A SQL:1999 Code Generator
for the Pathfinder XQuery Compiler

Torsten Grust® Manuel Mayr°

°Technische Universitat Minchen
Munich, Germany

grust | mayrm | rittinge | teubnerj@in.tum.de

ABSTRACT

The Pathfinder XQuery compiler has been enhanced by a
new code generator that can target any SQL:1999-compliant
relational database system (RDBMS). This code genera-
tor marks an important next step towards truly relational
XQuery processing, a branch of database technology that
aims to turn RDBMSs into highly efficient XML and XQuery
processors without the need to invade the relational database
kernel. Pathfinder, a retargetable front-end compiler, trans-
lates input XQuery expressions into DAG-shaped relational
algebra plans. The code generator then turns these plans
into sequences of either SQL:1999 statements or view def-
initions which jointly implement the (sometimes intricate)
XQuery semantics. In a sense, this demonstration thus lets
relational algebra and SQL swap their traditional roles in
database query processing. The result is a code generator
that (1) supports an almost complete dialect of XQuery,
(2) can target any RDBMS with a SQL:1999 language inter-
face, and (3) exhibits quite promising performance charac-
teristics when run against high-volume XML data as well as
complex XQuery expressions.

Categories and Subject Descriptors

H.2.3 [Languages|: Query Languages; H.2.4 [Systems]:
Relational Databases

General Terms

Languages, Experimentation, Performance

Keywords
XQuery, SQL, Relational Algebra, Relational Databases

1. PURELY RELATIONAL XQUERY
PROCESSING

The Pathfinder project’ develops purely relational XQue-
ry processing technology under the main hypothesis that
RDBMSs, while originally built to operate over table-shaped
data, provide perfect infrastructure to efficiently process
high-volume XML instances [2]. In the present work, we
particularly emphasize “relational purity” and demonstrate

"http://www.pathfinder-xquery.org/

Copyright is held by the author/owner(s).
S GMOD’ 07, June 11-14, 2007, Beijing, China.
ACM 978-1-59593-686-8/07/0006.

Jan Rittinger®

Sherif Sakr®

®University of Konstanz
Konstanz, Germany

sakr@inf.uni-konstanz.de

Jens Teubner®

atomic literals

sequences (e1,e2)

variables ($v)

let $v :=ej returnes

for $v [at $p] ine; returnes
if (e1) thenes elsees

ej order byea,..,en
unordered {e}

document order (e1 >>e2)

node identity (eq ise2)

union, intersect, except
arithmetics (+,-,*,idiv,..)
(general) comparisons (=, eq, ..)
user-defined functions

fn:doc(-), fn:root(-), fn:data(-)
fn:distinct-values(-)

node constructors fn:count(-), fn:sum(-), fn:max(-)
XPath (e1/s[le21]) fn:position(), fn:last()
typeswitch (e1) case [$v as] ¢ returnes. .default returney,

Table 1: Excerpt of XQuery dialect supported by
Pathfinder (s: XPath step, t: sequence type).

a code generator for the Pathfinder XQuery compiler that
emits strictly standard-compliant SQL:1999 statements. To
faithfully implement the XQuery semantics, these statements
manipulate relational encodings of XML documents (or frag-
ments thereof) as well as ordered item sequences [6], the two
principal building blocks of the XQuery data model [1]. The
result is a compiler that can translate an almost complete
dialect of XQuery (excerpt in Table 1) and is able to target
any SQL:1999-ready RDBMS. In particular, note that
(1) there is no need for the relational database back-end to
support the SQL/XML standard or to provide an XML
column type of any kind, and that
(2) the relational database kernel remains untainted: no ad-
ditional query processing operators (e.g., structural join
algorithms) are injected and no specific gadgets for XML
storage [7] are required.
Instead, the Pathfinder-generated code relies on functional-
ity already built into relational database back-ends. Among
these are partitioned B-trees to accelerate XPath location
step evaluation [5] (Pathfinder implements XQuery’s op-
tional full azis feature) and SQL:1999’s row numbering ca-
pabilities to support concepts like sequence order that are
central to the XQuery semantics.

Most importantly, the demonstration makes the point that
this purely relational approach to XQuery processing does
not take second place behind specifically engineered native
XQuery support in RDBMSs—quite the contrary (see Sec-
tion 4).

2. SQL:1999 CODE GENERATION

Intermediate language: relational algebra. In Pathfin-
der, a rather classical variant of relational algebra assumes
the role of the compiler’s intermediate language. To trans-
late the expression-oriented, almost functional XQuery lan-

guage with its explicit variable binding and iteration con-
structs (let, for), Pathfinder relies on a compilation tech-
nique known as loop-lifting [6]. In a nutshell, loop-lifting
“unrolls” XQuery FLWOR blocks to expose inter-iteration
data parallelism which the compiler then maps onto the
bulk-processing primitives of relational algebra. This choice
of intermediate language has its particular strengths. On the
one hand, the semantics of relational algebra are well-defined
and independent of any particular database back-end. A
Pathfinder back-end for the MonetDB column store is de-
scribed in [2]. On the other hand, the algebraic primitives
model the internals of RDBMS query engines sufficiently
exact such that the generation of efficient code remains fea-
sible. To further facilitate the latter, Pathfinder’s relational
algebra adheres to restrictions that are inspired by the ac-
tual processing capabilities of SQL-centric database kernels:
column projection () does not eliminate duplicate rows, for
example.

The resulting loop-lifted algebraic plans typically exhibit a
wealth of sharing opportunities and thus are maintained as
plan DAGs. Pathfinder makes aggressive use of relational
properties—e.g., keys, functional and multi-valued depen-
dencies, inclusion of active attribute domains—to reduce
the size of the plan DAGs (cutting down the typical operator
count of 30-300 by more than 50 %) and to realize other plan
enhancements. A number of non-trivial XQuery-specific op-
timizations are compactly described using relational algebra.
In algebraic plans derived by loop-lifting, a robust, non-
syntactical detection of value-based joins in XQuery may
be based on a simple analysis of multi-valued dependen-
cies [2] and an elegant implementation of unordered { } and
fn:unordered() can be formulated in terms of projection
pushdown [4].

Target language: SQL:1999. Due to the composition-
ality of the XQuery language in which all constructs nest
orthogonally as long as typing rules are obeyed, plan shapes
significantly diverge from the well-known w—o—X pattern
generated by SQL compilers. This observation led to a code
generation approach where the algebraic plans are chopped
to let the RDBMS back-end evaluate the overall plan in sep-
arate chunks.

To identify suitable plan chunks, the code generator walks
the plan DAG to find basic blocks—straight-line operator se-
quences with no sideways entries—much like compilers for
programming languages. Inside these basic blocks, Path-
finder applies template instantiation to collapse groups of
adjacent operators: a template describes a group of alge-
braic operators that can be equivalently implemented by a
single SQL statement.

Pathfinder issues SQL:1999 code in one of three modes:

(1) each instantiated template is compiled into a SQL:1999
statement that, upon execution, populates temporary
indexes and a result table exempt from logging or other
transactional overhead (strategy M in Figure 1),

(2) instantiations are compiled into SQL:1999 view defini-
tions plus a single query that drives evaluation (strat-
cgy H), or

(3) instantiations yield SQL:1999 view definitions as in (2)
except when the code generator decides that a group of
view definitions leads to a nested SQL query so complex
that intermediate materialization as in (1) is beneficial
(strategy OJ).

SQL Construct

ROW_NUMBER () OVER (
PARTITION BY a ORDER BY b)

UNION ALL

[RIGHT OUTER] JOIN

Used by /for

implementation of XQuery
order semantics
item sequence construction
compiling nested iteration
range conditions XPath location step evaluation
type casting (CAST aAST) polymorphic item sequences
(non-logged) temporary tables full materialization strategy
nested queries in FROM clauses basic block forming

Table 2: Excerpt of SQL constructs used by the code
generator (a,b: column names, 7: SQL data type).

The statements are assembled into a SQL script whose ex-
ecution evaluates the input XQuery expression. Note that
both, shared temporary tables as well as view definitions,
can reflect the substantial degree of sharing in the DAG-
shaped algebraic plans emitted by the compiler front-end.

Table 2 lists some of the SQL:1999 constructs used by the
code generator. The resulting SQL queries are reasonably
“good-natured”, e.g., all UNION operations are over disjoint
tables, nested queries in FROM clauses are uncorrelated, and
most of the occurring JOIN operators are equi-joins that im-
plement the behavior of nested for-iteration scopes [6]. Fur-
ther -joins are only introduced by XQuery join detection
(see above).

In the XQuery data model, ordered finite sequences of
items are pervasive. The code generator employs
the SQL:1999 ROW_NUMBER() OLAP ranking primi-
tive to create and manipulate tabular representations
of such ordered sequences. In Pathfinder, row ranks
are interpreted as sequence positions (column pos)
[1] as depicted here in the relational encoding of
the item sequence (i1,%2,...,in). It is critical that
ROW_NUMBER ()-based orderings are encoded in the data itself
and thus may be communicated from statement to state-
ment (which would be impossible with SQL’s ORDER BY con-
struct).

Most perceivable implementations of ROW_NUMBER () intro-
duce blocking sort operations in the final physical query ex-
ecution plans. Pathfinder’s optimizer thus invests consider-
able effort to avoid row numbering wherever this is possible,
for example in the scope of unordered{}, the existential
semantics of general comparisons (=, <, ...), aggregate func-
tions, etc. [4].

3. RDBMSsASXQUERY RUNTIME
ENVIRONMENTS

Pathfinder can operate over any node-based (one XML
node = one row) relational tree encoding that preserves node
identity and document order. One such encoding yields a ta-
ble with schema pre|size|leve| which, for each node v, records
v’s rank in document order, the size of the subtree below
v and the length of the path from the root to v, respec-
tively. An RDBMS can efficiently query and maintain this
encoding: (1) document order is present in the data itself
(column pre) which helps to save sorting effort, (2) location
steps along the 12 XPath axes map into SQL range pred-
icates against the encoding table, and (3) the encoding of
transient nodes (generated by XQuery’s node constructors)
may be derived using SQL aggregate functions and arith-
metics [6].

—_
=]
[=2]

1298410

—_
=]
[y

—
o
[

—_
[
w

& Execution Time [ms]

T HHUW T HHUW T HHW‘ TTTIm T T T

Materialize?

] if complex
,,,,,,,,,,,,, ol E = never

| full

Q1 Q2 Q3 Qi Q5 Q6 Q7 Q8 Q9 Q10 Qi1 Q12 Q18 Q14 Q15 Q16 Q17 Q18 Q19 Q20

XMark Benchmark Query

Figure 1: Elapsed times for the 20 XMark queries ran against a 115 MB XML instance (=~ 5,000,000 nodes)
hosted by DB29. The SQL code generator has been configured to apply different materialization strategies.

Standard B-tree index structures suffice to accelerate the
operations over this schema-oblivious XML encoding. We
have indeed found XPath location step evaluation to ac-
count for only a minor fraction of the overall query pro-
cessing time [4]. Access patterns which are specific to the
plans produced by the SQL:1999 code generator, e.g., node
access by column level or by element tag name, are read-
ily supported by secondary partitioned B-tree indexes [3]. A
low-selectivity key prefix partitions the encoding and quickly
guides B-tree lookups to find only relevant nodes. The code
generator can optionally take advantage of DataGuide-style
path summaries which may also be realized in terms of par-
titioned B-trees: all nodes represented by a common node in
the DataGuide reside in the same partition. Effectively, each
such B-tree partition materializes the result of an absolute
XPath location path.

To benefit from these indexes even in the presence of
nodes that a query may construct at runtime—such tran-
sient nodes do not appear in persistent indexes—the sys-
tem maintains the relational encodings of persistently stored
XML documents and transient XML fragments in separate
tables. Since the evaluation of an XPath location step never
escapes the tree fragment of its context node, we can fully
benefit from indexing whenever steps are evaluated against
persistent nodes (which is the common case) [6].

Once query evaluation is complete, a database client can
perform a single sequential scan over the result table to se-
rialize the final XML output.

4. DEMONSTRATION SETUP

Figure 1 depicts the elapsed query execution times for
the 20 queries of the XMark benchmark [8] when the Path-
finder-generated SQL:1999 scripts were executed on top of
IBM DB292. The reported times include SQL parsing and
plan generation—the scripts contain 10-100 statements per
benchmark query—but omit serialization. On the very same
database host and workload, we have found Pathfinder to
use about /5 to /3 of the time required by pureXML®, the
database kernel-resident XQuery engine operating on native
XML storage that has been introduced in DB29 [7]. We
firmly believe that the purely relational approach to XQue-
ry deserves to be pursued further.

2The database host was Linux-based and equipped with two
3.2 GHz Intel Xeon® CPUs, 8 GB of primary and 280 GB
SCSI disk-based memory.

Note that the longer execution times for)8 through Q12
are due to XQuery joins that inevitably produce substantial
intermediate XML results (e.g., more than 31,500,000 nodes
for Q11). For these queries, pureXML® could not complete
evaluation within a time frame of a few hours.

Side-by-side on DB29: Purely Relational XQuery
and pureXML®. The live demonstration will feature a
side-by-side setup of Pathfinder and the pureXML® XQue-
ry processor on DB29. The database will be populated
with persistent XML documents of varying size—once rela-
tionally encoded, once imported into the native XML stor-
age. Users may evaluate ad-hoc XQuery expressions or run
canned queries on both systems. Hooks will be installed in
Pathfinder and DB29 to allow the inspection of the result
of various compilation stages (relational algebra plan DAGs,
SQL:1999 scripts, physical execution plans).

Acknowledgment. This research is supported by the Ger-
man Research Council (DFG) under grant GR 2036/2-1.

5. REFERENCES

[1] S. Boag, D. Chamberlin, M. F. Ferndndez, D. Florescu,
J. Robie, and J. Siméon. XQuery 1.0: An XML Query
Language. W3 Consortium, June 2006.

[2] P. Bonez, T. Grust, M. van Keulen, S. Manegold,

J. Rittinger, and J. Teubner. MonetDB/XQuery: A
Fast XQuery Processor Powered by a Relational
Engine. In Proc. SIGMOD, Chicago, USA, 2006.

[3] G. Graefe. Sorting and Indexing with Partitioned
B-trees. In Proc. CIDR, Asilomar, CA, USA, 2003.

[4] T. Grust, J. Rittinger, and J. Teubner. eXrQuy: Order
Indifference in XQuery. In Proc. ICDE, Istanbul,
Turkey, 2007.

[5] T. Grust, J. Rittinger, and J. Teubner. Why
Off-the-Shelf RDBMSs are Better at XPath Than You
Might Expect. In Proc. SIGMOD, Beijing, China, 2007.

[6] T. Grust, S. Sakr, and J. Teubner. XQuery on SQL
Hosts. In Proc. VLDB, Toronto, Canada, 2004.

[7] M. Nicola and B. van der Linden. Native XML Support
in DB2 Universal Database. In Proc. VLDB,
Trondheim, Norway, 2005.

[8] A. R. Schmidt, F. Waas, M. L. Kersten, M. J. Carey,
I. Manolescu, and R. Busse. XMark: A Benchmark for
XML Data Management. In Proc. VLDB, Hong Kong,
China, 2002.

