Pathfinder Meets DB2®

Relational XQuery Optimization Techniques

Manuel Mayr
Advisor: Torsten Grust

Technische Universitat Minchen
Munich, Germany

manuel.mayr@in.tum.de

ABSTRACT

We are taking the next big step towards the goal of a purely
relational XQuery implementation. The Pathfinder XQue-
ry compiler has been enhanced by a code generator that
emits SQL. This code generator targets off-the-shelf rela-
tional database systems (e.g., DB2®) and turns them into
efficient and scalable XQuery processors. Our approach nei-
ther depends on modifications of the database kernel, nor do
we rely on built-in XML-specific functionality (SQL/XML,
for instance). For that reason we are able to rest this work
on query optimization techniques that have proven their ef-
fectiveness for pure SQL workloads.

Here, we will describe (1) how distribution statistics and
statistical views can accompany the relational encoding of
an XML document to provide information about its node
hierarchy, (2) the use of generated columns and materialized
query tables to precompute aspects of XPath step evaluation,
(3) how the system’s index design wizard can automatically
advise on the creation of indexes that, for example, enable
index-only XPath location path processing, and (4) opti-
mization profiles, a final fallback that enables fine-grained
control over DB2’s query execution plans. Performance ex-
periments indicate the potential of the XQuery processor
that results from this synthesis of Pathfinder and DB2.

1. INTRODUCTION

Relational database systems incorporate the most sophis-
ticated query optimizers and statistical cost models avail-
able today. Although these systems have originally been
built to operate over table-shaped data, their infrastructure
has already been shown to also provide efficient support for
non-relational data models and languages. The Pathfinder
XQuery compiler [7] uses relational encodings of both, the
XQuery data model and the language’s dynamic semantics,
to deploy RDBMSs as efficient and scalable XQuery proces-
SOrS.

For the XQuery dialect sketched in Table 1, Pathfinder

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

EDBT’08, March 25-30, 2008, Nantes, France.

Copyright 2008 ACM 978-1-59593-926-5/08/0003 ...$5.00.

atomic literals

sequences (e1,e2)

variables ($v)

let $v :=eq returnes

for $v [at $p] ine; returnes
if (e1) thenes elsees

ej order byes,...,en
unordered {e}

document order (e1 >>e2)

node identity (eq isez)

union, intersect, except
arithmetics (+,-,%,idiv,...)
(general) comparisons (=, eq, ...)
user-defined functions

fn:doc(-), fn:root(-), fn:data(-)
fn:distinct-values(-)

node constructors fn:count(:), fn:sum(-), fn:max(-)
XPath (e1/s[[e21]) fn:position(), fn:last()
typeswitch (e1) case [$vas] t returnes...default returne,

Table 1: Excerpt of XQuery dialect supported by
Pathfinder (s: XPath step, t: sequence type).

employs a technique coined loop lifting [8] to generate an
intermediate algebraic representation of an input XQuery
expression. Pathfinder has been designed with a close eye
on the, sometimes intricate, XQuery semantics. At the same
time, the compiler relies on a rather restricted variant of
relational algebra whose operators are chosen to match the
capabilities of modern SQL query processors. This enabled
the construction of a code generator that can target any
SQL:1999-capable RDBMS [10].

Relational XML Document Encoding. Pathfinder em-
ploys a simple node-based XML encoding in which each
XML node v is registered with its document order rank
pre(v), the number size(v) of nodes in the subtree below v,
and its distance level(v) to the document root. In addition
to these structural properties, the relational encoding con-
tains columns kind(v) € {doc, elem, text,...} (node kind),
name(v) (tag or attribute name), and value(v) (content of
text, comment, or processing-instruction nodes). Figure 1 il-
lustrates a sample XML document and its tabular encoding.
The semantics of XPath location steps map into conjunc-
tive range predicates over this node encoding table [8]. The
evaluation of location paths is further supported by column
guide(v), a representative of the tagged rooted path that
leads to v in the style of Widom’s DataGuides [4]: in Fig-
ure 1, the nodes g, and g, are both reachable via the rooted
path /a/b/g and thus are assigned identical guide entries.

Basic query blocks. Much like a programming language
compiler, Pathfinder uses data flow analysis techniques to
isolate basic blocks in the intermediate algebraic plans [7]. In
this particular context, a basic block is defined as the max-
imum section of an algebraic plan that can be equivalently
translated into a single SQL query. Since the DAG-shaped

doc

\
<a> a
<g/> TN
<c>d</c> b T by
<E/><g/> ‘ / N\
 g gl ngn f g2

(a) XML document. (b) Node hierarchy.

pre size level guide kind value name
o8| 0 0 |doc|"sample.xml"| O
1171 1 |elem O a
2111 2 2 |elem O b1
3101 3 3 |elem O g1
411 2 4 |elem O c
5101 3 5 [text g O
62| 2 2 |elem [m] b2
7101 3 6 |elem O f
8|10 3 3 |elem O g5

(¢) Encoding table doc (O indicates NULL).

Figure 1: Tabular encoding of document sample.xml.

algebraic plans quite significantly diverge from the common
m—0—X pattern—e.g., exhibiting calls to SQL OLAP func-
tions like DENSE_RANK—the compilation of a single XQue-
ry query will generally yield a sequence of SQL statements
which, assembled in a SQL common table expression (WITH
...), jointly implement the dynamic semantics of the input
XQuery expression. Figure 2 depicts the SQL code emitted
for Query Q6 of the XMark benchmark [11]

let $auction := doc("auction.xml")

return (Q6)
for $b in $auction/site/regions
return count($b//item)

and also emphasizes the basic blocks that have been identi-
fied.

The inherent tree structure of XML data (and the result-
ing non-uniform value distribution in the relational encod-
ing of such data) plus the unusual shape of the resulting
query plans present a substantial challenge for the RDBMS’
built-in SQL-centric query optimizer. In the following sec-
tions we will discuss how query processing infrastructure that
is already built into existing database kernels, in this case
IBM DB2® V9.1, can be exploited to fully make up for the
system’s lack of tree awareness.

2. TURNING DB2’S TUNING KNOBS

IBM DB2 is equipped with one of the industry’s most
versatile query engines but—as is typical in RDBMSs—its
cost-based query optimizer remains critically dependent on
the availability of proper statistics. By default, DB2 col-
lects basic statistics about table and column cardinalities
(of which Table 2 shows a sample). We will see that this is
not quite sufficient if DB2 is to be used as a back-end for the
Pathfinder XQuery compiler.

The DB2 optimizer chooses specific access paths primarily
based on the filter factor (0 < ff < 1) which measures the
selectivity of a given predicate p when applied to a table of
source rows:

i

__ # of rows qualifying against p
- # of source rows ’

Table Statistics Column Statistics

of pages in use Column cardinality

of pages containing rows Average column width

of relocated rows Second highest value
(after update) Second lowest value

of rows (cardinality) # of NULLs in column

Table 2: Basic statistics maintained by DB2.

SEQNO COLVALUE COLCOUNT

O 3,024, 329
person 138,236
category| 120,839
text 105,114
date 90, 182

UL W N

64 |featured 2,210
65 edge 999

Table 3: Tag name distribution in an 112 MB XMark
document instance captured by SYSCAT.COLDIST.

In the presence of complex compound predicates, in par-
ticular, the optimizer is forced to rely on estimated filter
factors if only basic statistics are available. Such estimates
are based on assumptions about the (absence of) correla-
tion between table columns and the even value distribution
of active column domains. Whenever these assumptions are
not justified, the optimizer risks to select less-than-optimal
access paths. The impact at query runtime may be signifi-
cant.

2.1 Distribution statistics

Pathfinder-generated SQL queries primarily operate over
the tabular encodings of XML documents and fragments (see
Figure 1(c)). This encoding of tree-shaped data inherently
leads to non-uniform value distributions in the columns of
table doc.

Frequent values. This non-uniformity surfaces repeatedly
but is already apparent in the distribution of XML element
tag names in column name of table doc. An instance of the
XMark benchmark document, for example, contains a single
element with tag site (the document’s root element) but,
dependent on the instance’s size, a comparably huge num-
ber of person elements. In consequence, the filter factors
for the SQL predicates name = ’site’ and name = ’per-
son’ will vary widely and a uniformity assumption for these
name tests will clearly lead the optimizer astray. Similar ob-
servations hold for the encoding columns level (in any XML
document, all nodes but one are located at a level > 1) and
guide (due to the irregular shape of XML node hierarchies).

To properly capture such skewed distributions, IBM DB2
provides the option to collect frequency statistics for selected
columns. Table 3 shows an excerpt of the DB2 system cat-
alog table SYSCAT.COLDIST after it has been populated by
an appropriate DB2 runstats run: the frequency of the tag
name distribution now is explicit.

We are able to control the catalog space devoted to col-
lect such explicit frequency statistics: the runstats parame-
ter num_freqvalues n instructs the systems to capture the
distribution of the n most frequent values only. At query

'
|
'
I
'
|
'
|
'
[
!
\

COUNTitem:/itel'
- PN o
4

X

T
| Tliter,item:iter
T
anans(child)/Vnarme(regions)
T
Tlitem
T
azis(child) Aname(site)
T
doc

1

iter item

X

WITH
t0 (iter_pre) AS
(SELECT c.pre
FROM doc AS a, doc AS b, doc AS c
WHERE (a.kind = 6)
AND (a.value = ’auction.xml’)
AND (b.pre BETWEEN
(a.pre + 1) AND (a.pre + a.size))
AND (b.name = ’site’)
AND (b.kind = 1)
AND (b.level = 1)
AND (c.pre BETWEEN
(b.pre + 1) AND (b.pre + b.size))
AND (c.name = ’regions’)
AND (c.kind = 1)
AND (c.level = 2)),

t1 (iter_pre) AS
(SELECT d.iter_pre
FROM tO AS d, doc AS e, doc AS f
WHERE (d.iter_pre = e.pre)
AND (f.pre BETWEEN (e.pre + 1)
AND (e.pre + e.size))
AND (f.name = ’item’)
AND (f.kind = 1)),
T T T TS TT T T T T TS m s s — s s — s s — sy
, t2 (item_int, iter_pre) AS
| (SELECT COALESCE (COUNT (h.iter_pre), 0) AS item_int,
g.iter_pre
FROM t0 AS g
LEFT OUTER JOIN t1 AS h
ON (h.iter_pre = g.iter_pre)
GROUP BY g.iter_pre)

SELECT i.item_int
FROM t2 AS i

ORDER BY i.iter_pre ASC;

Figure 2: SQL code generated for XMark Query Q6 (the dashed regions identify basic blocks). Predicates
azis(-) and name(-) [8] map the semantics of XPath axes and name/kind test onto the tabular encoding.

compilation time, the optimizer exploits such column dis-
tribution statistics as follows (let k denote the key value
occurring in a predicate p like name = k):

1. If k is among the n most frequent values, the optimizer
directly reads the number of qualifying rows off of the
catalog table SYSCAT.COLDIST.

2. Otherwise, the optimizer falls back and assumes a uni-
form distribution of the non-frequent values.

If the column cardinality is sufficiently small, the sys-
tem can maintain frequency statistics for the complete ac-
tive domain of a column while investing only marginal cat-
alog space. Since XML trees typically are shallow (e.g., 1 <
level < 13 for XMark instances) and only contain a limited
number of distinct tag and attribute names (XMark: about
70), we instructed DB2 to collect complete value distribution
statistics for these columns. In effect, SYSTAT.COLDIST thus
implements multiple perfect histograms in the sense of [9].

Value predicates and K-quantiles. In the simple en-
coding of Figure 1(c), column value of SQL type VARCHAR(-)
holds any textual node content. The evaluation of numeric
value predicates as in the XPath location path

doc("auction.xml")/site//open_auction[reserve > 10]
thus compiles into SQL range predicates of the form
10 < CAST(doc.value AS DECIMAL) .

As is, the required CAST(-) from VARCHAR(-) to DECIMAL in-
hibits the consultation of K-quantile statistics for column
value (recording the value v below which K values lie). At

the time of writing, Pathfinder’s XML encoding and SQL
code generator are modified to exploit additional columns
decvalue and intvalue (of SQL types DECIMAL and INTEGER, re-
spectively) which hold textual node content cast to numeric
types. For the above XPath value predicate, Pathfinder’s
static typing phase will lead the code generator to emit the
SQL predicate 10 < doc.decvalue instead and thus allow the
exploitation of K-quantile statistics for column decvalue. At
the same time, additional columns like decvalue and intvalue
facilitate the evaluation of implicit type casts which are per-
vasive in XQuery due to the language’s node atomization
semantics [2].

2.2 Statistical Views

While full distribution statistics already go a long way
towards our goal to equip the DB2 optimizer with appropri-
ate knowledge about XML documents, this type of statis-
tics still fails to capture the intrinsic structural irregular-
ity of tree-shaped XML data. In XQuery, XPath location
steps are used to explore this tree structure. Pathfinder
compiles a location step «::nt into a self-join over the en-
coding table doc (see Figure 2 and [8]): in the join predi-
cate azis(a) A name(nt), azis(a) represents the semantics
of XPath axis @ while name(nt) embodies the step’s name
and kind test.

In the absence of more specific information, DB2 evaluates
the filter factor for the predicate in doc X doc as

c1=co

1
max (COLCARD (¢), COLCARD (c2))

ﬁ:

where COLCARD (-) denotes the estimated cardinality of a col-

WITH
t0 (guide) AS
(VALUES (8), (126), (244), (362), (480), (598)),
t1 (item_int) AS
(SELECT COUNT (*) AS item_int
FROM doc AS a2, doc AS a3, tO AS a4
WHERE (a2.kind = doc)
AND (a2.value = ’auction.xml’)
AND (a3.pre BETWEEN (a2.pre + 1)
AND (a2.pre + a2.size))
AND (a3.guide = a4.guide))
(SELECT a5.item_int
FROM t1 AS ab);

Figure 3: SQL code for Query Q6 (using DataGuide-
style path identifiers).

umn’s active domain (Table 2). The uniformity assump-
tions built into this formula fails to acknowledge the ir-
regular node distribution in table doc. Clearly, the XPath
step doc("auction.xml")/descendant: :node() selects all
nodes of the context document' and thus should be assigned
a filter factor of 1. As is expected, DB2 fails to infer this fil-
ter factor from the step’s equivalent SQL query, primarily
because of the involved range predicate (the equivalent of
azis(descendant)):

SELECT a2.x*
FROM doc AS al, doc AS a2
WHERE al.kind = doc
Q = AND al.value = ’auction.xml’
AND a2.pre BETWEEN (al.pre + 1)
AND (al.pre + al.size) .

At this point, DB2’s statistical views, for which the system
records statistics but not the result itself, can be of valuable
help:

CREATE VIEW docaccess AS @;
ALTER VIEW docaccess ENABLE QUERY OPTIMIZATION .

A statistical view permits the system to “peek” at the re-
sult of (intermediate) arbitrarily complex query expressions
already at query compile time—and thus enables informed
decisions about access path and join algorithm selection.

Below, let us briefly discuss the impact of the statistical view
docaccess on the DB2-generated execution plans for XMark
Query Q6 of Section 1. Here, for space reasons, we discuss
a variant of the SQL common table expression for Q6 (Fig-
ure 3) in which Pathfinder exploited the DataGuide-style
path information [6, 4] in column guide of table doc: the in-
termediate unary table t0 directly supplies the path identi-
fiers (i.e., guide column entries) for those nodes reachable by
path expression doc("auction.xml")/site/regions//item
(six distinct paths in the input XMark instance match this
location path).

Without statistical view. In absence of the statistical
view docaccess, DB2 emits the query execution plan de-
picted in Figure 4(a). We are reproducing these plans in a
form closely resembling the output of DB2’s visual explain
facility. Nodes in these plans represent operators of DB2’s
variant of physical algebra—all operators relevant for the
present discussion are introduced in Table 4. The plan relies

! Pathfinder judiciously introduces such steps to access the
nodes of an XML document for a given URI.

Iy
1

8.58
2,001f.82 ™ 6
[(NLJOIN] [TBSCAN]

™

6

2,001.82

[IXSCAN]
N

x
5,072,510

(a) Without statistical view docaccess.

Iy
1

1
[IXSCAN]

5,073,510

21,750 1

NL7JOIN IXSCAN
S
[N
6 3,625 3,072,510

[TBSCAN] [IXSCAN]
~

x
5,072,510

(b) With statistical view docaccess.

a—

Figure 4: DB2-generated execution plans for Q6.
Figures indicate estimated cardinalities.

on two indexed access paths: (1) a B-tree with key columns
(kind, pre, pre + size, value), abbreviated kpsv, and (2) a B-
tree with key (guide, pre), abbreviated gp (Section 2.3 sheds
light on the choice of these particular indexes).

The system succeeds to perfectly estimate a cardinality of
1 for the left (outer) leg of the NLJOIN operator: the single
row encoding the document node of XML document ’auc-
tion.xml’ qualifies with respect to predicate kind = doc
AND value = ’auction.xml’. The output cardinality esti-
mate for the NLJOIN (the join between a2 and a3 in the
SQL code of Figure 3), however, is already off by a factor of
more than 2,500: DB2 estimates a cardinality of 2,001.82
while we know that all nodes of the document will qual-
ify (the 112MB XMark instance contains 5,072,510 nodes
overall). In consequence, the system severely underrates the
cost of the NLJOIN and proposes an evaluation plan that
comes at a price about 30 times higher than for the plan
generated in the presence of the statistical view docaccess.

With statistical view. DB2’s assessment of the plan cost
radically changes once the statistical view docaccess is avail-
able (Figure 4(b)). Now knowing that an early self-join of

Semantics Operator Semantics

Result row Grouping and/or

delivery aggregation
NLJOIN Nested-loop join TBSCAN Temporary table
(left leg: outer) scan
IXSCAN B-tree scan Access index with

key columns kpsv
XML encoding
table

Literal table

Table 4: Relevant DB2 physical plan operators.

doc will return 5,072,010 nodes, the corresponding NLJOIN
is postponed. Instead, the optimizer chooses to use the
DataGuide information in table t0 (the literal table of six
rows surfaces as a GENROW operator in the plan) and intro-
duces an indexed NLJOIN that uses B-tree index gp to se-
lectively access those nodes reachable via the location path
doc("auction.xml")/site/regions//item. The value dis-
tribution statistics for column guide in SYSCAT.COLDIST lead
the optimizer to a perfect estimate of 21,750 item element
nodes that will be retrieved by the index accesses. Only the
second NLJOIN will perform the document access and touch
no more than the required 21, 750 nodes. This plan evaluates
XMark Query Q6 as efficient as we could hope for—which is
remarkable, considering that a SQL-centric query optimizer
and engine took all responsibility for the evaluation of an
XQuery expression.

Table 5 documents the effect on the complete XMark bench-
mark query suite [11] once we supplied the query optimizer
with the docaccess statistical view. The table reports on
the relative improvement in execution time when queries are
run against a 112 MB XML document instance (the 100 %
line marks the execution time in the absence of statistical
views.). Dependable filter factor estimates lead to DB2 to
plans whose execution time improve by up to two orders
of magnitude. On a dual 3.2 GHz Intel Xeon™ Linux 2.6
host with 8 GB of primary and SCSI-based secondary disk
memory, the far majority of queries executes in significantly
less than one second (the notoriously complex Queries Q9—
Q12 are an exception). Most interestingly, these execution
times clearly undercut those required by the DB2 built-in
pureXML™ XQuery processor: in [6] we reported an up to
five-fold advantage that increases with growing XML input
sizes.

2.3 Further DB2 Gadgets on the Workbench

More than 30 years of research and development in rela-
tional query processing engines have produced an extensive
set of tools and techniques, many of which are available—in
one form or another—in DB2 V9. Here, we sketch a number
of further options offered by the larger DB2 kernel infras-
tructure and how they can help to turn the system into a
efficient and scalable XQuery processor. All of these we will
scrutinize in the course of this Ph.D. project.

Autonomous index design. Since the Pathfinder com-
piler emits pure SQL, we may call on the DB2 design advisor
db2advis and let the system adapt its internals to the typical
queries generated by the XQuery compiler.? The system’s

20Only with the recent DB2 V9.5 release IBM has added early
pureXML™ support to db2advis.

autonomous proposals for B-tree indexes are of particular in-
terest in this context: reasonable proposals indicate that the
Pathfinder-generated SQL common table expressions consti-
tute a workload that DB2 indeed can cope with.

In fact, once we fed the SQL code for XMark Query Q6
(Figure 3), db2advis suggested the B-tree indexes kpsv (with
composite key (kind, pre, pre + size, value)) and gp (with key
(guide, pre)) that we have discussed earlier in Section 2.2.
Both indexes are interesting in the sense that their keys
are prefixed with low-selectivity columns: (1) there are only
six distinct XML node kinds registered in column kind, and
(2) there are significantly less distinct paths (column guide)
than distinct nodes (column pre) in a typical XML document.
Such low-selectivity key prefixes effectively lead to the con-
struction of partitioned B-trees. This kind of B-tree enjoys
a number of desirable properties [5]—a name-partitioned B-
tree, for example, implies zero-redundancy tag name storage
if compression is used on the name-prefixed keys [1]. Fur-
ther, a B-tree with key (guide, pre) partitions the XML nodes
of a document based on their rooted paths. B-tree gp thus
supports DataGuide-based node acccess and effectively ma-
terializes the result of (selected) XPath location paths.

Note that, since Pathfinder-generated SQL queries exhibit
a high degree of regularity, any such index will be of high
utility to the database system.

Generated columns and materialized query tables.
The just mentioned regularity of queries immediately sug-
gests that it may be worthwhile to precompute specific query
parts that recur in XPath and XQuery evaluation. Path-
finder offers a number of hooks where such an investment
in storage space may pay off in terms of reduced query ex-
ecution time. The evaluation of XPath axis steps over the
encoding of table doc, for example, leads to the evaluation of
range predicates of the form a2.pre BETWEEN (al.pre) AND
(al.pre + al.size). The sum pre + size is omnipresent in
Pathfinder-generated queries (in fact, column size is rarely
accessed otherwise). We thus created an additional gen-
erated column directly containing the sum—such columns
may be indexed which is crucial for XPath location step
evaluation (db2advis indeed proposed an index with key
(kind, pre, pre + size, value)).

Whenever an XML node is used in a context where an
atomic value is required, the XQuery semantics implicitly
adds an atomization (fn:data(-)) operation. In non-vali-
dated XML documents, atomization entails the traversal of
document subtrees plus the collection and concatenation of
text node contents to compute the string value of the at-
omized nodes [2]. Since this costly operation is pervasive in
XQuery, we consider the construction of precomputed atom-
ization indexes which will benefit from DB2’s materialized
query table and row compression capabilities [3].

Optimization profiles. With release DB2 V9, IBM intro-
duced optimization profiles as a means to reach deep into the
optimizer’s execution plan generation process. Optimization
profiles, specified in the form of XML fragments, can outvote
local optimizer decisions with respect to access path selec-
tion, join algorithm choice, and query (un)nesting. Meant to
be used with the SQL query of Figure 3, the following XML
snippet instructs the optimizer to access the DataGuide B-
tree gp first and only then perform the self-NLJOIN of ta-
ble doc:

X X

- LQ u_') -]

—_ ‘_j =] =l =] = =3 —

110% |- g S S N [=]

g 100% p------1 e R g e - A R g]
£ 0% X om > — 202] -
— I) N el i —

g S0%[W g = . B
R] 3 =
g 60% > =
Lj 50% — S -
T =]
+ = N —
= 30% — -
& C o X SR 3 -
w05 SO 5 s 3

0 — & ; -

C o [121 8 8 — =

Q7 Qo Oy @ @ Q5 @ Q@ Qo Yy Y, Y Yy Yy Qs Qi Y Qg Qg 92

XMark Query

Table 5: Impact of statistical views on the XQuery evaluation performance for the XMark benchmark query

set.

Without statistical views, Queries Q10 and Q11 (marked with oo DNF) did not finish evaluation in

acceptable time; with statistical views these queries executed in 4.8 h and 4 min, respectively.

<OPTGUIDELINES>
<NLJOIN>
<NLJOIN>
<ACCESS TABLE=’a4’/>
<IXSCAN TABLE=’a3’ INDEX=’gp’/>
</NLJOIN>
<IXSCAN TABLE=’a2’ INDEX=’kpsv’/>
</NLJOIN>
</0PTGUIDELINES>

With this optimization guideline in place, DB2 generates the
query execution plan of Figure 4(b), even if the statistical
view docaccess has not been defined.

Extensive use of optimization profiles can turn the DB2
query processor into a programmable relational algebra en-
gine. While we do not plan to follow this route and instead
focus on improvements in Pathfinder’s SQL code genera-
tor and proper XML document statistics, scenarios in which
Pathfinder-generated optimization profiles lead to even bet-
ter execution plans are conceivable.

3. BEYOND DB2—BEYOND XQUERY

With the advent of Pathfinder’s SQL code generator, there
is now little doubt that DB2’s SQL query processor can be
turned into an XQuery processor that need not stumble once
XML input sizes grow large (beyond 100 MB and towards
1GB, say). The DB2 kernel infrastructure has already re-
peatedly proven its versatility and can process tree-shaped
non-uniform XML data efficiently, given that the system has
learned about the input documents’ structure.

While this Ph.D. project will further study how we can
compensate for DB2’s lack of tree-awareness, we will try
to significantly broaden the scope of this work. In one
dimension, this entails code generation for RDBMS back-
ends other than DB2—Pathfinder’s internal algebraic prim-
itives are sufficiently simple and generic to drive a number
of database systems (among these, currently, CWI’s column
store MonetDB, kdb+ from KX Systems, and Microsoft®
SQL Server). In a second dimension, there are few details
of the Pathfinder code generation process that are truly
XQuery-specific. We plan to embrace other “nested-loop

languages”; e.g., LINQ or fragments of RUBY, and thus turn
database systems into efficient and scalable runtime systems
for these languages.

Acknowledgments. I would like to thank my Ph.D. ad-
visor Torsten Grust and Jan Rittinger for their insightful
feedback.

4. REFERENCES

[1] R. Bayer and K. Unterauer. Prefix B-Trees. ACM
TODS, 1977.

[2] S. Boag, D. Chamberlin, and M. Ferndndez. XQuery
1.0: An XML Query Language. W3 Consortium, 2007.
http://www.w3.org/TR/xquery/.

[3] DB29 for Linux, UNIX and Windows Manuals, 2007.
http://www.ibm.com/software/data/db2/udb/.

[4] R. Goldman and J. Widom. DataGuides: Enabling
Query Formulation and Optimization in
Semistructured Databases. In Proc. VLDB, August
1997.

[5] G. Graefe. Sorting and Indexing with Partitioned
B-Trees. In Proc. CIDR, January 2003.

[6] T. Grust, M. Mayr, J. Rittinger, J. Teubner, and
S. Sakr. A SQL:1999 Code Generator for the
Pathfinder XQuery Compiler (Demo Paper). In Proc.
SIGMOD, June 2007.

[7] T. Grust, J. Rittinger, and J. Teubner. Why
Off-The-Shelf RDBMS are Better at XPath Than You
Might Expect. In Proc. SIGMOD, June 2007.

[8] T. Grust, S. Sakr, and J. Teubner. XQuery on SQL
Hosts. In Proc. VLDB, September 2004.

[9] Y. E. Ionnadis. The History of Histograms (abridged).

In Proc. VLDB, August 2003.

J. Melton and A. R. Simon. SQL:1999 -
Understanding Relational Language Components.
Morgan Kaufmann, 2002.

A. R. Schmidt, F. Waas, M. L. Kersten, I. Manolescu,
M. J. Carey, and R. Busse. XMark: A Benchmark for
XML Data Management. In Proc. VLDB, August
2002.

(10]

(11]

