Jump Through Hoops to Grok the Loops

Pathfinder’s Purely Relational Account of XQuery-style lteration Semantics

Torsten Grust

Jan Rittinger

Technische Universitat Minchen
Munich, Germany

torsten.grust | jan.rittinger@in.tum.de

ABSTRACT

What remains if you remove XML trees and node construc-
tion, XPATH location path traversal, atomization, and all
other XML-inflicted concepts from XQUERY? — We describe
how the design of the database-supported XQUERY proces-
sor Pathfinder has been centered around the compilation of
the language’s core side effect-free iteration construct, for,
a concept that XQUERY shares with many (data-intensive)
languages, e.g., SQL, LINQ, LiNKS, RUBY, and HASKELL’s or
PyTHON’s list comprehensions. The compiler implements
loop lifting, a compilation technique that lets a relational
database back-end fully realize—and benefit from—the in-
dependence of the individual iterations of a for loop. We
explore useful extensions and special cases of loop lifting
and will see how XQUERY 1.1’s proposed windowed itera-
tion construct forseq may be grokked this way—this also
uncovers, however, forseq’s lurking cost.

1. XQUERY MINUS THE ‘X’

In retrospect, the design, architecture, and performance of
the relational XQUERY compiler Pathfinder [11] have been
primarily determined by the compiler’s specific approach
to for loop compilation. On the other hand, the XML-
related aspects of XQUERY’s data model—the representa-
tion and construction of nodes of several kinds or traversal
along all XPATH axes, for example—have been secondary
design choices that do not reach particularly deep. In fact,
Pathfinder’s relational XML node encoding has been re-
placed during the lifetime of the project. The system cur-
rently relies on a variant of the now pervasive pre|post range
encoding, but this detail is “pluggable” and the compiler
will accept any encoding that preserves node identity and
document order (e.g., ORDPATH labels [20]).

To acknowledge this key role of XQUERY’s for in Path-
finder, in the pages to come we will not discuss the “X-ish”
aspects of the language. Instead, we focus on the efficient
compilation of (nested) iteration over ordered sequences of

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

Copyright 200X ACM X-XXXXX-XX-X/XX/XX ...$5.00.

let $auction := doc(’auction.xml’)
for $o in $auction/open_auctions/open_auction
return
<corrupt id=’{ $o/@id }’>
{ if (sum($o/(initial | bidder/increase)) = $o/current)
then text { ’no’ }
else $auction//people/person[@id = $o//@person]/name }
</corrupt>

Figure 1: Search XMark document auction.xml for
corrupted bid data (Query Q1).

for $v1 in e1
return
if (exists(for $vo in sum(es)
return for $v3 in es3
return if (eyq) then es else ()))
then eg
else for $vq4 in ey
return
if (exists(for $vs in eg
return for $vg in eg
return if (ejp) then ej; else ()))
then ejg else ()

Figure 2: The core of (1 minus the XML-specific
baggage: for iterations and conditionals (Query Q2).

arbitrary items. To illustrate, consider Query @1 in Fig-
ure 1. @i searches an XMark [24] instance auction.xml
for corrupted auction data (those open auctions for which
the current bid does not properly reflect the increases
of the initial price set by the seller). The query ap-
pears to be dominated by XPATH location path traversal
and predicate evaluation, element and attribute construc-
tion, and implicit node atomization (the latter caused by
occurrences of sum(-) and the general comparison operator
= in @Q1). Here, we take the efficient evaluation of these
aspects for granted—that is why they are grayed out in
Figure 1—and instead zoom in on the iterative core of the
query, depicted in Figure 2. In this XQUERY Core equiva-
lent Q2 of the original @1, the tables have turned: nested
for loops and conditional expressions dominate and clearly
call for adequate treatment during query compilation (the
e; are placeholders for @1’s secondary XML-specifics, such
that ez = $v1/(initial | bidder/increase) and ez =
text { ’no’ }), for example.

XQUERY and its horde of companion languages. Once
we remove the XML-inflicted baggage, it becomes apparent
that the XQUERY language has numerous close companions.

S0

for $y in 2001 to 2008
return S1
if ($y 1t 2007)

then ’WD/CR/PR’ else ’REC’

(a) Query Q3. (b) Associated loop tables.
Figure 3: XQUERY and its W3C Recommendation
track maturity level (Query Qs3). Annotations so
denote iteration scopes.

(LINQ) Enumerable.Range (2001,8) .Select(

y => y < 2007 ? *WD/CR/PR’> : ’REC’)
(LINks) for (y <- [2001,2002,...,2008])

[if (y < 2007) then "WD/CR/PR" else "REC"]
(RuUBY) (2001..2008) .collect {

Iyl 'y < 2007 ? ’WD/CR/PR’ : ’REC’ }

(HAskeLL) [if y < 2007 then "WD/CR/PR" else "REC" |
y <= [2001..2008] 1]

[*WD/CR/PR’ if y < 2007 else ’REC’

(PYTHON)
for y in range(2001,2008)]

Figure 4: A sample of iterative constructs found in
XQUERY’s companion languages (paraphrases of Q3).

Figure 3(a) shows Query @3, one instance of an XQUERY for
iteration (ignore the so,1 annotations for now). Despite the
syntactic diversity, this XQUERY construct shares a com-
mon semantic ground—monad comprehensions [26]—with
SQL as well as the iteration primitives in, e.g., Microsoft®’s
LiNQ [19], Wadler’s three-tier language LINKS [6], the purely
functional language HASKELL [21], and the dynamic lan-
guages RUBY [23] and PYTHON [22] (see Figure 4).! All
of these language constructs describe the iterative evalua-
tion of expressions under bindings of an unmodifiable loop
or iteration variable. Even for the non-pure languages LINQ,
RUBY (as of Version 1.9), and PYTHON, an assignment to a
variable named y in the loop body will shadow the iteration
variable and thus not influence the behavior of the loop.

Here, we are especially interested in loops in which the
iterated expression does not perform side-effecting compu-
tation such that the individual iterations may be evaluated
independently. For XQUERY, SQL, LINKS, and HASKELL this
is a given. For LINQ, RUBY, and PYTHON this requires pro-
gramming discipline. As the individual iterations cannot in-
terfere, the language processor may evaluate the iterations
in arbitrary order—or even in parallel.

These common semantic roots create a playground in which

database queries and the mentioned companion languages

may closely interact. We currently study

(1) the construction of systems in which two (or more) com-
panion languages share a single database-supported run-
time—this can lead to a truly integrated SQL /XML pro-
cessor, for example, in which the typical mix of SQL and
XQUERY query fragments is uniformly compiled to yield
a homogeneous executable form, and

(2) an even deeper integration of database query functional-
ity into programming languages (as exemplified by Ac-
TIVERECORD or AMBITION in the RUBY ecosystem [1, 2],
LiNQ, and LINKS), in which selected iterative host pro-

1Until June 2001, the W3C XQUERY Formal Semantics
Draft [9] explicitly discussed monads and associated laws.

Operator Semantics
Ta:b project onto column b (and rename into a)
Oa select rows with column a = true
X Cartesian product
Ma=b, Xa=b equi-join, equi-semijoin
U, y, \ (disjoint) union, difference

eliminate duplicate rows
@;.c attach column a containing constant value ¢
#a attach arbitrary key (row id) in column a
Oa:(by,...bn) attach row rank in a (in b; order)

#a:(b1,...bn)/c attach 1,2,..in a (in b; order per c-group)
®a:(by,..,bn) attach result of n-ary op. * € {+,<,—,..} in a
AGGa:p/c attach aggregate of b in a (per c-group)

Table 1: Excerpt of Pathfinder’s target table algebra
(with AGG € {COUNT, MIN, ... }).

gramming language fragments may be translated into
set-oriented algebraic programs. This lays the ground-
work for database-supported language runtimes that do
not stumble if programs consume huge input data in-
stances [13].

Algebraic code. With Pathfinder we designed and im-
plemented a compiler that translates such loop-centric pro-
grams in a fully compositional manner [16]. The compiler
emits plans over a table algebra whose operators (Table 1)
have been selected to reflect the capabilities and execution
model of modern SQL-based RDBMS. The few non-textbook
operators include the family of #, o, and # which perform
variants of row numbering and correspond to SQL:1999’s
ROW_NUMBER clause. As a consequence of the algebra’s purist
RISC-like style (e.g., selection o, does not evaluate predi-
cates on its own but relies on the presence of a Boolean col-
umn a), the resulting plans tend to be somewhat verbose—
typical Pathfinder plans feature 100s, not 10s, of operators—
but can be implemented on a wide variety of back-end sys-
tems. Currently this includes code generators that target
the SQL processors of IBM® DB2 and Microsoft SQL Server
as well as the algebraic MIL language of MONETDB [4] and
the APL-like language Q of kdb+.

Loop lifting. In what follows we shed light on a compi-
lation technique, coined loop lifting in [16], that has been
designed to let a relational database back-end directly par-
ticipate in the evaluation of programs (or queries) written in
an iterative style. The loop-lifting compiler emits algebraic
code for execution on the back-end which then realizes the
semantics of the input program. Loop lifting fully realizes
the welcome independence of the iterated evaluations and
enables the relational query engine to take advantage of its
set-oriented processing paradigm (Section 2).

Loop lifting is simple yet versatile. We sketch extensions
as well as special cases that address features and peculiar-
ities of XQUERY (Section 3) and also cover the windowed
iteration construct forseq proposed for XQUERY 1.1 [18].
Strictly speaking, forseq violates iteration independence,
though—this violation comes with inherent cost (Section 4).

2. LOOP LIFTING

With XML trees out of the picture, ordered sequences
(x1,x2,...,x,) of items x; are the principal data structure
in XQUERY—the companion languages equivalently feature

values of type [a] (HASKELL), Array (RUBY) or
IEnumerable<7> (LINQ). To properly reflect this
on the inherently unordered relational database
back-end, we embed order in the data and use
binary tables with columns pos|item (shown on the
left) to represent such sequences. Note that the
values in column pos need not be dense and not even be of
type integer; any ordered domain will do. In specific cases
the required order may already reflected by the items x;
themselves (think of a sequence of encoded nodes resulting
from XPATH location step evaluation)—column item may
then assume the role of pos.

Our view of the XQUERY dynamic semantics is principally
determined by for as the core language construct: any
subexpression is considered to be iteratively evaluated in the
scope s; of its innermost enclosing for loop. The top level of
an expression e is assumed to be wrapped inside the scope
so of a pseudo single-iteration loop for $_in (0) returne
where $_ does not occur free in e (i.e., the choice of 0 is
arbitrary). The fundamental idea behind loop lifting is to
produce algebraic code that consumes and emits a “fully un-
rolled” tabular representation of e’s value. Here, unrolling
refers to the principle that

a single ternary table with schema iter|pos|item holds the
encoding of all values that e assumes during its iterative
evaluation.

Generally, such a table has key (iter, pos) since e may yield
a sequence of items in each distinct iteration—only if e’s
sequence type is a subtype of item? [7], iter by itself will be
key. A row (i,p, v) in the table may invariably be read as “in
iteration ¢, expression e yields item value v at the sequence
position corresponding to p’s rank in column pos.”

In Query Qs (Figure 3(a)) we have made the iteration
scopes explicit. The evaluation of the top-level expressions
in the pseudo scope so is iterated once. In the accompany-
ing Figure 5, the bottommost iter|pos|item table shows the
output of the algebraic code produced for the top-level ex-
pression 2001 to 2008: all 8 items have been produced in the
first and only iteration in scope so (iter = 1 in all rows), in
the order indicated by column pos. From this, the algebraic
program derives that 8 iterations will be performed in the
inner scope si: variable $y is bound to one integer in the
sequence 2001, ...,2008 in each iteration while the constant
2007 invariably evaluates to 2007.

Note how the bottom join Miter—iter, in Figure 5 assembles
the values of $y and 2007 in corresponding iterations such
that the single invocation of © can compute the outcome
of the comparison $y 1t 2007 for all § iterations. In effect,
the operator’s internal row-by-row processing drives the it-
erative evaluation and no explicit iteration primitive or sim-
ilar non-relational device is required. The back-end may
autonomously decide about out-of-order row processing or
the adequacy of parallel execution—its (iter, pos) key allows
each item to be correctly positioned in the evaluation result.
This is, in a sense, the algebraic embodiment of the iteration
independence we underlined in Section 1.

There is, literally, no relational encoding of the empty se-
quence (): if subexpression e evaluates to () in iteration 7,
no row with iter = ¢ will occur in the iter|pos|item table as-
sociated with e. The presence of () may be reconstructed,
however: if required, the compiler emits code that produces

Q3

| ROl iter pos item

Titer:outer, .| 1| 1 | WD/CR/PR’|

pos:posy, 1 | 2 |’WD/CR/PR’

| item . . .

Qpos; : (sort,pos) ; .
else 'REC’ postitsertpos) i8] mec |
iter pos item . l>4
71 1 [’REC’ |ter:|nner\
|s |1 [Rec| —
el L= U\}

‘@item: YREC’ C?item: "WD/CR/PR’ |
?Pos:l C‘@pos:l ~~~then Y2
| | | 1] 1 |wD/CR/PR’|
Oitem Oitemy 2|1 |’WwD/CR/PR’
\ o :
Olitemy : (i o :
e {fem) L6 | 1 [u/crven|

$y 1t 2007
iter pos item E - . .
[T T [true| Titer,pos,item:itemy

- | .
2| 1 |truel . . . Touter:iter
ol I @ltemgz(lteml,ltem) inner, ’
I X X sort:pos
L8] 1 |false] Kiten:iter\
Titery siter, @item:2007
itemy :item ‘
) :
$y : @poszl @poszl 2007
iter pos item i | | iter pos item
1| 1 [2001]; Titer:inner, Tliter:inner 1|1 [2007
2| 1 |2002f item K 2| 1 |2007
[8] 1 |2008| [8] 1 [2007]

2001 to 2008
iter pos item

Figure 5: Loop-lifted algebraic code to evaluate Qs
(also shows results of selected subexpressions).

unary loop tables that keep record of all iterations performed
in a given scope (see Figure 3(b) for the loop tables associ-
ated with Q3). By subtracting from table loop(s1), the plan
can compute that the then branch of @3 evaluates to ()
in iterations 7 and 8 while the else branch yields () in
iterations 1 through 6. (We come back to loop tables in
Section 3.)

Plan shape. Figure 5 and a peek at Figure 9 show a distinc-
tively narrow but tall plan shape resulting from the compo-
sitional stacking of constructs that is typical for expression-
oriented languages like XQUERY and its companions. Loop-
lifted code exhibits plenty of sub-plan sharing opportunities
(all subexpression in a scope share one loop table, for exam-
ple) which naturally leads to plan DAGs rather than trees.
Despite their unusual shape we have found the plans to be
amenable to far-reaching analysis and simplification [15].
Nevertheless, dependent on the complexity of the input pro-
gram, back-ends originally built for languages with only re-
stricted compositionality (think SQL) may have to issue a
series of collaborating queries to realize the semantics of the
overall loop-lifted plan [12].

While this already gives a fairly complete account of loop
lifting, the gory details of the translation scheme, its impli-
cations, performance, and optimization have been described
elsewhere [4, 11, 15, 16].

3. MORE COLUMNS...

As a purely relational compilation technique, loop lifting
inherits the versatility of the relational model. (To make
this point, we built ROVER [14], an XQUERY debugger that

instruments the algebraic code to persistently save selected
intermediary result tables (see Figure 5) in the back-end.
ROVER issues SQL queries against these tables to offer a
declarative post-mortem debugging interface that can ex-
plore huge values and deeply nested iteration scopes.)
Here, we sketch how minor extensions or restrictions of
the original ternary iter|pos|item model suffice to address a
number of further interesting peculiarities in XQUERY land.

Validation and type annotation (iter|pos|item|type). A
side effect of successful XML document validation is type an-
notation which augments the document’s nodes with their
inferred XML Schema types. In a loop-lifted translation,
such annotations naturally live in an extra type column.
In [25], Teubner has shown how this column may be used to
let the database back-end perform loop-lifted sequence type
matching. Ultimately, this leads to an efficient set-oriented
implementation of typeswitch() and instance of clauses.

Node locators (iter|pos|item|guide). Locating nodes in
huge XML instances may account for a significant share of
query execution time. This is where additional location in-
formation, e.g., the node’s representative in its document’s
Data Guide [10], pays off. Pathfinder uses the equivalent of a
guide column—available for items of sequence type node—to
shortcut XPATH traversal and to reduce atomization effort.

XQUERY Full-Text (iter|pos|item|score). In XQUERY Full-
Text selections [3, § 3], each retrieved item is associated with
a match score that is accessible during iteration (in terms
of for $x score $sin---). Such extensions to the origi-
nal XQUERY Data Model (DM) may be straightforwardly
understood in terms of column extensions (here: a score
column from which bindings for $s may be drawn just like
column item provides the domain for iteration variable $x).

Tuples in the XQUERY DM (iter|pos|itemy]|- - - |itemy,).

Through column extension the loop-lifted processing model

is prepared to support tuple constructors in the XQUERY DM.
While explicit tuple syntax may never make it into XQUERY,

its support in the language processor may benefit compila-

tion and optimization. One common opportunity is to trade

pairs of transient node construction and subsequent X PATH-

based deconstruction (often used to describe the result of
grouping in XQUERY) for real tuple processing in the back-

end.

3.1 ...LESS COLUMNS

fn:unordered() and unordered{} (iter|item). Sequence
or iteration order may be selectively ignored in the scope of
fn:unordered() or unordered{}. In a loop-lifted transla-
tion, this corresponds to the absence (or arbitrary popula-
tion) of column pos. In [15], we show how this simple alge-
braic characterization of order indifference can have sweep-
ing effects on query plans and execution time.

Top-level expressions (pos|item). Loop lifting introduces
no overhead if there is no enclosing iteration. On the XQUERY
top-level, for example, column iter is statically identified to
carry the constant 1 (see Figure 3(b)) and thus projected
away by the Pathfinder compiler. Loop tables are obsolete
in such contexts.

Existential semantics (iter). XQUERY’s central notion of
effective Boolean value [7, § 3.4.3] relies on existential seman-
tics (refer to the occurrences of built-in function exists(-)

for $o in doc(’auction.xml’)//open_auctions/open_auction
return
forseq $w in $o//bidder tumbling window @
start prevItem $p when [xs:decimal (§p/increase) gt 0.5
end curltem $c when |xs:decimal(§c/increase) gt 0.5
where count($w) ge 4 ®
return
<micro> { $p, $w } </micro>

®
Figure 6: Identify phases of “micro bidding” for all
open auctions (Query Q4). Subexpression annota-
tions in () refer to the subplans in Figure 9.

in Figure 2). In such contexts, sequence position or actual
item values are irrelevant: knowledge about the iterations
encoded in column iter already suffices to decide the outcome
of an application of exists(-).

4. WHEN ITERATION TUMBLES

At the time of writing (May 2008), all odds are that—
with the advent of XQUERY 1.1—for will lose its monopoly
of being the language’s only iteration primitive.? The new
forseq $w in --- construct [5] binds its iteration variable
$w to a non-empty sequence (or window) of items before
the evaluation of the loop body is performed—zfor creates
single-item bindings instead. As we will see shortly, these
windowed bindings—including the new prevItem, nextItem,
... options—naturally map onto the loop lifting scheme. The
new window border clauses start---when and end- - - when,
however, violate the principle of iteration independence (Sec-
tion 1). With loop lifting, this violation surfaces in terms of
(sub)plan complexity but we conjecture that any truly set-
oriented XQUERY 1.1 processor will face similar intricacies.

Query Q4 in Figure 6 uses forseq to identify phases of “mi-
cro bid increases” (here: no more than 50¢) typically is-
sued by bidders right before an active auction closes. Once
such a window of bids has been identified, $w is bound to
the sequence of associated bidder elements—in (Q4’s where
clause we can therefore constrain the duration count ($w) of
the overall bid phase and build micro result elements that
include all relevant bids (we chose to include the two higher
bids that frame the micro bid phase).

Sequence bindings. True to the theme of our discussion,
let us zoom in on the essentials of iteration and consider the
following simple forseq instance (Query Qs):

forseq $w in (a,b,c,d,e) tumbling window
start position $s, prevItem $p when $s =
end position $e, nextItem $n when $e
return $w

(1,2,4)
(3,5)

The clauses start/end position - -+ when de-
fine positional window borders that ulti-
mately lead (see below) to the two sequence

bindings (a,b,c) and (d,e) for $w. In a loop- 5
lifted compilation scheme, this translates into 3
the table representing iteration variable $w 1

2

shown here: the forseq loop will perform two

2The XQUERY 1.1 Requirements Working Draft lists window-
ing with status SHOULD [8, §2.3.8] and more than half of the
first XQUERY 1.1 Use Cases Working Draft [18] is devoted
to the treatment of forseq.

landmark

(2) (b)

Figure 7: Windows defined over the 5-item sequence
(a,b,c,d,e) if the start---when and end- - - when clauses
evaluate to true for the sequence positions given by
tables start and end in (a), respectively (Query Qs).

iterations (iter € {1,2}), with $w bound to 3-item and 2-item
sequences, respectively (note the composite (iter, pos) key).

The evaluation of the position, prevItem, nextItem, and
curItem binding clauses is iterated for each item of the in-
put sequence: their associated variables are bound to single
items such that the clauses
mimic the behavior of the it-
eration variable (and the op-

iter pos item

301 ch tional at-bound sequence posi-
411 ¢ tion variable) of the well-known
1| d

for construct. Loop-lifted en-
codings of $s and $p are shown
on the side. The representation
of $p, for example, is obtained through a single equi-join
of the representation of the input sequence with itself (ef-
fectively shifting column pos by 1, see the subplan labeled
prevItem in Figure 9). Also, the table contains no row with
iter = 1, reflecting that a prevItem variable is bound to ()
in the first iteration of a forseq loop [5].

Up to here, forseq still is a good citizen in terms of the
iteration independence notion.

Stateful window borders. Whenever the start --- when
clause evaluates to true in a given iteration, zero, one, or
more windows open:

(1) In tumbling mode, no new window is created if a win-
dow opened in an earlier iteration is still open (tumbling
windows do not overlap), otherwise one window opens.

(2) In sliding mode, exactly one new window opens.

(3) In landmark mode, the number of subsequent true evalu-

ations of the end - - - when clause determines the number
of windows opened.
Whenever the end - -- when clause evaluates to ¢rue (or in

the last iteration), for each earlier iteration, one window—if
present—is closed.

This is an inherently stateful and order-dependent seman-
tics of window borders (e.g., in the tumbling mode Query Qs
above, no window is opened in iteration 2 because the ear-
lier iteration 1 has switched the processor to state “window
open”). Indeed, [5] calls upon state automata to define the
semantics of start/end --- when.

A set-oriented language processor (an RDBMS, for example)
can faithfully simulate the transitions of these automata.
Dependent on the window mode, however, the system has
to jump through one or more hoops to get there. Cast in
terms of table operations, a plan has to derive table tumbling
(sliding, landmark) from tables start and end to determine the
window borders (see Figure 7). In landmark mode, a sim-
ple 6-join does the job; in the, presumably simpler, modes

WITH

landmark (s,e) AS tumbling(s,e) AS

(SELECT s,e (SELECT s,e
FROM start, end FROM sliding s1
WHERE s < e), WHERE NOT EXISTS (
SELECT 1
sliding(s,e) AS FROM sliding s2
(SELECT s, (SELECT MIN(ls.e) WHERE s5.s < s1.s
FROM landmark I AND s1.5 < s9.e))

WHERE lo.s = ly.s)
FROM landmark |y
GROUP BY s), ...

Figure 8: SQL:1999 simulation of the forseq window
border automata (tables names refer to Figure 7).

sliding and tumbling, a simulation of the stateful seman-
tics involves grouping, aggregation, and anti-semijoin. Fig-
ure 8 sketches the resulting SQL queries. Returning to the
micro bid phase Query Q4 and its plan excerpt (Figure 9),
the subplan marked tumbling further indicates how the alge-
braic window border logic accounts for a significant runtime
effort. In fact, forseq stands closer to grouping constructs,
like positional grouping proposed by Kay in [17], rather than
actual iteration.

Optimization requires landmark decisions. The origi-
nal forseq proposal suggests optimizations that trade land-
mark for sliding and sliding for tumbling windows—a
stateful, streaming implementation will benefit if less state
and smaller item backlogs are to be kept at query runtime [5,
§6.3]. In light of the foregoing, however, it appears that
just the opposite window preference applies to database-
supported processors in the style we have discussed them
here: although, in general, landmark mode yields the most
windows (and thus the most forseq loop body evaluations),
its window border semantics requires the least runtime in-
vestment.

As inhabitants of the database camp, we hope that this
lurking cost of forseq receives attention while XQUERY 1.1
is shaped in the months and years and to come.

5. REFERENCES

[1] ACTIVERECORD in RUBY ON RAILS.
http://ar.rubyonrails.org/.

[2] AmBITION (RUBY).
http://ambition.rubyforge.org/.

[3] S. Amer-Yahia, C. Botev, S. Buxton, P. Case,

J. Doerre, M. Holstege, J. Melton, M. Rys, and

J. Shanmugasundaram. XQuery 1.0 and XPath 2.0
Full-Text (Working Draft). W3 Consortium, May
2007. http://www.w3.org/TR/xpath-full-text-10/.

[4] P. Boncz, T. Grust, M. van Keulen, S. Manegold,

J. Rittinger, and J. Teubner. MonetDB/XQuery: A
Fast XQuery Processor Powered by a Relational
Engine. In Proc. SIGMOD, Chicago, USA, June 2006.

[5] I. Botan, D. Kossmann, P.M. Fischer, T. Kraska,

D. Florescu, and R. Tamosevicius. Extending XQuery
With Window Functions. In Proc. VLDB, Vienna,
Austria, September 2007.

[6] E. Cooper, S. Lindley, P. Wadler, and J Yallop. Links:
Web Programming Without Tiers. In Proc. FMCO,
Amsterdam, Netherlands, 2006.

[7] D. Draper, P. Fankhauser, M. Fernandez,

A. Malhotra, K. Rose, M. Rys, J. Siméon, and

(8]
Tliter:outer,pos:posy ,item
\ [9]
Opos; : (sort,sorty ,pos)
|
X
/iter_inner\
/r\ o . Touter:iter,
@pos:1 Tliter:inner Titer:inner,pos:sort,item inner, []_O}
‘ | sort:pos,
o . sorty:posy
‘ iter:inner,item pos< sortApos; >sort
X
iter; =iter Asort=pos ([1 1}
‘ #inner
Tritery :iter, ‘ : Tlitery :iter, [12}
sort:posy Titer,pos,posy sort:posy,
item | item
X
iter=iter; Asort=sort;
th__ling #sort: (pos) /iter #sorty: (pos;) /iter] [13}
Tliter,pos Tlitery ,posy
\
X X
grp=grp grp1=grp1 [14}
MIN 0 MIN
\ pos:(pos) /grp \ pos:(pos1)/grp1
Tgrp,iter Tgrpy,itery [}
15
Ogrp: (iter,cnt) Ogrpy:(itery,enty)
Tliter,pos,cnt Tlitery ,posy ,cnty
[16]
key=key key; =keyy
~ ~
COUNT COUNT 17
cnt: /key cnty: /keyy [}
~ b
iter=iter; Apos2 pos;
g (18]
#key #keyl
@]
start- |- when
"o [19]
v (rer pes rareit UNT
. iter,pos:pos; ‘ Itery :iter, pos; poslz/lterl
| |
Xinner=iter; Xinner=iter; Titery siter
20
Titery :iter Tliter; :iter [}
end- - when
| | 21
@pos:l @pos:l [}
| |
Tliter:inner,item Tliter:inner,item
NG| [, ,
~| [22]
X
iter=1iter1A .
poj _§ curltem [23]
Tritce)g’pos ﬂ-itggl:iter,
a il 1
% [24}
; #iﬁ/
prevIitem 1
Tposy(pos) /iter [25}
(26]

Figure 9: An algebraic account of the XQUERY 1.1
forseq semantics (plan excerpt for Q4).

P. Wadler. XQuery 1.0 and XPath 2.0 Formal
Semantics. W3 Consortium, January 2007.
http://www.w3.org/TR/xquery-semantics/.

D. Engovatov. XQuery 1.1 Requirements (Working
Draft). W3 Consortium, March 2007.
http://www.w3.org/TR/xquery-11-requirements/.
P. Fankhauser, M. Ferndndez, A. Malhotra, M. Rys,
J. Siméon, and P. Wadler. XQuery 1.0 Formal
Semantics (Working Draft). W3 Consortium, June
2001. http://wuw.w3.org/TR/2001/
WD-query-semantics-20010607/.

R. Goldman and J. Widom. Data Guides: Enabling
Query Formulation and Optimization. In Proc. VLDB,
Athens, Greece, August 1997.

T. Grust. Purely Relational FLWORs. In Proc.
XIME-P, Baltimore, MD, USA, June 2005.

T. Grust, M. Mayr, J. Rittinger, S. Sakr, and

J. Teubner. A SQL:1999 Code Generator for the
Pathfinder XQuery Compiler. In Proc. SIGMOD,
Beijing, China, June 2007.

T. Grust, M. Mayr, J. Rittinger, and T. Schreiber. A
Ferry Across the Great Database and Programming
Languages Divide, 2008. Submitted for publication.
T. Grust, J. Rittinger, and J. Teubner. Data-Intensive
XQuery Debugging with Instant Replay. In Proc.
XIME-P, Beijing, China, June 2007.

T. Grust, J. Rittinger, and J. Teubner. eXrQuy:
Order Indifference in XQuery. In Proc. ICDE,
Istantbul, Turkey, April 2007.

T. Grust, S. Sakr, and J. Teubner. XQuery on SQL
Hosts. In Proc. VLDB, Toronto, Canada, 2004.

M. Kay. Positional Grouping in XQuery. In Proc.
XIME-P, Chicago, USA, June 2006.

T. Kraska. XQuery 1.1 Use Cases (Working Draft).
W3 Consortium, March 2008.
http://www.w3.org/TR/xquery-11-use-cases/.

E. Meijer, B. Beckman, and G. Bierman. LINQ:
Reconciling Objects, Relations, and XML in the .NET
Framework. In Proc. SIGMOD, Chicago, USA, 2006.
P. E. O’Neil, E. J. O’Neil, S. Pal, I. Cseri, G. Schaller,
and N. Westbury. ORDPATHs: Insert-Friendly XML
Node Labels. In Proc. SIGMOD, Paris, France, 2004.
S. Peyton Jones. The Haskell 98 Language. Journal of
Functional Programming, 13(1), 2003.

The Python Programming Language.
http://www.python.org/.

The Ruby Programming Language.
http://www.ruby-lang.org/.

A. Schmidt, F. Waas, M. Kersten, M.J. Carey,

I. Manolescu, and R. Busse. XMark: A Benchmark for
XML Data Management. In Proc. VLDB, Hong Kong,
China, 2002.

J. Teubner. Scalable XQuery Type Matching. In Proc.
EDBT, Nantes, France, March 2008.

Philip Wadler. Comprehending Monads. In Proc.
ACM Conference on LISP and Functional
Programming, Nice, France, June 1990.

