
Pathfinder/MonetDB:
A High-Performance Relational Runtime for XQuery

Jan Rittinger∗

University of Konstanz, Department of Computer & Information Science,
P.O.Box D188, 78457 Konstanz, Germany

Jan.Rittinger@uni-konstanz.de

Pathfinder/MonetDB is a collaborative effort of the University of Konstanz, the University of Twente, and the
Centrum voor Wiskunde en Informatica (CWI) in Amsterdam to develop an XQuery compiler that targets an
RDBMS back-end. The author of this abstract is student at the University of Konstanz and spent six months as an
intern at the CWI, designing and implementing a translation of XQuery Core to (a variant of) relational algebra.
His work continues in the research group at the University of Konstanz.

Pathfinder/MonetDB

Pathfinder/MonetDB can be divided into two parts: Pathfinder and MonetDB. Pathfinder is an XQuery
compiler (see Figure 1) that translates XQuery expressions into a variant of relational algebra which is ex-
ecutable by the back-end database MonetDB. MonetDB is an extensible main-memory database system
kernel which adapts database architecture concepts to the characteristics of modern hardware in order to

Server
MonetDB

− Core Optimization
− Type Checking
− Core Simplification
− Core Generation

XML

XQuery
Client XQuery

MIL

Compiler Module

− Normalization
− XQuery Parsing

− MIL Generation

Runtime Module

− XML Schema Import

MonetDB Kernel

− (Loop−lifted) Staircase Join

− XML Serialization
− multijoin

Figure 1: System archi-
tecture.

improve the CPU and memory cache utilization [2].
The MonetDB kernel is equipped with a low-level interface language MIL

(MonetDB Interpreter Language), which forms the target language for a num-
ber of different front-end query languages (e.g., SQL, OQL, or XQuery). The
table manipulation operations in MIL form a closed algebra on the binary table
model. MIL can be extended with new primitives, data types, and associated
search accelerator structures and contains a computationally complete proce-
dural language. Pathfinder uses these features to extend MonetDB with an
XQuery specific runtime module implementing a small number of additional
operations (e.g., XML serialization or staircase join [8]).

Compiling XQuery to Relational Algebra

The W3C proposes XQuery [1] as the standard query language for XML data. XQuery contains con-
structs to explore thetree-structuredXML data model (plus constructors to create new XML fragments)
as well as iteration primitives—notably the FLWOR block—to processsequencesof data items. Ear-
lier work in the context of the Pathfinder project provides the means to close the apparent gap between
the set-oriented relational data model and the two principle data types which form the backbone of the
XQuery data model, namelyordered, unranked trees of nodesandordered, finite sequences of items.

We translate trees of nodes into a relational encoding—the XPath accelerator—applying the ideas
presented in [5]. Item sequences, on the other hand, may be transformed using techniques originally
developed for a mapping from XQuery to SQL [6, 7]. The inference rules described in these papers form
a mapping from XQuery Core to an (almost) standard relational algebra. MIL perfectly supports these
operators and also allows for a tight integration of extensions (e.g., staircase join [8]) which are geared
to support the embedded XPath sub-language. In this work, we significantly extended the compiler
described in [6] to support a wide variety of XQuery constructs.

Optimizing Relational XQuery Evaluation — XQuery Join Recognition

The compilation procedure originally described in [6] opens several opportunities to improve, among
them the recognition and translation of joins. Because the XQuery language lacks an explicit join oper-

∗Advisors: Torsten Grust, University of Konstanz, Department of Computer & Information Science, P.O.Box D188,
78457 Konstanz, Germany (Torsten.Grust@uni-konstanz.de); Peter Boncz, CWI Amsterdam, Department INS1: Database
Architectures and Information Access, P.O.Box 94079, 1090 GB Amsterdam, The Netherlands (p.boncz@cwi.nl)

ator, the only implicit way to perform a join is to use nested loops with an embedded filter expression.
Unfortunately, the compiler described in [6] always emits algebraic Cartesian products for such nested
for–loops and the implicit XQuery join remains undetected. QueryQ1 below shows a typical XQuery
scenario which implicitly joins the two sequences(30,20,10) and(1,2,3). The original translation

for $u in (30, 20, 10),
$v in (1, 2, 3)

where $u eq ($v * 10)
return "hit"

(Q1)

strategy forms the Cartesian product of the two sequence rep-
resentations (yielding an intermediate result of 9 rows), despite
the fact that the final query result is linear in the size of the in-
put sequences.

This inefficiency may be avoided by an XQuery compi-
lation procedure that recognizes XQuery joins. The compiler
matches a given general XQuery Core pattern and, in case of a successful match, translates the XQuery
expression into an relational equivalent which makes use of an algebraic join. In the current compiler,
join recognition solely works at the level of XQuery Core and matches the following query pattern:

for $v in ein return if (p(e1,e2)) then ereturn else () . (P1)

There are some preconditions which have to be met to guarantee that the above syntactic pattern
actually describes a join (in a nutshell, the conditions below guarantee that the join inputs are indeedin-
dependentof each other). To be more concrete, the patternP1 above qualifies for an XQuery join, only if

for $u in (30, 20, 10)
return $u

and (Q2)
for $v in (1, 2, 3)
return $v * 10

(i) variable$v appears free ine2 only1,
(ii) variables occurring free ine2 andein are bound in any enclosing

scope, except for the scope thatdirectlyenclosesP1, and
(iii) predicatep is supported by the theta-join implementation of the

relational back-end (i.e., typically, p will be eq, =, lt, <, . . .).

Since all restrictions hold for QueryQ1, this query can be split into two independent sub-queries (Q2)
which compute the join inputs: The final overall translation does not involve Cartesian products at all.

The gory details and a formal description of the join compilation can be captured by means of an
inference rule similar to the ones gives in [6]. This work is currently under submission.

Performance Results

To show that our relational approach may indeed yield a high-performance XQuery processor, we con-
ducted experiments2 in which we focused on XMark [9], as the most frequently used benchmark for
evaluating XQuery efficiency and scalability. We performed measurements at scaling factors 0.1, 1
and 10 (which yield documents of respectively 10 MB, 100 MB, and 1 GB), using Pathfinder/MonetDB

 0.1

 1

 10

 100

 1000

Q12Q11Q10Q9Q8

tim
e

[s
]

[10MB]Cartesian product
join

Figure 2: Benefits of
XQuery join recognition.

as well as the latest versions of Galax (0.4.0) [4] and X-Hive (6.0) [10].

XQuery Join Recognition. In our first runs, Pathfinder/MonetDB was not
able to evaluate the XMark join queries Q8–Q12 on the 100 MB and 1 GB
sizes, due to excessive running time and resource consumption.

The reason was the generation of huge intermediate Cartesian products.
Figure 2 contrasts the results for the 10 MB document with the performance
we obtained with join recognition enabled in our MIL generation. It is obvious
that the execution of XQuery statements with join predicates simplyrequires
join recognition when the query is run on significant XML document sizes.

Scalability. In Figure 3 all numbers are normalized to the elapsed time on the 100 MB document. The
figure clearly shows that Pathfinder/MonetDB scales linearly with document size. The only outliers
are query Q11 and Q12. The culprit in this queries is a theta-join predicate (>) which generates an
intermediate result almost the size of the Cartesian product of its inputs. Note that this concerns the query

1The roles ofe1, e2 may be arbitrarily swapped.
2The platform was a 1.6 GHz AMD Opteron 242 (1 MB L2 cache) processor with 8 GB RAM and a RAID-5 disk subsystem

(3ware 7810, configured with eight 250 GB IDE disks of 7200 RPM). The operating system was Linux 2.6.9, using a 64-bit
address space.

 0.01

 0.1

 1

 10

 100

Q20Q19Q18Q17Q16Q15Q14Q13Q12Q11Q10Q9Q8Q7Q6Q5Q4Q3Q2Q1

no
rm

al
iz

ed
 e

xe
cu

tio
n

tim
es

10 MB
100 MB
1 GB

Figure 3: Scaling with respect to document size.

result, whose computation cannot be avoided
(though the end result becomes small, due to subse-
quent aggregation) and thusanyXQuery processor
will face this problem.

System Comparison. For our own system, we
generated MIL query plans3, which range from
318 lines (XMark Query Q6) to 11,509 lines (Q10)
with an average of about 2,000 lines. The next step, the document loading4, is followed by the query eval-
uation and the serialization5. Our two reference systems are Galax, which is the most popular “native”
XQuery engine available in open-source, and X-Hive, which is one of the faster native XML database
systems (shown in [3]). The performance results of X-Hive and Pathfinder/MonetDB contain only query
evaluation times, while Galax still6 includes serialization times.

The table on the right side shows our full experimental results (elapsed time in seconds). Galax
failed to process the queries once the XMark documents were of size 100 MB or larger. Compared to our
system Galax is marginally faster on queries Q2, Q5, Q13 (obvious, as we use it as base reference), Q16,
and Q19. X-Hive also finishes the execution of non-join queries in reasonable time. For the join queries
(Q8–Q12) both Galax and X-Hive are dominated by the Cartesian products. X-Hive avoids quadratic
complexity in Q8 due to the value indices we created. However if the queries joinintermediatequery

10 MB 100 MB 1 GB
Q Galax X-Hive PF/M X-Hive PF/M X-Hive PF/M
1 0.13 0.37 0.04 1.29 0.37 9.9 4.1
2 0.08 0.45 0.09 1.75 0.72 33.0 6.5
3 0.16 0.65 0.29 5.66 2.63 25.0 22.2
4 0.36 0.10 0.10 0.99 1.00 18.1 10.6
5 0.02 0.13 0.06 1.17 0.43 20.7 4.2
6 1.27 1.07 0.06 10.17 0.54 178.0 5.4
7 2.87 1.57 0.12 24.84 1.09 278.4 10.4
8 127.28 0.85 0.16 3.51 1.38 49.1 18.2
9 142.74 32.25 0.22 2280.66 1.81 DNF 22.2

10 18.16 5.28 1.27 442.37 13.68 DNF 150.6
11 218.23 98.91 0.25 9927.29 6.29 DNF 683.5
12 63.66 23.39 0.17 5100.19 2.98 DNF 347.7
13 — 0.09 0.07 1.03 0.53 12.9 5.2
14 2.13 0.72 0.17 11.17 1.69 110.2 16.9
15 0.08 0.03 0.09 0.49 0.80 10.6 7.8
16 0.06 0.03 0.10 0.51 0.87 10.9 8.2
17 0.14 0.09 0.10 0.85 0.80 11.8 7.6
18 0.03 0.08 0.05 0.64 0.43 14.8 4.2
19 1.32 0.67 0.21 12.15 1.70 254.5 16.9
20 0.52 0.11 0.21 1.40 1.79 24.6 19.0

results, indices cannot be used and performance de-
grades strongly. With the help of join recognition,
Pathfinder/MonetDB clearly outperforms the other two
systems on these queries.

Conclusion

This present work builds on both, an XPath-aware rela-
tional encoding of XML trees and a relational XQuery
compiler, to turn a relational database back-end into an
XQuery processor. The outcome is a prototype imple-
mentation backed by the extensible MonetDB RDBMS
which exhibits the efficiency and scalability provided by
a relational database. XML input documents of 1 GB size
and beyond can be queried in interactive time.

References
[1] S. Boag, D. Chamberlin, M. Fernández, D. Florescu, J. Robie, and J. Siméon. XQuery 1.0: An XML Query Language. World Wide Web

Consortium, Oct. 2004.http://www.w3.org/TR/xquery/.

[2] P. Boncz and M. Kersten. MIL Primitives For Querying a Fragmented World.The VLDB Journal, 8(2):101–119, Mar. 1999.

[3] D. DeHaan, D. Toman, M. Consens, and M.Öszu. A Comprehensive XQuery to SQL Translation Using Dynamic Interval Encoding. In
Proc. SIGMOD Conf., pages 623–634, San Diego, CA, USA, June 2003.

[4] M. Ferńandez, J. Siḿeon, B. Choi, A. Marian, and G. Sur. Implementing XQuery 1.0: The Galax Experience. InProc. VLDB Conf.,
pages 1077–1080, Berlin, Germany, Sept. 2003.

[5] T. Grust. Accelerating XPath Location Steps. InProc. SIGMOD Conf., pages 109–120, Madison, WI, USA, June 2002.

[6] T. Grust, S. Sakr, and J. Teubner. XQuery on SQL Hosts. InProc. VLDB Conf., pages 252–263, Toronto, Canada, Sept. 2004.

[7] T. Grust and J. Teubner. Relational Algebra: Mother Tongue—XQuery: Fluent. InTwente Data Management Workshop on XML
Databases and Information Retrieval (TDM), pages 7–14, Enschede, The Netherlands, June 2004.

[8] T. Grust, M. van Keulen, and J. Teubner. Staircase Join: Teach a Relational DBMS to Watch its (Axis) Steps. InProc. VLDB Conf.,
pages 524–535, Berlin, Germany, Sept. 2003.

[9] A. Schmidt, F. Waas, M. Kersten, M. Carey, I. Manolescu, and R. Busse. XMark: A Benchmark for XML Data Management. InProc.
VLDB Conf., pages 974–985, Hong Kong, China, Aug. 2002.

[10] X-Hive/DB. http://www.x-hive.com/.

3The times for running the XQuery compiler varies between 60 and 100 ms for all XMark queries. The compiler timings
are excluded from our performance results.

4The XML loader of Pathfinder/MonetDB imports the 10 MB XMark document in 1.15 seconds.
5Serialization times are excluded from the performance numbers. For the 10 MB instance they are all below 50 ms (except

Q10: 690 ms).
6Galax is a file-oriented system that parses the XML file on each query. To (over-)compensate for XML parsing time, we

subtracted 8.25 seconds (which is the time of the fastest query Q13) from all Galax performance figures.

