
C e n t r u m v o o r W i s k u n d e e n I n f o r m a t i c a

 INformation Systems

Loop-lifted staircase join: from XPath to XQuery

P.A. Boncz, T. Grust, M. van Keulen, S. Manegold,
J. Rittinger, J. Teubner

REPORT INS-E0510 MAY 2005

INS
Information Systems

CWI is the National Research Institute for Mathematics and Computer Science. It is sponsored by the
Netherlands Organization for Scientific Research (NWO).
CWI is a founding member of ERCIM, the European Research Consortium for Informatics and Mathematics.

CWI's research has a theme-oriented structure and is grouped into four clusters. Listed below are the names
of the clusters and in parentheses their acronyms.

Probability, Networks and Algorithms (PNA)

Software Engineering (SEN)

Modelling, Analysis and Simulation (MAS)

Information Systems (INS)

Copyright © 2005, Stichting Centrum voor Wiskunde en Informatica
P.O. Box 94079, 1090 GB Amsterdam (NL)
Kruislaan 413, 1098 SJ Amsterdam (NL)
Telephone +31 20 592 9333
Telefax +31 20 592 4199

ISSN 1386-3681

Loop-lifted staircase join: from XPath to XQuery

ABSTRACT
Various techniques have been proposed for efficient evaluation of XPath expressions, where
the XPath location steps are rooted in a single sequence of context nodes. Among these
techniques, the staircase join allows to evaluate XPath location steps along arbitrary axes in at
most one scan over the XML document, exploiting the XPath accelerator encoding (aka.
pre/post encoding).

In XQuery, however, embedded XPath sub-expressions occur in arbitrarily nested for-loops.
Thus, they are rooted in multiple sequences of context nodes (one per iteration). Consequently,
the previously proposed algorithms need to be applied repeatedly, requiring multiple scans over
the XML document encoding.

In this work, we present loop-lifted staircase join, an extension of the staircase join that
allows to efficiently evaluate XPath sub-expressions in arbitrarily nested XQuery iteration
scopes with only a single scan over the document. We implemented the loop-lifted staircase join
in MonetDB/XQuery, that uses the XQuery-to-Relational Algebra compiler Pathfinder on top of
the extensible RDBMS MonetDB. Performance results indicate that the proposed technique
allows to build a system that is capable of efficiently evaluating XQuery queries including
embedded XPath expressions, obtaining interactive query execution times for all XMark queries
even on multi-gigabyte XML documents.

1998 ACM Computing Classification System: H.2.4, H.2.3, H.2.2, E.1
Keywords and Phrases: XML; XPath; XQuery; XPath Accelerator; relational XQuery evaluation; loop-lifted staircase
join; RDBMS; MonetDB
Note: Work carried out under projects MultimediaN N3 ``Ambient Multimedia Databases'' and Bricks IS2 ``Petabyte
Data Mining''.

Loop-lifted Staircase Join: from XPath to XQuery

Peter Boncz1 Torsten Grust2 Maurice van Keulen3

Stefan Manegold1 Jan Rittinger4 Jens Teubner4

1CWI Amsterdam, The Netherlands 2Technical University of Munich, Germany
{boncz ,manegold }@cwi.nl grust@in.tum.de

3University of Twente, The Netherlands 4University of Konstanz, Germany
keulen@cs.utwente.nl {rittinge ,teubner }@inf.uni- konstanz.de

ABSTRACT

Various techniques have been proposed for efficient evaluation of XPath expressions, where the XPath location

steps are rooted in a single sequence of context nodes. Among these techniques, the staircase join allows to

evaluate XPath location steps along arbitrary axes in at most one scan over the XML document, exploiting the

XPath accelerator encoding (aka. pre/post encoding).

In XQuery, however, embedded XPath sub-expressions occur in arbitrarily nested for -loops. Thus, they

are rooted in multiple sequences of context nodes (one per iteration). Consequently, the previously proposed

algorithms need to be applied repeatedly, requiring multiple scans over the XML document encoding.

In this work, we present loop-lifted staircase join, an extension of the staircase join that allows to efficiently

evaluate XPath sub-expressions in arbitrarily nested XQuery iteration scopes with only a single scan over

the document. We implemented the loop-lifted staircase join in MonetDB/XQuery, that uses the XQuery-to-

Relational Algebra compiler Pathfinder on top of the extensible RDBMS MonetDB. Performance results indicate

that the proposed technique allows to build a system that is capable of efficiently evaluating XQuery queries

including embedded XPath expressions, obtaining interactive query execution times for all XMark queries even

on multi-gigabyte XML documents.

1998 ACM Computing Classification System: H.2.4, H.2.3, H.2.2, E.1

Keywords and Phrases: XML, XPath, XQuery, XPath Accelerator, relational XQuery evaluation, loop-lifted

staircase join, RDBMS, MonetDB

Note: Work carried out under projects MultimediaN N3 “Ambient Multimedia Databases” and Bricks IS2

“Petabyte Data Mining”.

1. INTRODUCTION
Relational XML databases aim to re-use mature relational DBMS technology to provide scalability and effi-
ciency. Our Pathfinder compiler translates XQuery queries into relational algebra, using an RDBMS as exe-
cution back-end [9]. Our relational approach also encompasses relational XML document validation [8], and
relational XML document updates [5]. We implemented these techniques in the MonetDB/XQuery system,
where the MonetDB main-memory DBMS [2] serves as database back-end.1

Here, we report on the new loop-lifted staircase join algorithm used inside MonetDB/XQuery for the efficient
execution of XPath expressions that occur embedded in XQuery queries. This work builds on the staircase join
algorithm [10], which allows a single (non-XQuery) XPath expression to be executed efficiently in a sequential
pass on the relational table that stores the encoded XML document.

If staircase join is applied directly in XQuery, embedded path expressions (e.g., inside for- loops) lead to
repeated scans of the document table, severely impacting performance. The loop-lifted staircase join exploits
tree properties of the document table to reduce common work between the “repeated” execution of XPath

1MonetDB/XQuery is open source software, see http://monetdb.cwi.nl/ and [4].

2

<a>
<c/>
<d/>
<e>
<f>
<g/><h/>

</f>
<i><j/></i>

</e>

(a) XML document.

0a9

1b1x
xx

x

2c0

3d2 4e8
FF

FF

5 f 5­
­­

6g3­
­­

7h4
44

4
8i7
44

4

9 j6

(b) Tree skeleton with
pre/post ranks.

•
a

•
b

•
c
•d

•
e

•
f

•g
•h

•i
• j

#
#
#
#
#
#
#
#
#
#
#
#
#
#
#

??
?

--
--

--
--

--
--

-- WWWWWWWW

**
**

**

//
//

/
OOO

OO

WWWWWWWW

??
?

1 2 3 4 5 6 7 8 9

1
2
3
4
5
6
7
8
9

post
OO

//
pre

(c) Resulting pre/post plane.

post = pre + size - level

pre size level post
0 9 0 9
1 1 1 1
2 0 2 0
3 0 1 2
4 5 1 8
5 2 2 5
6 0 3 3
7 0 3 4
8 1 2 7
9 0 3 6

(d) Actual relational en-
coding.

Figure 1: Relational Storage With pre/size/level To Support Efficient XPath Axis Traversal

expressions, evaluating those using a single scan over the document table. This strongly improves response
time over repeated execution of simple staircase join.

Outline In Section 2, we first recap the pre/post relational document encoding, and the basic ideas behind the
staircase join algorithm. In Section 3, we then explain the XQuery challenge of embedded XPath execution
and provide a detailed description of the new loop-lifted staircase join algorithm. In Section 4, we outline
the MonetDB/XQuery system in which both algorithms were implemented, and evaluate its performance on
the XMark benchmark, scaling from 11 MB to 11 GB documents. Here we show that loop-lifted staircase
join accelerates performance by a factor of 10, making MonetDB/XQuery one of the fastest and most scalable
XQuery processors currently available. Finally, in Section 5 we discuss related work, before describing our
conclusions and future work in Section 6.

2. STAIRCASE JOIN RE-CAP
The four parts of Figure 1 shortly explain the pre/post and pre/size/level relational XML document encodings.

Part (i) shows the example document. In part (ii), nodes of the XML tree are assigned pre and post ranks,
which count how many tags have been opened and closed, respectively, as seen when parsing the document
sequentially. In part (iii), which plots all document nodes in a pre/post plane, we clearly recognize the tilted
XML tree. It also shows that for each node (in this case the context node is f), the quadrants of the pre/post
plane correspond to the major XPath axes: descendant , following , ancestor and preceding . As such, this
representation allows to express all XPath axes as simple comparisons on the pre and post columns, which
can be evaluated efficiently in an SQL-speaking RDBMS [7]. Finally, part (iv) of Figure 1 shows the actual
relational XML representation used in MonetDB/XQuery, which instead of the post column stores two columns
holding the subtree size and a tree level. This pre/size/level encoding is equivalent to pre/post since post = pre
+ size - level.

Making the query optimizer of an RDBMS more “tree-aware” allows it to improve its query plans concerning
XPath evaluation. However, incorporating knowledge of the pre/post plane should, ideally, not clutter the entire
query optimizer with XML-specific adaptations. In [10], Grust et al. proposed a special join operator, the
staircase join, that exploits and encapsulates all “tree knowledge” present in the pre/post plane. It behaves to
the query optimizer in many ways as an ordinary join, e.g., by admitting selection pushdown. In the remainder
of this section, we will briefly recap the basic principles and features of the staircase join and the tree-aware
optimizations it encapsulates.

The staircase join requires at most a single scan over the document and the context set to produce a result that
complies to the XPath semantics: duplicate free and sorted in document order. To achieve this, the staircase
join applies three techniques that distinguish it from similar approaches: (i) pruning to reduce the set of context
nodes to the minimal set for producing the result nodes, (ii) partitioning to consider each document node

2. Staircase Join Re-Cap 3

a
•

b•nnnnnnn

c
•

d◦
e
◦

PPPPPPP

f
◦|

||
|

g•
||

||

h
◦

BB
BB

i
◦

BB
BB

j
◦

a
•

d◦
e
◦

PPPPPPP

f
◦|

||
|

g•
||

||

h
◦

BB
BB

i
◦

BB
BB

j
◦

(a)

a
•

b•nnnnnnn

c
•

d◦
e
•

PPPPPPP

f
•|

||
|

g•
||

||

h
◦

BB
BB

i
•

BB
BB

j
◦

a
•

d◦
e
•

PPPPPPP

f
•|

||
|

g•
||

||

h
◦

BB
BB

i
•

BB
BB

j
◦

(b)
Figure 2: (a) Intersection and inclusion of the ancestor-or-self
paths of a context node sequence. (b) The pruned context node
sequence covers the same ancestor-or-self region and produces
less duplicates (3 rather than 11).

〈0,0〉

post
OO

pre//

__

Â
Â
Â
Â
Â
Â

Â
Â
Â
Â
Â
Â
Â
Â

Â
Â
Â

Â

Â

Â
•

•

◦c1

•

•

•
•
•
•
•

•
◦c2 •
•

•

◦c3

•
•

◦c4 •
•

•

Figure 3: Overlapping regions in
pre/post plane (encoding of a larger
XML document; context nodes ci).

a
•

b•nnnnnnn

c
•

d◦
e
•

PPPPPPP

f
•|

||
|

g•
||

||

h
◦

BB
BB

i
•

BB
BB

j
◦

p1 p2 p3p0

a
•

d◦
e
•

PPPPPPP

f
•|

||
|

g•
||

||

h
◦

BB
BB

i
•

BB
BB

j
◦

(a)

•a

•b
•c

◦d

•e

•
f
•g
◦h

•i
◦ j

p0 p1 p2 p3

Â

Â

Â

Â

__

Â
Â
Â
Â

post
OO

pre//

(b)
Figure 4: The partitions [p0, p1), [p1, p2), [p2, p3) of the ancestor stair-
case separate the ancestor-or-self paths in the document tree.

∅

〈0,0〉

post
OO

pre//

• document node
◦ context node

Â
Â
Â
Â

Â
Â
Â
Â
Â
Â

Â

scan
// Â

scan
//±

skip
77

•

•

•

◦c1

•

•
••
•
•

•v •
••

•

•

••

◦c2
••

•

Figure 5: Skipping technique
used for accelerating the de-
scendant axis.

only once, and (iii) skipping to avoid considering nodes for which the tree and XPath axis properties tell us
beforehand that they can never be in the result.

Pruning The evaluation of an axis step for a certain context node boils down to selecting all document nodes
in the corresponding region. In XPath, however, an axis step is generally evaluated on an entire sequence of
context nodes. This leads to duplication of work if the pre/post plane regions associated with the step are
independently evaluated for each context node. Figure 2 (a) depicts the situation if we are about to evaluate an
ancestor-or-self step for context sequence (d,e, f ,h, i, j). The darker the path’s shade, the more often are
its nodes produced in the resulting node sequence—which ultimately leads to the need for duplicate removal
operator unique in the query plan to meet the XPath semantics. Obviously, we could remove nodes e, f , i—
which are located along a path from some other context node up to the root—from the context node sequence
without any effect on the final result (a,d,e, f ,h, i, j) (Figure 2 (b)). Such opportunities for the simplification
of the context node sequence arise for all axes.

Figure 3 depicts the situation in the pre/post plane as this is the RDBMS’s view of the problem. Result nodes
can be found in the shaded areas. In general, regions determined by context nodes can include one another or
partially overlap (dark areas). Nodes in these areas generate duplicates.

The removal of nodes e, f , i earlier is a case of inclusion. Inclusion can be dealt with by removing the covered
nodes (c1,c3) from the context. The process of identifying the context nodes at the cover’s boundary is referred
to as pruning and is easily implemented for a pre/post encoded context node sequence [10].

Partitioning While pruning leads to a significant reduction of duplicate work, Figure 2 (b) exemplifies that
duplicates still remain due to intersecting ancestor-or-self paths originating in different context nodes. A
much better approach results if we separate the paths in the document tree and evaluate the axis step for each

4

context node in its own partition (Figure 4 (a)).
Such a separation of the document tree is easily derived from the staircase induced by the context node

sequence in the pre/post plane (Figure 4 (b)): each of the partitions [p0, p1), [p1, p2), and [p2, p3) define a
region of the plane containing all nodes needed to compute the axis step result for context nodes d,h, and j,
respectively. Note that pruning reduces the number of these partitions.

The basic approach to evaluating a staircase join between a document and a context node sequence thus is to
sequentially scan the pre/post plane once from left to right selecting those nodes in the current partition that lie
within the boundary established by the context node sequence. Since the XPath accelerator maintains the nodes
of the pre/post plane in the pre-sorted table doc, the result nodes are encountered and written in document
order.

This basic algorithm has several important characteristics:
(1) it scans the doc and context tables sequentially,
(2) it scans both tables only once for an entire context sequence,
(3) it never delivers duplicate nodes, and
(4) result nodes are produced in document order, so no post-processing is needed to comply with XPath se-

mantics.

Skipping Sometimes we may infer from the properties of the pre/post encoding and the particular XPath
step at hand, that certain regions cannot contain results. Figure 5 illustrates this for the XPath axis step
(c1,c2)/descendant . The staircase join is evaluated by scanning the pre/post plane from left to right starting
from context node c1. During the scan of c1’s partition, v is the first node encountered outside the descendant
boundary and thus not part of the result.

Note that no node beyond v in the current partition contributes to the result (the light grey area is empty).
This is, again, a consequence of the fact that we scan the encoding of a tree data structure: node v is following
c1 in document order so that both cannot have common descendants.

Staircase join uses this observation to terminate the scan of the current partition early which effectively
means that the portion of the scan between pre(v) and the successive context node pre(c2) is skipped. As a
result, staircase join actually scans (i.e., accesses) only those portions of the document relation that contain
results.

The effectiveness of skipping is high. For each node in the context, we either (1) hit a node to be copied into
the result, or (2) encounter a node of type v which leads to a skip. To produce the result, we thus never touch
more than |result|+ |context| nodes in the pre/post plane while the basic algorithm would scan along the entire
plane starting from the context node with minimum preorder rank.

Other XPath axes lead to similar skipping opportunities. If in the ancestor axis inside the partition of
context node c, we encounter a node v outside the ancestor boundary, we know that v and all its descendants
are in the preceding axis of c and thus can be skipped. In the child axis, we know that if a context node c has
children (i.e., size(c) > 0), node v1 = c+1 is the first child, and the other children can be found iteratively by
skipping over all their descendants: vi+1 = vi + size(vi)+1. The latter example illustrates that separating post
in size and level sometimes provides extra skipping opportunities; which is why MonetDB/XQuery uses the
pre/size/level encoding.

3. EMBEDDED XPATH EVALUATION
In XPath, a location step e/α along some axis α is taken from a single sequence e of arbitrary context nodes
and staircase join as well as other structural join algorithms [1, 6] have been devised to efficiently evaluate
such steps. XQuery has been designed as a host language that embeds XPath. Due to XQuery’s orthogonality
and compositionality, XPath expressions thus potentially occur in the scope of surrounding for -iterations2,
possibly at deep nesting levels. Query Q1 illustrates a possible XQuery expression embedding an XPath child
location step:

for $v in (x1,x2, . . .,xn) return
e($v)/child::t , (Q1)

2Note that, in normalized XQuery Core, for is the only iteration primitive.

3. Embedded XPath Evaluation 5

Here, e($v) denotes an XQuery expression in which variable $v occurs free. If this query is correctly typed,
each binding of variable $v will yield a separate context node sequence e($v). Q1 thus will, in effect, initiate n
location along the child axis, each rooted in a different context node sequence. Any XQuery implementation
will face the challenge to evaluate XPath traversals embedded in possibly deeply nested iterations.

Pathfinder and MonetDB/XQuery internally operate in a purely relational fashion. At runtime, the relational
iter pre
1 γ1,1
1 γ1,2...

...
1 γ1,s1...

...
n γn,1...

...
n γn,sn

encoding of the n context node sequences (resulting from the n evaluations of e($v)) will take the
form depicted here [9]: in each of the n iterations, encoded in column iter, e($v) evaluates to a
sequence of node preorder ranks (γi,1, . . .,γi,si) of length si (1 6 i 6 n). These preorder ranks are
maintained in column pre. We might have si = 0 for some i: in this case, no tuple with iter value
i will occur. Note that, at this point, the system does not need to maintain the actual sequence
order of the γi, j: the semantics of an XPath location step is unaffected by the context node sequence
order and staircase join will process the context nodes in document order anyway. This relational
encoding of the result of evaluating e($v) is indifferent to the actual for -iteration nesting depth [9].

Basic staircase join can evaluate an XPath location step for a single context node sequence (i.e., for one
of the above sequences (γi,1, . . .,γi,si)) during a single scan over a pre|size|level encoded XML document.
Nevertheless, the evaluation of the loop body of query (Q1) requires n invocations of staircase join (one for
each iter group) and thus as many sequential scans over the document encoding table. This surely seems
wasteful.

3.1 Loop-lifted Staircase Join
To save the relational back-end from performing this significant amount of work repeatedly (for huge XML
input documents, the encoding tables will be huge as well), we propose loop-lifted staircase join. Loop-lifted
staircase join inherits many beneficial features of staircase join, like the guarantee to produce duplicate-free
node sequences in document order as required by the XPath semantics, but the new variant is a considerably
better fit for the XQuery compilation approach pursued here.

With the original staircase join, partitioning ensures that only a single context node is active (and hence
“producing” result nodes) during the scan over the document. If the result regions of two context nodes overlap,
each result node in the overlapping region must appear only once in the result according to the XPath semantics.

With embedded XPath, however, the same node(s) might occur more than once in the result, each occurrence
belonging to a different iteration. Obviously, if the context sequences of two iterations share context nodes, the
respective result node must occur in the result sequence with both iterations. But even if two context sequences
do not have common context nodes, they might have common result nodes. Assume we have a document
instance encoded as depicted in Figure 3, and we want to evaluate an ancestor-or-self step for iteration
1 with context node c2 and for iteration 2 with context node c4. In this case, document nodes in those parts
of the result regions that do not overlap (light shading) must occur only once in the result (assigned to the
respective iteration). Document nodes in the overlapping parts of the result region (dark shading) need to occur
twice in the result, once for each iteration. The naive application of the original staircase join by ignoring the
iteration and simply treating the set of context sequences as a single one would hence create a wrong result, as
partitioning would avoid all duplicates in the result.

To overcome this, we create the loop-lifted staircase join, a variant of the original staircase join that is
“iteration-aware” and allows multiple context nodes to be active at a time. Basically, the algorithm keeps a
stack of active context nodes accompanied with the iterations that they occur in. While scanning/skipping over
the document, the partition boundaries determine when to push the next context node on the stack and when
to pop a finished context node from the stack. When a result node is encountered, the stack is analyzed to
determine the active nodes and their iteration in order to produce the correct result.

In the following, we will explain our loop-lifted staircase join in detail, using the child step as example.
Similar adaptations apply to the remaining XPath axes, although they might differ in details.

6

ll scj child (doc : TABLE(pre,size), ctx : TABLE(iter,pre), cand : TABLE(pre))

BEGIN
ASSERT (doc.pre IS DENSE AND ASCENDING); // for positional lookup
ASSERT (ctx IS SORTED ON (pre, iter)); // document order
ASSERT (cand IS SORTED ON (pre)); // document order
result ← NEW TABLE(iter,pre); // the result
active ← NEW STACK(eos,nxtChld,nxtCand, fstIter, lstIter); // stack of active context nodes
nxtCtx ← 0; lstCtx ← SIZE(ctx); // first & last context node
nxtCand ← 0; lstCand ← SIZE(cand); // first & last candidate node
nxtCtx,nxtCand ← match ctx cand(nxtCtx,nxtCand);// skip non-matching contexts and candidates

0© WHILE (nxtCtx ≤ lstCtx AND nxtCand ≤ lstCand) DO // iterate over all context nodes
IF (active IS EMPTY) THEN // stack is empty

1© nxtCtx, lstCand ← push ctx(nxtCtx,nxtCand); // push current context on stack
ELIF (TOP(active).eos ≥ ctx[nxtCtx].pre) THEN // next context is descendant of current context

2© inner loop child(ctx[nxtCtx].pre); // process children of current context until next context
3© nxtCtx, lstCand ← push ctx(nxtCtx,nxtCand); // push next context on stack

ELSE // next context is not descendant of current context
4© inner loop child(TOP(active).eos); // process all children of current context
5© POP(active); // pop finished context from stack

WHILE (active IS NOT EMPTY) DO // finish all remaining active scopes
6© inner loop child(TOP(active).eos); // process all remaining children of current context
7© POP(active); // pop finished context from stack

RETURN result; // return result
END

push ctx (nxtCtx,nxtCand)
BEGIN

curPre ← ctx[nxtCtx].pre; // preorder rank of current context
eos ← curPre+doc[curPre].size; // end of current scope
nxtChld ← curPre+1; // first child of current context
fstIter ← nxtCtx; // first iter of current context
WHILE (ctx[nxtCtx].pre = curPre) DO // iterate of all iters of current context

nxtCtx ← nxtCtx+1; // next iter of current context
lstIter ← nxtCtx−1; // last iter of current context
PUSH 〈eos,nxtChld,nxtCand, fstIter, lstIter〉 ON active; // push current context on stack
nxtCtx,nxtCand ← match ctx cand(nxtCtx,nxtCand);// skip non-matching contexts and candidates
RETURN nxtCtx, lstCand; // return next context and candidate

END

inner loop child (eos)
BEGIN

nxtChld ← TOP(active).nxtChld; // next child of current context
fstIter ← TOP(active).fstIter; // first iter of current context
lstIter ← TOP(active).lstIter; // last iter of current context
WHILE (nxtChld ≤ eos) DO // iterate of all children in current scope

FOR iter FROM fstIter TO lstIter DO // iterate over all iters of current context
APPEND 〈ctx[iter].iter,nxtChld〉 TO result; // append (iter,pre) to result

IF (nxtChld ≤ TOP(active).eos) DO // current context not yet finished
TOP(active).nxtChld ← nxtChld; // recall where to proceed

RETURN; // return
END

Figure 6: Loop-lifted staircase join: child axis (underlined parts are only used in Section 3.3).

3. Embedded XPath Evaluation 7

2

1
7

6

5

4

3

c1

skipped nodes

c2

PSfrag replacements
1.1

11.0
111.0

1111.0
1

10
102

103

104

105

106

107

108

number of nodes
number of nodes scanned

document size [MB]
time [ms]

duplicates avoided
staircase join

scj (early nametest)
IBM DB2 SQL

no skipping
skipping

skipping (estimated)
result size

ancestor:: n2

/descendant:: n1

0

1

108

109

11

1108

12

134

1400

14240

17

18387

184771

1849360

192

2

20

2021

2037

21

2230

224

26019

260929

2613715

2832

297430

2988885

3

30910

3319361

33288673

333835

345

34749

35

3540

4

44

54

57

571

6

7

70318

706193

7264

816

•
c1

• • •

•
c2

• • •

• •

22

33
AA AA AA

¾¾

33
AA AA AA

HH AA AA

VV

1©

2© inner loop child 3© push ctx

4© inner loop child

5© POP

6© inner loop child

7©

//
pre

OOlevel

level(c1)

level(c1)+1

level(c2)

level(c2)+1

Figure 7: Example child traversal (left), illustrated with calls in the algorithm of Figure 6 (right).

3.2 Pure Loop-lifted Staircase Join
Our loop-lifted staircase join performs a single sequential forward scan over the context sequences and requires
at most one sequential traversal of the document encoding, regardless of the number of iterations. To achieve
this, the algorithm of Figure 63 expects the document encoding doc to be sorted on the preorder ranks (trivial)
and the set of context node sequences ctx to be sorted on (pre, iter), i.e., the context nodes appear in document
order and for each context node all related iterations appear clustered and in order. In contrast to the original
staircase join algorithm in which a single context node was “active” at a time, in the loop-lifted variant up to
n iterations may be active. In the case of the child axis, an iter|pre tuple 〈i,c〉 in the context sequence defines
iteration i to be active if the current document node’s preorder rank lies within the interval (pre(c),pre(c)+
size(c)].4 The algorithm maintains the currently active iterations on the active stack. While scanning over the
context nodes in ctx 0©, three situations can occur (see the algorithm in Figure 6, and the processing example
in Figure 7):

1. The stack is empty. Then, a 4-tuple that represents the current context node (cf., procedure push ctx) is
pushed on the stack 1©:

eos: holds the preorder rank of the last descendant of the current context node. We require this to
determine when processing of this context node will be finished and can be popped from the stack.

nxtChld: holds the preorder rank of the next child to be processed. Initially, this is the first child. When
processing nested context nodes, nxtChld holds the child where to proceed processing for the outer
node, once an inner node has finished.

fstIter, lstIter: hold pointers to the first and the last iteration of the current node in the context node
sequence. To find lstIter, the routine push ctx advances over the input table to find all subsequent
occurrences of the current context node in different iter-s.

2. The current context node is a descendant of the top of the stack. In this case, we first process all children
of the current top of the stack that are predecessors of the current context node 2©, before pushing the
current context node on the stack 3©.

3. The current context node is a successor of the top of the stack. In this case, we process all remaining
children of the top of the stack 4© before removing it from the stack 5©.

Once ctx has been scanned entirely, we finish off by successively processing the remaining children of each
node that is still on the stack 6© and removing the node from the stack 7©.

For each context node c, procedure inner loop child directly accesses the first child (or next child to be
processed after finishing a descendant context node) in doc using its preorder rank for positional (or index)

3The underlined parts are only used for the variant described in Section 3.3.
4Note that loop-lifted staircase join for the child axis does not depend on level(c). This is different for some other axes, e.g.,

following-sibling .

8

match ctx cand (nxtCtx,nxtCand)
BEGIN

// advance nxtCtx & nxtCand until nxtCand is descendant of nxtCtx
curPre ← ctx[nxtCtx].pre;
eos ← curPre+doc[curPre].size;
WHILE (nxtCtx < lstCtx AND nxtCand < lstCand AND

(cand[nxtCand].pre≤ ctx[lstCtx].pre OR eos < cand[nxtCand].pre)) DO
IF (cand[nxtCand].pre≤ ctx[nxtCtx].pre) THEN

// scan or binary search
nxtCand ← FIRST c > nxtCand WITH cand[c].pre > ctx[nxtCtx].pre;

ELIF (eos≤ cand[nxtCand].pre) THEN
// scan or binary search
nxtCtx ← FIRST c > nxtCtx WITH ctx[c].pre > eos;
// scan
nxtCtx ← FIRST c > nxtCtx WITH ctx[c].pre+doc[ctx[c].pre].size >= cand[nxtCand].pre;

RETURN nxtCtx,nxtCand;
END

inner loop child (eos)
BEGIN

nxtChld ← TOP(active).nxtChld; // next child of current context
nxtCand ← TOP(active).nxtCand; // next candidate for current context
fstIter ← TOP(active).fstIter; // first iter of current context
lstIter ← TOP(active).lstIter; // last iter of current context
WHILE (nxtChld ≤ eos AND nxtCand ≤ lstCand) DO// iterate of all children in current scope

IF (nxtChld < cand[nxtCand].pre) THEN
nxtChld ← nxtChld +doc[nxtChld].size+1; // skip directly to next child

ELIF (cand[nxtCand].pre < nxtChld) THEN
nxtCand ← FIRST c > nxtCand WITH cand[c].pre >= nxtChld; // scan or binary search

ELSE // (nxtChld = nxtCand.pre)
FOR iter FROM fstIter TO lstIter DO // iterate over all iters of current context

APPEND 〈ctx[iter].iter,nxtChld〉 TO result; // append (iter,pre) to result
IF (nxtChld ≤ TOP(active).eos) DO // current context not yet finished

TOP(active).nxtChld ← nxtChld; // recall where to proceed
TOP(active).nxtCand ← nxtCand; // recall where to proceed

RETURN; // return
END

Figure 8: Loop-lifted staircase join: child axis with candidate list.

lookup. From there on, inner loop child subsequently skips to the next child (exploiting the knowledge of
the sub-tree size) until the end of the current scope (i.e., partition) is reached. With each child node v of c,
〈i,v〉 is appended to the result table for all iterations i related to c, sorted by i. This guarantees document order,
avoids the generation of duplicate result nodes within iterations, and ensures that result nodes that belong to
multiple iteration occur in iteration order.

In fact, the algorithm in Figure 6 does not even scan the whole document, but rather accesses only the
children of each context node, i.e., exactly those document nodes that make up the result of the given axis step.
The imposed access pattern is forward-only and hence cache-friendly. To achieve this, the algorithm exploits
the characteristics of the pre|size|level encoding. For the preorder rank pre(c) of each context node c, we can
easily derive the preorder rank of first child k as pre(k) = pre(c)+ 1. The other children can than be directly
reached by skipping to the next sibling pre(k)+size(k)+1, until the last node in c is reached (pre(c)+size(c)).

4. Quantitative Assessment in MonetDB/XQuery 9

3.3 Loop-lifted Staircase Join With Selection
The basic version of our loop-lifted staircase join as described above focuses — just like the original stair-
case join — on the pure XPath location step, ignoring other aspects of XPath like name tests and/or arbitrary
predicates. Name tests and predicates can be applied as post-filters on the result of the loop-lifted staircase join.

In practice, however, predicates are often more selective than the pure location steps. Thus, the naive ap-
proach of applying predicates as post-filters might first generate a large result of the location step, only to reduce
it in the predicate. Due to the commutativity of both operations, it is possible to first evaluate the predicates on
the whole document, and then execute the location step only on the reduced document, avoiding the creation of
possibly large intermediate results. Obviously, the decision whether to push-down predicates underneath a lo-
cation step should be take by the query compiler/optimizer, based on estimations of the respective selectivities.
On a reduced document (i.e., a reduced pre|size|level table), however, we can no longer benefit from positional
lookup and skipping.

The selection-enabled version of our loop-lifted staircase join is based on the algorithm depicted in Figure 6
with the underlined parts now enabled. Additionally, we replace the procedure inner loop child by the one
given in Figure 8 and add procedure match ctx cand as shown in Figure 8.

Selection-enabled loop-lifted staircase join still operates on the complete pre|size document table, but ex-
pects an additional third input table that represents the result of the predicate evaluation as a list of the preorder
ranks of the qualifying nodes, sorted in document order. Hence, this list contains the potential result candidates.
With both the context sequence and the candidate list sorted in document order, the algorithm applies a merge-
like synchronized sweep over both inputs, which allows to efficiently skip all context nodes whose children do
not appear in the candidate list. For the child step, a candidate can only be a child of a given context node, if
it is a descendant of that context node. Procedure match ctx cand hence performs a merge-like synchronized
sequential scan over the context nodes and the candidates to skip non-matching combinations that cannot pro-
duce any result. With both ctx and cand sorted on pre, we can even replace scans of (possibly long) regions of
non-matching nodes by binary search and thus reduce the complexity of this merge-like operation from linear
to logarithmic. Similarly, the modified inner loop child skips over all children until the next candidate note
is reached, and skips over candidates until the next child is reached.

Except from these changes, the selection-enabled loop-lifted staircase join works just like to basic one.
In particular, it performs only a single concurrent forward-only traversal across its inputs (doc, ctx, cand),
applying skipping to avoid actual data access where ever possible. Thus, the overall data access pattern is just
as cache-friendly as with the basic loop-lifted staircase join and the original staircase join.

4. QUANTITATIVE ASSESSMENT IN MONETDB/XQUERY
We implemented loop-lifted staircase join in our open-source XQuery processor MonetDB/XQuery [4].

Server
MonetDB

− Core Optimization
− Type Checking
− Core Simplification
− Core Generation

XML

XQuery
Client XQuery

MIL

− Normalization
− XQuery Parsing

− MIL Generation

− XML Schema Import

Pathfinder Compiler

Pathfinder Runtime Module

− XML Serialization

MonetDB Kernel

− Loop−lifted Staircase Join

PSfrag replacements
1.1

11.0
111.0

1111.0
1

10
102

103

104

105

106

107

108

number of nodes
number of nodes scanned

document size [MB]
time [ms]

duplicates avoided
staircase join

scj (early nametest)
IBM DB2 SQL

no skipping
skipping

skipping (estimated)
result size

ancestor:: n2

/descendant:: n1

0

1

108

109

11

1108

12

134

1400

14240

17

18387

184771

1849360

192

2

20

2021

2037

21

2230

224

26019

260929

2613715

2832

297430

2988885

3

30910

3319361

33288673

333835

345

34749

35

3540

4

44

54

57

571

6

7

70318

706193

7264

816

Figure 9: MonetDB/XQuery Architecture

Figure 9 shows the MonetDB/XQuery system to consist of the
XQuery-to-Relational Algebra compiler Pathfinder [9] running
on-top of the open-source RDBMS MonetDB [2]. MonetDB
is an extensible system and this feature has been used to intro-
duce an XQuery runtime module. It extends the Monet Inter-
preter Language (MIL) with a few additional operators, mainly
the loop-lifted staircase join, plus support for XML input (doc-
ument shredding) and output (serialization). Queries are parsed,
normalized and statically typed (including XML Schema sup-
port) and represented as XQuery Core trees, closely following
the W3C Formal Semantics. Then, several optimization tech-
niques are applied (including join recognition and order opti-
mizations [3]). As a final stage, physical algebra plans, formu-
lated in MIL are generated for execution on MonetDB.

Experiments We evaluated the performance of our algorithms on XMark [12], with scaling factors from 0.1
up to 100, yielding documents from 11 MB up to 11 GB. We are unaware of any other systems that can han-

10

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

Q20Q19Q18Q17Q16Q15Q14Q13Q12Q11Q10Q9Q8Q7Q6Q5Q4Q3Q2Q1

no
rm

al
iz

ed
 p

er
fo

rm
an

ce
/s

pe
ed

up [110MB]

iterative child and descendant step
loop-lifted child step, iterative descendant step
iterative child, loop-lifted descendant step
loop-lifted child and descendant step
loop-lifted child and descendant step + nametest

PSfrag replacements
1.1

11.0
111.0

1111.0
1

10
102

103

104

105

106

107

108

number of nodes
number of nodes scanned

document size [MB]
time [ms]

duplicates avoided
staircase join

scj (early nametest)
IBM DB2 SQL

no skipping
skipping

skipping (estimated)
result size

ancestor:: n2

/descendant:: n1

0

1

108

109

11

1108

12

134

1400

14240

17

18387

184771

1849360

192

2

20

2021

2037

21

2230

224

26019

260929

2613715

2832

297430

2988885

3

30910

3319361

33288673

333835

345

34749

35

3540

4

44

54

57

571

6

7

70318

706193

7264

816

Figure 10: Benefits of loop-lifted staircase join.

dle the 1.1 GB and 11 GB sizes efficiently. The experimentation platform was a 1.6 GHz AMD Opteron 242
(1 MB L2 cache) processor with 8 GB RAM, running Linux 2.6.9 in a 64-bit address space. The following
performance results focus on the pure query execution time, excluding the time for XQuery plan translation
and optimization as well as result printing (typically < 50 ms).

Figure 10 shows the effect of using loop-lifted staircase join. Loop-lifted staircase join evaluates a path step
in one sequential pass over the pre/size table for multiple sequences of context nodes in one go. The normal
(i.e., iterative) staircase join needs to make a sequential pass for each set. As we can see, on the 110 MB XMark
document, query performance improves by a factor of 10 when the loop-lifted staircase join is used for both the
child and the descendant axis (no other axis are relevant in the XMark queries). Some queries (Q3,Q11-14),
where path step cost is relatively small, in general benefit less (factor 3-5).

MonetDB/XQuery maintains indices on the element names. Without using these indices for name tests, the
descendant steps in Queries Q6 and Q7 produce quite large intermediate results that dominate the overall cost.
Hence, the benefits of loop-lifted staircase join over iterative staircase join does not exceed a factor 2.5. Since
the name test is quite selective for these two queries, using the loop-lifted staircase join variant that allows
selection pushdown, yields another factor 6 and 12, respectively, thus resulting in an overall improvement of
factor 15 and 25, respectively.

Query Q15 processes a particularly long path expression of 13 axis steps. In this case, loop-lifted staircase
join suffers from the additional internal state keeping overhead (the active stack) and performs worse than the
original staircase join. Furthermore, with both query Q1 and 15, the pure XPath steps are more selective than
the respective name test, thus pushing the name test below the loop-lifted staircase join actually leads to a
performance decrease.

Table 1 depicts the performance results of MonetDB/XQuery for all XMark queries on documents ranging
from 11 MB to 11 GB in size. Figure 11 shows the respective relative performance, where all numbers are
normalized to the elapsed time on the 110 MB document. The graph shows that our system scales linearly
with document size. The only outliers are queries Q11/12. The bottleneck in both queries is a theta-join
(comparison via >) that generates an intermediate result with about 120 K up to 120 G tuples for the 11 MB
and 11 GB document sizes, respectively. Note that this concerns the query result, whose computation cannot
be avoided (though the end result becomes small, due to subsequent aggregation). Any XQuery system must
necessarily exhibit quadratic scaling with document size on Q11/12.

We should point out that are results are obtained on a memory-resident database and I/O plays no role. Only
when intermediate result sizes become large, such as in join queries Q8-Q10 on the 11 GB document size, I/O
due to swapping starts to impact performance. In absolute sense, the query execution times presented here for
MonetDB/XQuery are quite fast and surpass all currently available XQuery systems such as TIMBER, X-Hive

5. Related Work 11

 0.01

 0.1

 1

 10

 100

 1000

 10000

Q20Q19Q18Q17Q16Q15Q14Q13Q12Q11Q10Q9Q8Q7Q6Q5Q4Q3Q2Q1

no
rm

al
iz

ed
 e

xe
cu

tio
n

tim
es

11 GB
1.1 GB
110 MB
11 MB

DNF DNF

PSfrag replacements
1.1

11.0
111.0

1111.0
1

10
102

103

104

105

106

107

108

number of nodes
number of nodes scanned

document size [MB]
time [ms]

duplicates avoided
staircase join

scj (early nametest)
IBM DB2 SQL

no skipping
skipping

skipping (estimated)
result size

ancestor:: n2

/descendant:: n1

0

1

108

109

11

1108

12

134

1400

14240

17

18387

184771

1849360

192

2

20

2021

2037

21

2230

224

26019

260929

2613715

2832

297430

2988885

3

30910

3319361

33288673

333835

345

34749

35

3540

4

44

54

57

571

6

7

70318

706193

7264

816

Figure 11: Scalability with respect to document size.
Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10

11 MB 0.04 0.06 0.24 0.06 0.05 0.02 0.03 0.12 0.16 0.64
110 MB 0.18 0.30 1.48 0.45 0.16 0.05 0.07 0.74 0.87 5.05
1.1 GB 1.20 2.40 12.50 3.80 1.20 0.30 0.40 10.40 12.90 55.00
11 GB 13.00 25.00 126.00 36.00 11.00 3.00 4.00 208.00 289.00 1882.00

Q11 Q12 Q13 Q14 Q15 Q16 Q17 Q18 Q19 Q20
11 MB 0.16 0.12 0.06 0.17 0.08 0.09 0.06 0.04 0.10 0.17

110 MB 3.28 1.66 0.21 1.40 0.27 0.26 0.29 0.13 0.55 0.62
1.1 GB 872.50 150.70 1.30 13.70 1.70 1.80 2.60 0.90 5.30 4.90
11 GB DNF DNF 13.00 959.00 16.00 18.00 26.00 9.00 88.00 50.00
Table 1: Overview of XMark query evaluation times (elapsed time in seconds).

and Galax [3].
The overall conclusion of the experiments is that MonetDB/XQuery is a highly scalable XQuery processor

that can handle XPath-intensive queries well, mainly thanks to the loop-lifted staircase join that accelerates
performance by a factor 5-10.

5. RELATED WORK
A wide variety of relational XML encodings has been proposed [11, 14, 13]. The pre/size/level representa-
tion provides node surrogates of fixed byte-width, which greatly simplifies storage and query execution. In
particular, the dense pre numbers allow MonetDB to use positional lookup into its array-based storage of re-
lational columns. This feature is maximally exploited in (loop-lifted) staircase join to implement skipping at
a cost of < 10 CPU cycles per visited node. If a B-tree index lookup routine would have to be used, absolute
performance would be impacted by an order of magnitude. In contrast, variable-length surrogates such as, OR-
DPATH labels [11], are designed to allow “low-cost” updates while still encoding document order. However,
fast updates comes at the expense of higher storage and manipulation costs (positional skipping is not possible
and index lookup must be used instead).

In a future version of MonetDB/XQuery, we plan to also support document updates. A scheme that virtu-
alizes the pre-encodings in a page-wise manner to limit the number of pre numbers affected by a structural
update to a single page, and uses commutative delta operations to reduce locking contention at the document
root, promises to keep both update cost and read-only overheads low [5].

In the remainder, we compare loop-lifted staircase join to the related Structural Join [1] and Holistic Twig
Joins [6] algorithms. First, we recall the three techniques behind the efficiency of staircase join: (i) pruning to
reduce the set of context nodes to the minimal set for producing the result nodes (ii) partitioning to consider
each document node only once, and (iii) skipping to avoid considering nodes for which the tree and XPath axis
properties tell us beforehand that they can never be in the result.

Both Structural Join and Holistic Twig Join could be used with the iter|pre table of context nodes as one of
their input tables (sorted on pre). However, both algorithms are not aware of the different iterations and thus do

12

not perform (i) pruning within each iteration. Consequently, duplicate nodes will be in their output, mandating
the use of duplicate elimination afterwards. In the case of Structural Join, pruning could be a preprocessing step,
but in the case of Holistic Twig Join with e.g., a child step followed by a descendant step (both with, e.g.,
name tests), the most useful pruning (for descendants) cannot be done beforehand. We think that adapting the
algorithm to allow pruning would be worthwhile. The stack-based nature of both Structural Join and Holistic
Twig Join support (ii) partitioning, but they use less (iii) skipping. In the case of the child step, staircase join
skips over all descendants of a child to arrive at the next, whereas both Structural Join and Holistic Twig Join
consider all such descendants, filtering them out with a separate check. Similar skipping opportunities arise in
the other XPath axes; all of which are supported by staircase join in MonetDB/XQuery.

Overall, we think that Holistic Twig Join will outperform loop-lifted staircase join especially on complex
twig patterns with high selectivity predicates, that cause loop-lifted staircase join to generate unnecessary large
intermediate results. On the other hand, loop-lifted staircase join is simpler and thus faster in terms of raw CPU
speed, and uses more pruning and skipping, which can make it faster on simpler twig queries. In any case,
since Holistic Twig Join only supports child and descendant steps, a full-fledged XQuery processor needs
both kinds of algorithms, leaving it up to a query optimizer to decide which to use.

6. CONCLUSIONS AND FUTURE WORK
The staircase join allows to efficiently evaluate XPath location steps along arbitrary axes in one sequential
pass over the pre/size/level table. In XQuery, however, embedded XPath sub-expressions occur in arbitrarily
nested for -loops. Thus, they are rooted in multiple sequences of context nodes (one per iteration), which
leads to multiple scans over the XML document encoding, strongly decreasing performance. To address this,
we presented loop-lifted staircase join, that conserves the pruning, partitioning and skipping techniques from
staircase join but still manages to evaluate embedded XPath location steps in only a single sequential pass.

We implemented the loop-lifted staircase join in the open source system MonetDB/XQuery, that uses the
XQuery-to-Relational Algebra compiler Pathfinder on top of the extensible RDBMS MonetDB. We evaluated
our algorithms on the XMark benchmark for sizes up to 11 GB, showing that MonetDB/XQuery is a highly
scalable XQuery processor that can handle XPath-intensive queries well, mainly thanks to the loop-lifted stair-
case join, that accelerates performance by a factor 5-10.

As for future work, we intend to integrate our pruning and skipping techniques in XML join algorithms that
allow to evaluate multiple XPath steps simultaneously (i.e., Holistic Twig Join). Other future work concerns
improvements of MonetDB/XQuery in the area of document updates as well as algebraic and cost-based query
optimization.

13

References

1. S. Al-Khalifa, H. V. Jagadish, N. Koudas, J. M Patel, D. Srivastava, and Y. Wu. Structural Joins: A Prim-
itive for Efficient XML Query Pattern Matching. In Proc. of the IEEE Int’l. Conf. on Data Engineering,
pages 141–152, 2002.

2. P. Boncz. Monet: A Next-Generation DBMS Kernel For Query-Intensive Applications. PhD thesis, Univ.
Amsterdam, 2002.

3. P. Boncz, T. Grust, S. Manegold, J. Rittinger, and J. Teubner. Pathfinder: Relational XQuery Over Multi-
Gigabyte XML Inputs In Interactive Time. Technical Report INS-E0503, CWI, 2005.

4. P. Boncz, T. Grust, M. van Keulen, S. Manegold, J. Rittinger, and J. Teubner. Pathfinder: XQuery—The
Relational Way. In Proc. VLDB Conf., 2005. Demo.

5. P. Boncz, S. Manegold, and J. Rittinger. Updating the Pre/Post Plane in MonetDB/XQuery. In Proc.
XIME-P, 2005.

6. N. Bruno, N. Koudas, and D. Srivastava. Holistic Twig Joins: Optimal XMLPattern Matching. In Proc.
SIGMOD Conf., pages 310–321, 2002.

7. T. Grust. Accelerating XPath Location Steps. In Proc. SIGMOD Conf., 2002.
8. T. Grust and S. Klinger. Efficient Validation and Type Annotation for Encoded Trees. In Proc. XIME-P,

2004.
9. T. Grust, S. Sakr, and J. Teubner. XQuery on SQL Hosts. In Proc. VLDB Conf., pages 252–263, 2004.
10. T. Grust, M. van Keulen, and J. Teubner. Staircase Join: Teach a Relational DBMS to Watch its (Axis)

Steps. In Proc. VLDB Conf., pages 524–535, 2003.
11. P.E. O’Neil, E.J. O’Neil, S. Pal, I. Cseri, G. Schaller, and N. Westbury. ORDPATH: Insert-Friendly XML

Node Labels. In Proc. SIGMOD Conf., pages 903–908, 2004.
12. A. Schmidt, F. Waas, M.L. Kersten, M.J. Carey, I. Manolescu, and R. Busse. XMark: A Benchmark for

XML Data Management. In Proc. VLDB Conf., pages 974–985, 2002.
13. I. Tatarinov, S.D. Viglas, K. Beyer, J. Shanmugasundaram, E. Shekita, and C. Zhang. Storing and Querying

Ordered XML Using a Relational Database System. In Proc. SIGMOD Conf., 2001.
14. C. Zhang, J.F. Naughton, D.J. DeWitt, Q. Luo, and G. Lohman. On Supporting Containment Queries in

Relational Database Management Systems. In Proc. SIGMOD Conf., 2001.

