

where part of the input collection of trees is ordered

[17]. Finally, the TLC algebra covers a large fragment of

XQuery, including nested FLWOR expressions. Each

incoming XQuery is parsed and compiled into the

TLC algebra representation (i.e. logical query plans)

before being evaluated against the data.

The Timber system, and its underlying algebra,

has been extended to deal with text manipulation [2]

and probabilistic data [14]. A central challenge with

querying text is that exact match retrieval is too crude

to be satisfactory. In the field of information retrieval,

it is standard practice to use scoring functions and

provide ranked retrieval. The TIX algebra [2] shows

how to compute and propagate scores during XML

query evaluation in Timber. Traditionally, databases

have only stored facts, which by definition are certain.

Recently, there has been considerable interest in the

management of uncertain information in a database.

The bulk of this work has been in the relational con-

text, where it is easy to speak of the probability of a

tuple being in a relation. ProTDB develops a model

for storing and manipulating probabilistic data effi-

ciently in XML [14]. The probability of occurrence

of an element in a tree (at that position) is recorded

conditioned on the probability of its parent’s

occurrence.

XQuery Processors X 103



Comp. by: sunselvakumar Stage: Revises1 ChapterID: 000000A811 Date:15/6/09 Time:19:26:33

Query Runtime: Evaluation and Optimization.

The heart of the Timber system is the query evaluation

engine, which compiles logical query plans into the phys-

ical algebra representation (i.e. physical query plans) and

evaluates those query plans against the stored XML data

to produce XML results. It includes two main subcom-

ponents: the query optimizer and the query evaluator.

The query evaluator executes the physical query

plan. The separation between the logical algebra and

the physical algebra is greater in XML databases than in

relational databases, because the logical algebra here

manipulates trees while the physical algebra manipu-

lates ‘‘nodes’’ – data are accessed and indexed at the

granularity of nodes. This requires the design of several

new physical operators. For example, for each XML

element, the query may need to access the element

node itself, its child sub-elements, or even its entire

descendant subtree. This requires the node materializa-

tion physical operator, which takes a (set of) node

identifier(s) and returns a (set of) XML tree(s) that

correspond to the identifier(s). When and how to

materialize the nodes affects the overall efficiency of

the physical query plan and it is the job of the optimiz-

er to make the right decision. Structural join is another

physical operator that is essential for the efficient

retrieval of data nodes that satisfy certain structural

constraints. Given a parent-child or ancestor-descendant

relationship condition, the structural join operator

retrieve all pairs of nodes that satisfy the condition.

Multiple structural join evaluations are typically req-

uired to process a single tree-pattern match. In Timber,

a whole stack-based family of algorithms has been devel-

oped to efficiently process structural joins, and they

are at the core of query evaluation in Timber [1].

The query optimizer attempts to find the most

efficient physical query plan that corresponds to the

logical query plan. Every pattern match in Timber is

computed as a sequence of structural joins and the

order in which these are computed makes a substantial

difference to the evaluation cost. As a result, join order

selection is the predominant task of the optimizer.

Heuristics developed for relational systems often do

not work well for XML query optimization [20]. Tim-

ber employs a dynamic programming algorithm to

enumerate a subset of all the possible join plans and

picks the plan with the lowest cost. The cost is calcu-

lated by the result size estimator, which relies on the

position histogram [19] to estimate the lower and upper

bounds of each structural join.

DB2 XML: A Hybrid Relational and XML DBMS

DB2 XML (DB2 is a trademark of IBM Corporation.)

is a hybrid relational and XML database management

system, which unifies new native XML storage,

indexing and query processing technologies with exist-

ing relational storage, indexing and query processing.

A DB2 XML application can access XML data using

either SQL/XML or XQuery [6,16]. The general system

architecture is shown in Fig. 1a. It builds on the pre-

mises that (i) relational and XML data will co-exist and

complement each other in enterprise information

management solutions, and (ii) XML data are different

enough that it requires its own storage and processor.

Internal XQuery and Data Model Representation. At

the heart of DB2 XML’s native XML support is the XML

data type, introduced by SQL/XML. DB2 XML intro-

duces a new native XML storage format to store XML

data as instances of the XQuery Data Model in a

structured, type-annotated tree. By storing the binary

representation of type-annotated XML trees, DB2 XML

avoids repeated parsing and validation of documents.

In DB2 XML, XQuery is not translated into SQL,

but rather mapped directly onto an internal query

graph model (QGM) [6], which is a semantic network

used to represent the data flow in a query. Several

QGM entities are re-used to represent various set

operations, such as iteration, join and sorting, while

new entities are introduced to represent path expres-

sions and to deal with sequences. The most important

new operator is the one that captures XPath expres-

sions. DB2 XML does not normalize XPath expressions

into FLWOR blocks, where iteration between steps and

within predicates is expressed explicitly. Instead, XPath

expressions that consist of solely navigational steps are

expressed as a single operator. This allows DB2 XML to

apply rewrite and cost-based optimization [4] to com-

plex XQueries, as the focus is not on ordering steps of

an XPath expression.

Exploitation of Type and Schema Information. DB2

XML provides an XML Schema repository (XSR) to

register and maintain XML schemas and uses those

schemas to validate XML documents. An important

feature of DB2 XML is that it does not require an XML

schema to be associated with an XML column. An

XML column can store documents validated according

to many different and evolving schemas, as well as

schema-less documents. Hence, the association be-

tween schemas and XML documents is on per docu-

ment basis, providing maximum flexibility.

104X XQuery Processors



Comp. by: sunselvakumar Stage: Revises1 ChapterID: 000000A811 Date:15/6/09 Time:19:26:34

As DB2 XML has been targeted to address schema

evolution [5], it does not support schema import or

static typing features of XQuery. These two features are

too restrictive because they do not allow conflicting

schemas and each document insertion or schema up-

date may result in recompilation of applications.

Hence, DB2 XML does not exploit XML schema infor-

mation in query compilation. However, it uses simple

data type information for optimization, such as selec-

tion of indexes.

Query Runtime. DB2 XML query evaluation run-

time contains three major components for XML query

processing:

1. XQuery Function Library: DB2 XML supports sev-

eral XQuery functions and operators on XML sche-

ma data types using native implementations.

2. XML Index Runtime: DB2 XML supports indexes

defined by particular XML path expressions, which

can contain wildcards, and descendant axis naviga-

tion, as well as kind tests. Under the covers, an

XML index is implemented with two B+Trees: a

path index, which maps distinct reverse paths to

generated path identifiers, and a value index that

contains path identifiers, values, and node identi-

fiers for each node that satisfy the defining XPath

expression. As indexes are defined via complex

XPath expressions, DB2 XML employs the XPath

containment algorithm of [3] to identify the index-

es that are applicable to a query.

3. XML Navigation: XNAV operator evaluates multi-

ple XPath expressions and predicate constraints

over the native XML store by traversing parent-

child relationship between the nodes [13]. It

returns node references (logical node identifiers)

and atomic values to be further manipulated by

other runtime operators.

Key Applications
Scalable systems for XML data storage and XML query

processing are essential to effectively manage increas-

ing amount of XML data on the web.

URL to Code

Pathfinder

The open-source retargetable Relational XQuery com-

piler Pathfinder is available and documented at www.

pathfinder-xquery.org. MonetDB/XQuery – Pathfinder

bundled with the relational database back-end

MonetDB – is available at www.monetdb-xquery.org.

Timber

Timber is available and documented at www.eecs.

umich.edu/db/timber.

Cross-references
▶XML Benchmark

▶XML Indexing

▶XML Query Processing and XML Algebra

▶XML Storage

▶XPath/XQuery

Recommended Reading
1. Al-Khalifa S., Jagadish H.V., Patel J.M., Wu Y., Koudas N.,

and Srivastava D. Structural joins: a primitive for efficient

XML query pattern matching. In Proc. 18th Int. Conf. on Data

Engineering, 2002, pp. 141–152

2. Al-Khalifa S., Yu C., and Jagadish H.V. Querying structured text

in an XML database. In Proc. ACM SIGMOD Int. Conf. on

Management of Data, 2003, pp. 4–15

3. Balmin A., Özcan F., Beyer K.S., Cochrane R.J., and Pirahesh H.

A Framework for using materialized XPath views in XML query

processing. In Proc. 30th Int. Conf. on Very Large Data Bases,

2004, p. 6071.

4. Balmin A. et al. Integration cost-based optimization in DB2

XML. IBM Syst. J., 45(2):299–230, 2006.

5. Beyer K.S. and Özcan F. et al. System RX: one part relational,

one part XML. In Proc. ACM SIGMOD Int. Conf. on Manage-

ment of Data, 2005, pp. 347–358.

6. Beyer K.S., Siaprasad S., and van der Linden B. DB2/XML:

designing for evolution. In Proc. ACM SIGMOD Int. Conf. on

Management of Data, 2005, pp. 948–952.

7. Boncz P.A., Grust T., van Keulen M., Manegold S., Rittinger J.,

and Teubner J. MonetDB/XQuery: a fast XQuery processor

powered by a relational engine. In Proc. ACM SIGMOD Int.

Conf. on Management of Data, 2006, pp. 479–490.

8. Grust T. Accelerating XPath location steps. In Proc. ACM SIG-

MOD Int. Conf. on Management of Data, 2002, pp. 109–220.

9. Grust T., Mayr M., Rittinger J., Sakr S., and Teubner J. A SQL:

1999 code generator for the pathfinder XQuery compiler.

In Proc. ACM SIGMOD Int. Conf. on Management of Data,

2007, pp. 1162–1164.

10. Grust T., Sakr S., and Teubner J. XQuery on SQL hosts. In Proc.

30th Int. Conf. on Very Large Data Bases, 2004, pp. 252–263.

11. Jagadish H.V., Al-Khalifa S., Chapman A., Lakshmanan L.V.S.,

Nierman A., Paparizos S., Patel J., Srivastava D., Wiwatwattana

N., Wu Y., and Yu C. TIMBER: a native XML database. VLDB J.,

11:274–291, 2002.

12. JagadishH.V., Lakshmanan L.V.S., Srivastava D., and ThompsonK.

TAX: a tree algebra for XML. In Proc. 8th Int. Workshop on

Database Programming Languages, 2001, pp. 149–164.

13. Josifovski V., Fontoura M., and Barta A. Querying XML streams.

VLDB J., 14(2):197–210, 2005.

XQuery Processors X 105



Comp. by: sunselvakumar Stage: Revises1 ChapterID: 000000A811 Date:15/6/09 Time:19:26:38

14. Nierman A. and Jagadish H.V. ProTDB: probabilistic data in

XML. In Proc. 28th Int. Conf. on Very Large Data Bases, 2002,

pp. 646–657.

15. O’Neil P., O’Neil E., Pal S., Cseri I., Schaller G., and Westburg N.

ORDPATHs: insert-friendly XML node labels. In Proc. ACM

SIGMOD Int. Conf. on Management of Data, 2004,

pp. 903–908.

16. Özcan F., Chamberlin D., Kulkarni K.G., and Michels J.-E.

Integration of SQL and XQuery in IBM DB2. IBM Syst. J., 45

(2):245–270, 2006.

17. Paparizos S. and Jagadish H.V. Pattern tree algebras: sets or

sequences? In Proc. 31st Int. Conf. on Very Large Data Bases,

2005, pp. 349–360.

18. Paparizos S., Wu Y., Lakshmanan L.V.S., and Jagadish H.V.

Tree logical classes for efficient evaluation of XQuery. In Proc.

ACM SIGMOD Int. Conf. on Management of Data, 2004, pp.

71–82.

19. Wu Y., Patel J.M., and Jagadish H.V. Estimating answer sizes

for XML queries. In Advances in Database Technology, Proc. 8th

Int. Conf. on Extending Database Technology, 2002,

pp. 590–608.

20. Wu Y., Patel J.M., and Jagadish H.V. Structural join order

selection for XML query optimization. In Proc. 19th Int. Conf.

on Data Engineering, 2003, pp. 443–454.

XSL Formatting Objects

▶XSL/XSLT

XSL/XSLT

BERND AMANN

Pierre Marie Curie University (upmc), Paris, France

Synonyms
eXtensible Stylesheet Language; eXtensible Stylesheet

Language transformations; XSL-FO; XSL formatting

objects

Definition
XSL (eXtensible Stylesheet Language) is a family of

W3C recommendations for specifying XML document

transformations and typesettings. XSL is composed of

three separate parts:

! XSLT (eXtensible Stylesheet Language Transforma-

tions): a template-rule based language for the struc-

tural transformation of XML documents.

! XPath (XML Path Language): a structured query

language for the pattern, type and value-based

selection of XML document nodes.
! XSL-FO (XML Formatting Objects): an XML

vocabulary for the paper document oriented type-

setting of XML documents.

Historical Background
The development of XSL was mainly motivated by the

need for an open typesetting standard for displaying

and printing XML documents. Its conception was

strongly influenced by the DSSSL (Document Style

Semantics and Specification Language) ISO standard

(ISO/IEC 10179:1996) for SGML documents. Like

DSSL, XSL separates the document typesetting task

into a transformation task and a formatting task. Both

languages are also based on structural recursion for

defining transformation rules, but whereas DSSL

applies a functional programming paradigm, XSL

uses XML-template rules and XPath pattern matching

for defining document transformations.

The W3C working group on XSL was created in

December 1997 and a first working draft was released

in August 1998. XSLT 1.0 and XPath 1.0 became W3C

recommendations in November 1999, and XSL-FO

reached recommendation status in October 2001. Dur-

ing the succeeding development of XQuery, both the

XQuery and XSLT Working Groups shared responsi-

bility for the revision of XPath, which became the core

language of XQuery. XSLT 2.0, XPath 2.0 and XQuery

1.0 achieved W3C recommendation status in January

2007.

Foundations

XSLT Programming

XSLT programming consists in defining collections of

transformation rules that can be applied to different

classes of document nodes. Each rule is composed of

a matching pattern and a possibly empty XML tem-

plate. The matching pattern is used for dynamically

binding rules to nodes according to their local (name,

attributes, attribute values) and structural (document

position) properties. Rule templates are XML expres-

sions composed of static XML output fragments and

dynamic XSLT instructions generating new XML frag-

ments from the input data.

The following example illustrates the usage of XSLT

template rules for implementing some simple

106X XSL Formatting Objects


