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Abstract

In this technical report we propose algorithms for implementing the axes for element nodes in
XPath given a DOM-like representation of the document.

First, we construct algorithms for evaluating simple step expressions, withoout any (positional)
predicates. The time complexity of these algorithms is at most O(l + m) where l is the size of
the input list and m the size of the output list. This improves upon results in [6] where also
algorithms with linear time complexity are presented, but these are linear in the size of the entire
document whereas our algorithms are linear in the size of the intermediate results which are often
much smaller.

In a second phase we give a description of how the support for positional predicates can be
added to the algorithms with a focus on maintaining the efficiency of evaluation. Each algorithm
assumes an input list that is sorted in document order and duplicate-free and returns a sorted and
duplicate-free list of the result of following a certain axis from the nodes in the input list.
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Chapter 1

Introduction

Many correct XPath implementations, e.g., Galax [5], employ an evaluation strategy that closely
corresponds to the XQuery Formal Semantics [3]. This guarantees correctness, but in many cases,
results in inefficient query evaluation. The most common problems with this approach are

1. unnecessary intermediate sorting and duplicate-elimination operations, which are implied by
the formal semantics after each axis step of a path expression, and

2. the fact that some nodes are unnecessarily accessed multiple times upon the evaluation of
one step.

The former also jeopardizes pipelining of XPath step evaluations. Many partial solutions to these
problems have already been presented.

In the context of these implementations that literally implement the formal semantics, some
partial techniques have been developed to tackle the problem of order and duplicates. For instance,
in [11, 4] it is statically decided which sorting and duplicate-elimination operations are necessary
to guarantee correctness. This approach, however, does not solve the problem of unnecessarily
accessing nodes multiple times, and in many cases some sorting and duplicate-elimination opera-
tions still occur in the evaluation of a path expression.

In a second, more complicated approach, efficient algorithms are presented for which the result
for all input nodes of the step is computed at once. These algorithms [9, 8] guarantee that the
result is free from duplicates and in document order and also solves the problem of redundant
accesses of nodes. However, these algorithms cannot be used for path expressions containing
positional predicates, which is one of the problems we will tackle in this work.

Note that none of the two former approaches is better than the other one. The first approach
has the drawback that not all combinations of axes can be handled efficiently. On the other hand,
when in the first approach sorting and duplicate elimination is found to be unnecessary, naive
evalution of the corresponding step is more efficient than it is under the second, more complex
approach. Hence there is a trade-off to be made between these two approaches. As a result,
one could propose a hybrid approach, where some steps of a path expression are evaluated using
the first approach, and other steps by employing the second approach. The hybrid approach can
benefit from the results in this paper in the sense that we now also have a choice for steps that
contain a positional predicate.

The main contributions of this work are

1. alternative implementations of the axes such that these use the fact that the previous inter-
mediate result is sorted and return a result that is always sorted and duplicate-free. For this
purpose we will assume that the document is stored in a DOM-like pointer structure [1] and
that the nodes are numbered with their so-called pre-numbers and post-numbers, i.e., their
position in a preorder and postorder tree-walk, respectively;
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2. the development of axis algorithms with support for evaluation of multiple predicates which
remain efficient for the majority of XPath expressions.

By efficient we mean within the polynomial complexity bounds identified by Gottlob et al.
[7, 6]. They have shown that XPath evaluation is P -complete, and presented an algorithm to
evaluate XPath expressions in O(|Q|2 × |D|4), where |D| denotes the document size and |Q| the
size of the path expression. Nevertheless, most XPath implementations show exponential behavior
in the size of the query. The algorithms we present are polynomial for XPath expressions that do
not contain arbitrarily deeply nested predicates, with a worst case time complexity ofO(|Q|×|D|2).
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Chapter 2

The Data Model

The logical data model that we will use, is a simplification of the XML data model where a document
is an ordered node-labelled tree. For such a tree, the document order is defined as the strict total
order over its nodes, which is defined by the preorder tree-walk over the tree. A preorder tree-walk
is a simple recursive descent from the root, i.e., it begins with the root node, then goes to its first
child, does a preorder tree-walk rooted at that child, proceeds with the second child, again doing
a preorder tree-walk rooted at that second child, etc. In this way, you visit each node in document
order.

n0

n1 n5 n6

n2 n3 n4 n7 n8 n9

a

b

c c c

b b

b c c

Figure 2.1: The data model for an example XML document.

The physical data model describes in an abstract way how we assume that documents are
stored. Our first assumption is that the partial functions in Figure 2.2 are available for document
nodes (if undefined, the result as assumed to be null) and can be evaluated in O(1) time:

Node accessors
fc(n) first child of n
ns(n) next sibling of n
ps(n) previous sibling of n
pa(n) parent of n
ff(n) first follower of n
lp(n) last predecessor of n

Figure 2.2: Node accessor functions. These functions return null if the requested property is
undefined for node n.

Note that, except for the last two functions, these are all existing pointers in the Document
Object Model.
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Furthermore, we define the following function (also assumed O(1)) to retrieve the next node
in document order based on fc(n) and ff(n).

Function nextNode(n)

if fc(n) 6= null then
fc(n);

else
ff(n);

Our second assumption is that there are functions such that we can retrieve the preorder and
postorder ranks in O(1) time:

• pre(n) returns the preorder rank of n

• post(n) returns the postorder rank of n

The reasonableness of these assumptions is demonstrated by the fact that this physical data
model can be generated from a SAX representation [2] that consists of a string of opening and
closing tags in LogSpace. This can be shown by an extension of the proof given in [14] for the
original DOM data model.

We will frequently use the data type List. We use the following operations:

• newList() returns a new list

• first(L) returns first element of L

• last(L) returns last element of L

• empty(L) determines if L is empty

• addAfter(L, n) adds n at end of L

• addBefore(L, n) adds n at begin of L

• delFirst(L) removes and returns the first element of L

• delLast(L) removes and returns the last element of L

• isList(L) determines if L is a list

Lists are assumed to be represented as a reference to a tuple that consists of a reference to the
beginning and the end of a doubly linked list. Therefore, we can assume that all the operations
above and assignments and parameter passing can be done in O(1) time. Furthermore, it means
that if an argument of a function or procedure is a List, then it is passed by reference, hence all
operations applied to the formal argument are in fact applied to the original list.

We can use an Iterator on a List. The following operations are available:

• newIterator(L) returns a new iterator for the list L

• toFirst(I) sets the iterator to the first element of the list

• toLast(I) sets the iterator to the last element of the list

• toNext(I) sets the iterator to the next element of the list

• toPrev(I) sets the iterator to the previous element of the list

• current(I) returns the reference of the tuple to which the iterator points

We also use the data type Tuple frequently. A tuple with k fields f1, . . . , fk can be assigned
a value in following way: t := 〈f1 = a1, . . . , fk = ak〉. A field with name f of a tuple t can be
accessed by t.f . If t.f is a pointer, it is implicitly dereferenced.

6



Chapter 3

Supporting (Positional) Predicates

In [12] only path expressions without positional predicates are supported. In this paper we want to
extend these algorithms with support for evaluating positional predicates while remaining efficient.
By this we mean that we still do not want to visit any nodes that are not part of the input
and/or output, and where possible we would like to preserve the pipelining capabilities of the step
algorithms.

For a large part, path expressions with multiple predicates can simply be evaluated by evaluat-
ing axis::nodetest and subsequently filtering out those elements for which one of the predicates
does not hold. Step expressions containing positional predicates, however, need special attention,
because for these this simple strategy may not produce correct answers as the following example
demonstrates.

Example Consider the tree in Figure 3.1. Suppose, we are about to to evaluate the path expres-
sion1

/desc::a/desc::b[1]

The result is (n1, n3). Note that we may not alternatively evaluate /desc::a/desc::b (yielding
(n1, n3, n4)) and then evaluate the predicate for each of the resulting nodes, because the predicate
refers to the relative position of a descendant b-node with respect to its context a-node. Take,
for example, node n3. With respect to n0, it has position 2; with respect to n2, however, it has
position 1. Because of the latter, n3 is part of the result. In other words, result nodes can have
more than one relative position with respect to different context nodes and each of these may
qualify the node for the predicate.

n0

n1 n2

n3

n4

a

b a

b

b

Figure 3.1: Example XML tree without the document node.

Because of this, we explicitly provide an additional algorithm for each axis, that efficiently
tracks position information and evaluates the predicate for each (node,position)–combination.

1For reasons of space, we use a short notation for the axes, e.g. descendant becomes desc.
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In order to support the correct evaluation of predicates, we need to somehow keep track of
the context, as nodes are processed. It is clear that in case positional predicates are present, we
cannot just prune irrelevant nodes from the input list, like it is done in the earlier algorithms
presented in [8]. Pruning these nodes without further notice corresponds to cutting away the vital
context information we need to correctly evaluate positional predicates. The previous example
demonstrates this.

To bypass this problem, we keep track of all relevant input nodes that we already have pro-
cessed on a context stack Lst . For each of these nodes, we also store the number of result nodes for
which this node acted as a context. The following example shows the consecutive states of the con-
text stack Lst during the evaluation of the last step of the path expression /desc::a/desc::*[2]
on the example tree in Figure 3.1.

Example The input list for the last step is the result of the expression /desc::a, which is the
sequence n0, n2. The algorithm starts with the first input node, and pushes it on the context
stack, with position 0 (see Figure 3.2 (a)). Now, we start processing the descendants of this
context node. As we process the first descendant node n1, we increment the context position of
context node n0 (see Figure 3.2 (b)). The next node to process is n2, which is also a context node.
We first increment the context position of n0 and then register n2 as a new context node with
position 0 (Figure 3.2 (c)). Note that, since the predicate matches the current context position
associated with n0, the current node n2 is sent to the output. Next, node n3 is processed by
incrementing the context position for all contexts (Figure 3.2 (d)). Finally node n4 is processed.
Since all descendants of n2 have now been handled, we remove the second context from the stack
and increase the context position for n0 (Figure 3.2 (e)).

cn pos
n0 0

(a)

cn pos
n0 1

(b)

cn pos
n0 2
n2 0

(c)

cn pos
n0 3
n2 1

(d)

cn pos
n0 4

(e)

Figure 3.2: States of the context stack Lst while evaluating the last step of the expression
/desc::a/desc::*[2].

Just keeping the position of the current node with respect to each context, however, is not
enough. In order to support the evaluation of multiple predicates, we will need to alter the
structure of the current context stack. Besides the position of the current node relative to the
context nodes, we also extend the stack by a column for each predicate in the predicate list. A
node test can be seen as a predicate so we treat it in the same way. The example below shows
how such a context stack then operates to decide whether the current node gets filtered by the
predicates or not.

Looking at the example tree in Figure 3.1, we will try to evaluate the expression

/desc::b/anc::a[child::b][2][cnt(desc::a)>3]

After the evaluation of the step desc::b, the input list for the next step, Lin contains the nodes
n1, n3 and n4. While evaluating the next step, the algorithm runs iteratively over the candidate
output nodes. Since the step contains a reverse axis, this is done in reverse doc-order: n2, n0.
With the current algorithm and upon handling of node n0, the context stack looks like this:

cn pos
n4 1
n3 2
n1 1
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The problem now is that upon the evaluation of multiple predicates, each predicate works on
the result of the previous predicate. So we need to keep track of how many nodes have come
through for each predicate, in case a positional predicate occurs in the list of predicates.

We can do this by adding a column for each predicate to the tuples on the context stack.
Column pos is replaced by a column that is labelled with the node test for this step, indicating
that it is only incremented if the node test succeeds. We now have a stack with tuples consisting
of a context node and a list of positional indices:

cn a [child::b] [2] [cnt(desc::a)>3]
n4 1 0 0 0

Upon evaluating the predicates in the algorithms the following is done for each of the context
entries in the modified context stack:

1. Predicate columns are processed left-to-right.

2. For each of the predicate columns, the predicate is evaluated.

• If the predicate evaluates to true, the column’s value is incremented with 1 and this
step is repeated for the next predicate;

• If it evaluates to false, then the predicate evaluation stops for this context;

3. If the predicate is a positional predicate, it must take as position the value of the previous
predicate column;

4. If the last predicate evaluates to true, the candidate output node is sent to the output.
Note that we must complete the evaluation of the predicates for all contexts. Even if we
already know that the candidate node can be sent to the output list, we have to evaluate the
predicates in the remainder of the context stack, because the positions that are calculated can
be necessary for correctly processing future candidate output nodes that use those contexts.

We can illustrate the operation of this technique by means of the above example. Suppose we
have evaluated the first step, resulting in the sequence {n1,n3,n4 }. Before running through the
candidate output nodes we put the first context node n4 on the context stack. The first candidate
output node to look at is n2. It has n3 as only context node. Note that we need to keep n4 on the
context stack, since there are still ancestors of n4 to be processed. However, n4 is not a context of
the current node n2. To solve this, we consider only a part of the stack, called the active part of
the context stack. We assume that this part is always located at the top of the stack. The context
stack now looks as follows (active part is highlighted):

cn a [child::b] [2] [cnt(desc::a)>3]
n3 1 0 0 0
n4 1 0 0 0

Since the first predicate evaluates to true, the corresponding value gets incremented. In the
second column this new value is checked against the position index and, since they do not match,
predicate evaluation is stopped for this context. There are no more active contexts, so nothing
goes to the output, and we proceed with the next candidate output node n0. The context stack
now looks as follows:

cn a [child::b] [2] [cnt(desc::a)>3]
n3 1 1 0 0
n4 1 0 0 0

Two contexts, n1 and n4 become active and thus the stack now looks like this:

cn a [child::b] [2] [cnt(desc::a)>3]
n1 1 0 0 0
n3 2 1 0 0
n4 1 0 0 0
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Similar to the previous step, the evaluation of the predicates for contexts n1 and n4 stops after
the first predicate. However, for the context n3, the first predicate evaluates to true again. Since
now the new value of the first predicate column does match the position index of the second column,
also this predicate column’s value gets incremented. Finally, also the last predicate evaluates to
true and as such, the node n0 is sent to the output. The context stack now looks as follows:

cn a [child::b] [2] [cnt(desc::a)>3]
n1 1 0 0 0
n3 2 2 1 1
n4 1 0 0 0

We represent the list of predicates as a list LP of functions, that each take for parameters:

• n – the candidate output node;

• position – the context position of the candidate output node in the context sequence.

Function createPosList(LP )

begin
I := newIterator(LP );
toFirst(I);
Lpos := newList();
while current(I) 6= null do

addAfter(Lpos, 0);
toNext(I);

return Lpos;
end

The positions of the numbers in the lists associated to the contexts in Lst correspond to
positions of the predicate functions in the predicate list LP . Note that the axis step’s node test
is taken as the first predicate. We define two functions, a function createPosList that constructs
the ordered list which associates every predicate with a position and a function evaluatePredicates
that checks whether a node gets filtered by the predicates and if it is, it is sent to the output list.

Before continuing with the discussion of the several axis algorithms, we shortly discuss the
correctness Algorithm 3. As a precondition, we assume that the context stack Lst contains all
contexts of the current node n and that these are in the top section of Lst which is delimited by
the iterator Iuntil. For all entries on the context stack it holds that the positions in the position
lists denote how many nodes did pass all predicates up to the corresponding predicate before the
processing of the current node n. This last condition also holds as postcondition. The main
invariant of this algorithm is that after evaluating a certain predicate for the current node n, the
position corresponding to this predicate and the current context node indicates how many nodes
have passed through this predicate for this particular context. Achieving this for every predicate
and every context enforces the postcondition.

Note that in this case, the items on the context stack are processed one by one. This results
in multiple evaluations of predicates. For predicates that do not refer to the context position, this
is unnecessary. A possible optimization would be to evaluate the predicates that do not refer to
the context position only once for all contexts.

Also note that there is a small catch in the evaluation of predicates. Algorithm 3 describes
an approach that does not jeopardize pipelining, in the sense that none of the output nodes need
to be buffered. A problem occurs when the predicate involves aggregate function calls like the
last() function. The size of the context sequence is only known if the previous predicate has
been completely evaluated (i.e., once the algorithm for that step expression ran to completion).
As such, the algorithm presented here above does not support the correct evaluation of this kind of
predicates. However there are easy ways around this problem, while preserving complexity results.
It is obvious, though, that any such solution will break the pipeline.
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Algorithm 3: evaluatePredicates
Input:

• Lst : the context stack,

• Iuntil : iterator delimiting the active part of the context stack,

• n : the current node,

• LP : the list of predicates

Output: a boolean indicating whether the current node is retained by the predicates
begin1

I := newIterator(Lst);2

toFirst(I);3

output := false;4

// for all active contexts

while current(I) 6= current(Iuntil) do5

IP := newIterator(LP );6

toFirst(IP );7

// get position list for current context

positions := current(I).pl;8

Ipos := newIterator(positions);9

toFirst(Ipos);10

isOutputNode := true;11

pos := 0;12

// for all ’true’ predicates

while (current(IP ) 6= null) ∧ isOutputNode do13

// eval. current predicate

if current(IP )(n, pos) then14

// increase position

current(Ipos)++;15

else16

isOutputNode := false;17

// set context pos.

pos := current(Ipos);18

// next predicate

toNext(IP );19

// next position index

toNext(Ipos);20

if isOutputNode ∧ ¬output then21

output := true;22

toNext(I);23

return output ;24

end25
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This also is the reason for which we cannot evaluate reverse steps in a pipelined manner.
Consider two possible strategies for evaluating reverse axes:

1. We can process all nodes in reverse document order. In this way positional predicates
evaluate correctly within the presented algorithm because the last output node gets context
position 1, the next to last node gets context position 2, and so on. The problem is that
we then have to reverse the result sequence in order for it to be in document order, which
requires us to wait for the last output node.

2. We could also contruct an algorithm that processes the nodes in document order, but this
requires us to know the size of the result sequence to correctly evaluate any positional
predicates. Since this size is only known to us after processing all nodes, a second pass over
the nodes is required. Obviously, this approach would jeopardize pipelining too.
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Chapter 4

Axis Algorithms

Given a document and a context node sequence, an axis step results in a sequence of those document
nodes — in document order and without duplicates — that can be reached by following the axis
from one of the context nodes. In this chapter, we will give an algorithm for determining the
result sequence for each axis. Note that, in general, one will not get a sequence of nodes in
document order and without duplicates by simply computing the axis step for each context node
and concatenating the resulting sequences. Hence, a subsequent sorting and duplicate removal
step would be necessary to conform to XPath semantics. Unfortunately, this is rather expensive.
Therefore, we aim to provide algorithms that have beneficial time complexity properties. We
assume the input document and context node sequences to be in document order and duplicate
free.

4.1 Descendant Axis

4.1.1 Informal Description

As said, one will, in general, not get a sequence of nodes in document order and without duplicates
by simply computing an axis step for each context node and concatenating the resulting sequences.
An example of such a case is a context node sequence containing nodes n1 and n2 where n2 is a
descendant of n1. Observe that descendant(n2) ⊆ descendant(n1). Consequently, concatenating
descendant(n1) and descendant(n2) in general produces duplicates.

The algorithm given in this section makes use of the fact that document order corresponds with
a preorder tree-walk through the XML-tree. Observe that for any node, when you visit that node
in a preorder tree-walk, you subsequently visit all descendants of that node and then encounter
all following nodes of that node. This property can be succesfully used in an algorithm that, in
one preorder tree-walk, computes the descendants of an entire sequence of context nodes without
generating duplicate nodes. Furthermore, since a preorder tree-walk corresponds with document
order, result nodes are automatically generated in document order as well.

4.1.2 The Algorithm

We now present the function that determines the descendants of a sequence of context nodes. The
resulting list of nodes is in document order and duplicate-free provided that the input list Lin is
in document order and duplicate-free.

This algorithm is largely based on the staircase join algorithm of [9]. The function starts with
the first context node n (line 4). From there, n′ walks in preorder from the first child of n (line 5)
to the first following of n (line 6) using the NextNode function (line 10). It adds nodes n′ to Lout

along the way (line 7). Since this is a preorder tree-walk, nodes are added in document order.
Since Lin is in document order, any context node c that is a descendant of n occurs immediately

behind n in Lin . We already saw that for any such c, descendant(c) ⊆ descendant(n). Hence, the
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Algorithm 4: allDescOrd
Input: Lin , the input sequence
Output: a boolean indicating whether the current node is retained by the predicates
begin1

Lout := newList();2

while ¬ empty(Lin) do3

n := delFirst(Lin);4

n′ := fc(n);5

while n′ 6= null ∧ n′ 6= ff(n) do6

addAfter(Lout ,n′);7

if n′ = first(Lin) then8

delFirst(Lin);9

n′ := NextNode(n′);10

end11

descendants of c are already in Lout . Therefore, if, during our walk through all descendants of n,
we encounter that node in Lin , it is removed from Lin (line 9). This is called pruning in [9].

The algorithm keeps Lout in document order. Initially, Lout is empty and in the first iteration,
nodes are added in document order. If it is guaranteed that nodes added in a subsequent iteration
are all behind the ones already in Lout , we have proven that Lout always remains in document
order. Observe that, because of pruning, any nodes left in Lin after the first iteration are following
nodes of n. Therefore, n is assigned in a next iteration a node that is following the previous one.
Since all descendants of a node n appear immediately after n, but before following nodes of n,
it is guaranteed that descendants of a node n in one iteration appear after those of a previous
iteration. This proofs that Lout remains in document order.

Finally, Lout is the result of the function, Lout remains in document order, and we never add
nodes to Lout that are already there, so the result will be in document order and duplicate-free.
Moreover, we visit each node in Lin once. Besides that, we never visit a node that is not in the
result, nor do we visit a node twice. Therefore, the time complexity of allDescOrd is O(l + m),
where l is the size of Lin and m the size of Lout .

4.1.3 Supporting Positional Predicates

Algorithm 5 describes how to evaluate a descendant axis step that is followed by a number of
predicates. It is largely based on the staircase join algorithm of [9] as it walks once through the

n0

n1 n5 n6

n2 n3 n4 n7 n8 n9

1

6

2 3

5

7 8

4

Lin n1 n2 n5 n6

Figure 4.1: The walk described by the descendant algorithm for the input list above. When a
node of Lin is encountered in the document, it registered as a context on Lst .
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document (see Figure 4.1) in document order to determine all descendants of an entire context
node sequence Lin . It is required that Lin is in document order.

Algorithm 5: descendantPredicates
Input:

• Lin : the list of input nodes,

• LP : the list of predicates

Output: Lout : the list of output nodes
begin1

Lout := newList();2

Lst := newList();3

while ¬ empty(Lin) do4

// fetch first node n from input

n := delFirst(Lin);5

// push n on the context stack

addBefore(Lst ,6

[cn := n, pl:=createPosList(LP )]);7

// fetch first child n′ of n

n′ := fc(n);8

while (n′ 6= null) ∧ (¬ empty(Lst)) do9

if evaluatePredicates(Lst , null, n′, LP) then10

AddAfter(Lout , n′);11

if n′ = first(Lin) then12

// register context node

addBefore(Lst , [cn:=delFirst(Lin),13

pl:=createPosList(LP )]);14

// get follower of n′

n′ := nextNode(n′);15

while (¬ empty(Lst)) ∧16

(post(n′) > post(first(Lst).cn) do17

// remove obsolete context from Lst

delFirst(Lst);18

return Lout19

end20

As is explained in Chapter 3, there is a problem with pruning nodes from the input list as it
is done in Algorithm 4. Instead of just pruning the nodes from the input list, we will keep these
context nodes on a context stack, along with the information required for the correct evaluation
of multiple positional predicates.

The outer while loop of line 4 iterates over the context nodes in the input list using variable
n. The while loop of line 9 scans the document using variable n′ from the first child of n (line 8),
taking each time the next node in document order (line 15) until the last descendant. The last
descendant has been reached if we reached the end of the document (n′ = null) or we reached a
node that is not a descendant of any context node so far apparent from the fact that the context
stack is empty (line 9).

During processing, the context stack Lst contains information on all context nodes n for which
n′ is a descendant, together with the relative position of n′ w.r.t. n for each predicate. If, during
the scan, we reach a document node that is also a context node (line 12), the next couple of nodes
will also be descendants of this context node. Therefore, the context node is pushed on the stack
and removed from Lin . A context node is removed from the stack when subsequent document
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nodes n′ are no longer descendants of it (line 16), which is the case when the next n′ appears to
be a following node of the context node. The fact that we can push and pop context nodes on the
stack while scanning document nodes relies on two important properties: (1) in a pre-order walk
from a certain node, one first encounters all descendants of a node and then all following nodes,
and (2) the input list is in document order, so we only need to check the first node of Lin .

A document node n′ is a result node if it passes all predicates in LP (line 10). evaluatePredicates
updates the positions in Lst according to which predicates where satisfied.

The algorithm keeps Lout in document order. Initially, Lout is empty and in the first iteration
of n, nodes are only added at the end in line 11. Since n′ scans the document in document order,
Lout remains in document order. If it is guaranteed that nodes added in a subsequent iteration
are all behind the ones already in Lout , we have proven that Lout always remains in document
order. Since Lin is in document order, Lin will first contain all context nodes that are descendants
of n, and then all following nodes of n. The first are removed from Lin in line 12. Therefore,
upon the next iteration of the outer while loop of line 4, the next node will be a following node
of n. Since all descendants of following nodes of n, are guaranteed to be following nodes of n
themselves, subsequent result nodes are behind the ones already in Lout . This proves that Lout

remains in document order.
Finally, Lout remains in document order, and we never add nodes to Lout that are already

there, so the result will be in document order and duplicate-free. Moreover, we visit each node in
Lin once. Besides that, we never visit a node that is not a candidate result node, nor do we visit a
node twice. Therefore, the data access complexity of descendantPredicates is O(l +m), where l is
the size of Lin and m the number of descendants of Lin . For each result node, we potentially have
to evaluate each predicate for each context (node,position)–combination. Since a node can have
at most h ancestors, where h denotes the height of the XML document tree, predicate evaluation
complexity is O(h×m× | LP |).

4.2 Descendant-or-self Axis

The algorithm for this axis is identical to that of the descendant axis except that for each node
in Lin that is not preceded by an ancestor we retrieve not only the descendants but also the
node itself. The time complexity is therefore the same as the previous algorithm. If support for
positional predicates is required, the previously given algorithm can easily be adjusted binding n′

to the input node instead of its first child.

4.3 Ancestor Axis

4.3.1 Informal Description

The problem for this axis is similar to the descendant axis because two distinct nodes can have
common ancestors. Moreover, this can not only happen for nodes that have an ancestor-descendant
relationship, but also for nodes that do not. The solution for this problem is to retrieve for each
node in the input list only those ancestors that were not already retrieve before. Because the
input list is sorted in document order we can do this by walking up the tree and stopping if we
find a node that is an ancestor of the previous node in the input list.

4.3.2 The Algorithm

We first present two helper procedures. The first retrieves all ancestors of a document node n and
appends them in document order after a list L.
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Function addAnc(L, n)

begin
n′:= pa(n);
if n′ 6= null then

addAnc(L,n′);
addAfter(L, n′);

end

If the number of ancestor nodes in m then the time complexity if this procedure is in O(m).
The next helper procedure will, given a list L, a document node n and a document node n′ that
precedes n in document order, retrieve the ancestors n that are not ancestors of n′ and append
them in document order after L.

Function addAncUntilLeft(L, n, n′)

begin
n′′ := pa(n);
if n′′ 6= null ∧ pre(n′′) ≥ pre(n′) then

addAncUntilLeft(L, n′′, n′);
addAfter(L, n′′);

end

Note that since n′ precedes n in document order it holds that the condition pre(n′′) ≥ pre(n′)
indeed checks if an ancestor n′′ of n is an ancestor of n′. Also here the time complexity is O(m)
where m is the number of retrieved ancestors. Finally, we present the function that given a sorted
and duplicate-free list of document nodes Lin returns a sorted duplicate-free list of all their an-
cestors.

Algorithm 8: allAncOrd(Lin)

begin1

Lout := newList();2

if ¬empty(Lin) then3

n := delFirst(Lin);4

addAnc(Lout , n);5

while ¬empty(Lin) do6

n′ := delFirst(Lin); addAncUntilLeft(Lout , n′ , n);7

n := n′8

return Lout ;9

end10

In the first part of the algorithm (line 3-5) all ancestors of the first node in Lin are retrieved.
After this a while loop (line 6-8) iterates over the remaining nodes in Lin and retrieves for each
node n′ all ancestors of n′ that are not ancestors of n, the node that preceded n′ in Lin . Since n
also precedes n′ in document order it follows that all the ancestors of n′ that are retrieved indeed
follow those that were retrieved for n. As a result all ancestors that are retrieved are appended in
document order. The time complexity of this function is O(l + m) if l is the size of Lin and m is
the size of the result.
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Algorithm 9: ancestorPredicates
Input:

• Lin : the list of input nodes,

• LP : the list of predicates

Output: Lout : the list of output nodes
begin1

Lout := newList();2

Lst := newList();3

I := newIterator(Lst);4

// reverse axis, start at end

n := last(Lin);5

while n 6= null do6

// if Lst is empty, nothing happens

if evaluatePredicates(Lst , I, n, LP ) then7

AddAfter(Lout , n);8

// if current node is input node

if ¬ empty(Lin) ∧ n = last(Lin) then9

// ... register as a context

addBefore(Lst , [cn := delLast(Lin),10

pl := createPosList(LP )]);
if pa(n) 6= null then11

if ¬ empty(Lin) ∧ pre(pa(n)) < pre(last(Lin)) then12

// process prec’s before anc’s

n := delLast(Lin);13

else14

// continue with anc’s

n := pa(n);15

addBefore(Lst , [cn := delLast(Lin),16

pl := createPosList(LP )]);
n := pa(n);17

toFirst(I);18

while current(I) 6= null ∧ post((current(I)).cn) < post(n) do19

// locate active contexts

toNext(I);20

else21

n := null;22

return reverse(Lout);23

end24
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Figure 4.2: Nodes scanned by ancestor algorithm (context nodes processed in reverse document
order c3, c2, c1).

4.3.3 Supporting Positional Predicates

The ancestor algorithm (see Algorithm 9) uses the pa(n) pointers to walk the variable n from a
context node up in the document to the root (line 15). It does this for each context node in Lin

in reverse order (lines 5, 10, and 13). To avoid accessing and producing duplicate nodes, it stops
whenever it encounters a node that is on a subsequent context node’s path to the root (line 12).
For example, Figure 4.2 illustrates the nodes accessed for context nodes c1, c2, and c3.

The stack Lst maintains a list of encountered context nodes. At the end of each iteration, the
while loop of line 19 moves the iterator I to the last context node on the stack for which n is an
ancestor. The context nodes on the stack up to this point are called active context nodes. The
evaluatePredicates (line 7) of a subsequent iteration will only check the predicates for the active
context nodes. Note that context nodes are never removed from the stack once they end up on it.
This is easily explained by noticing that the root node will be processed last. Since the root node
is a candidate output node for all context nodes (except for itself), it requires all these nodes to
be present on the stack.

Since we walk backwards through the tree, the result nodes are produced in reverse document
order. Therefore, we have to reverse the output list at the end.

Let again l be the length of the input list en m the number of ancestors of Lin . Note that
all context nodes are accessed once and moved from Lin to the stack. Furthermore, Figure 4.2
illustrates that our navigation strategy accesses each parent only once. Unfortunately, determining
the active context nodes on the stack (line 19) accesses in the worst case all context nodes on the
stack (max. l), and this happens for all m iterations. Finally, all output nodes (max. m) are
accessed again in reversing Lout . Therefore, the data access complexity is O(l + 2m + l ×m). In
all m iterations, the predicates are evaluated for all active context nodes (max. l), so the predicate
evaluation complexity is O(l ×m× | LP |).

4.4 Ancestor-or-self Axis

The algorithm for this axis as similar to the one for the ancestor axis except that we we retrieve the
ancestors of a node we also add the node itself. The time complexity is therefore also the same.
For supporting positional predicates, Algorithm 9 can be easily adapted. The only thing that
needs to be done is postponing predicate evaluation (Line 7) until the current node is registered
as a context (Lines 9 to 10).
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4.5 Child Axis

4.5.1 Informal Description

We cannot use the approach of the previous axes here. Consider for example the fragment in
Figure 4.3. If, for example, we only retrieve for each node the children that we know to precede
in document order the children of the next node then for the list Lin = [1, 3] we only obtain
[2, 3, 4]. To solve this we introduce a stack on which we store the children of node 1 which were
not retrieved already such that we can return to them when we are finished with the children of
node 3.

<a id="1">
<b id="2"/>
<b id="3"> <c id="4"/> </b>
<b id="5"/>

</a>

Figure 4.3: An XML fragment

4.5.2 The Algorithm

Before we present the actual algorithm we present a helper function that results in a list of all
children of a document node n in document order.

Function allChildren(n)

begin
L := newList();
n′:= fc(n);
while n′ 6= null do

addAfter(L, n′);
n′ := ns(n′);

return L;
end

The function simply goes to the first child of n and then follows the following-sibling reference
until there is no more following sibling. The time complexity of this function is O(m) if m is the
number of retrieved children.

Next, we present the actual algorithm that given a sorted and duplicate-free list of document
nodes Lin returns a sorted duplicate-free list of all their children.

The algorithm consists of two while loops. The first (line 4-18) iterates over the nodes in Lin

and retrieves the children that it knows it can send to the output list Lout and stores the others
on the stack Lst . The second while loop (line 19-24) iterates over the remaining children on the
stack Lst and appends those behind Lout . In the following we discuss each while loop in more
detail.

The first loop stores unprocessed children on the stack Lst where the beginning of Lst is the
top of the stack. Each position on the stack contains a sorted list of siblings that were not yet
transferred to Lout . The loop maintains an invariant that states that the nodes in lists that are
higher on the stack precede in document order those that are lower on the stack. This is mainly
achieved by the if statement on line 12 that tests if the node at the beginning of Lin precedes the
first child node on top of the stack. If this is true then the list of children of n are pushed on the
stack and n is removed from Lin , otherwise the first child node on top of the stack is moved to
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Algorithm 11: allChildOrd
Input: Lin : the list of input nodes
Output: Lout : the list of output nodes
begin1

Lout := newList();2

Lst := newList();3

while ¬empty(Lin) do4

n := first(Lin);5

if empty(Lst) then6

L′ := allChildren(n);7

addBefore(Lst , L′);8

delFirst(Lin);9

else if empty(first(Lst)) then10

delFirst(Lst);11

else if pre(first(first(Lst))) ¿ pre(n) then12

L′ := allChildren(n);13

addBefore(Lst , L′);14

delFirst(Lin);15

else16

n′ := delFirst(first(Lst));17

addAfter(Lout , n′ );18

while ¬empty(Lst) do19

if empty(first(Lst)) then20

delFirst(Lst);21

else22

n′ := delFirst(first(Lst));23

addAfter(Lout , n′);24

return Lout ;25

end26
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the end of Lout . Note that in the latter case it indeed holds that all the children of the remaining
nodes in Lin indeed succeed this child in document order.

The second loop simply flushes the stack which indeed results in adding the remaining nodes
to Lout in document order because of the invariant that was described for the previous loop.

Since the algorithm iterates over all the nodes in Lin and retrieves only those nodes that are
added to Lout it follows that the time complexity is O(l + m) where l is the size of Lin and m the
size of Lout .

4.5.3 Supporting Positional Predicates

Adjusting the algorithm for supporting positional predicates in this case resulted in a completely
different algorithm. Instead of keeping lists of unprocessed series of children on a stack, this
approach only pushes the context node on the stack, along with the position of the first unprocessed
child and a reference to the child itself. Since the descendants need to be processed before the the
following nodes, we have to use the following strategy: If a candidate output node is a context
node itself or has a descendant node that is a context node, then this context is pushed on the
context stack before the next siblings of the candidate node are processed.

This time, the context stack consists of a three-tuple. It contains the context node (the parent),
the current child node (meaning the first node of this context that still needs processing) and the
position list of this current child node. Starting by the usual looping over input list, the algorithm
pushes the context on the stack and initializes the current node n as being the first child node of
the context. At rule 13, the predicates are evaluated and if they all evaluate to true, the current
node is sent to the output. At the next rule, the current node is set to be the next sibling node.
If there are no more siblings, the context is removed from the stack (rule 16). The conditional
contsruction at rule 18 checks whether there are input nodes that are descendants of the current
node, which need to be processed before continuing with the next sibling node. If this is the case,
these input nodes are pushed on the context stack and the children are processed.

Correctness Lout contains only the child nodes of the input nodes. Only on Lines 8 and 19, n
is bound to an input node that may not be an output node, but it is set to the first child before n
is sent to Lout . The algorithm only iterate from the first child of each input node to the last child
with the ns-operator. Since the input list Lin contains the nodes in document order, the contexts
are also handled in document order. Thus, the contexts will appear on the context stack Lst in
document order. Due to the fact that contexts that are completely processed are removed from
the stack (Line 16), it also holds that every two contexts on the stack have an ancestor-descendant
relationship. Since the algorithm also guarantees that the current node n is a child node of the
top of the stack, n will always be a descendant of all context nodes in Lst . The fact that all
descendant nodes of the current node are processed before the following nodes (see conditional on
Line 18), ensures that the output nodes appear in document order on Lout . Further, no node is
ever outputted more than once, since the document and the input list are scanned simultaniously.

Data Access Complexity The outer while loop accesses both the nodes in the input list (size
l) and the nodes in the output list (size m) exactly once. Additionally, the semantics of child
axis implies that every output node has at most one context node. As a result, for evaluating the
predicates for the each of candidate output nodes, only LP accesses are required. Thus, the data
access complexity is O(l + m× LP ).

4.6 Parent Axis

4.6.1 Informal Description

The fundamental property that will be used for this axis is the following. If we retrieve the parent
nodes of a duplicate-free sorted list of document nodes, we obtain a sublist of the list of nodes
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Algorithm 12: childPredicates
Input:

• Lin : the list of input nodes

• LP : predicate list

Output: Lout : the list of output nodes
begin1

Lout := newList();2

Lst := newList();3

I := newIterator(Lst);4

toFirst(I);5

toNext(I);6

while ¬ empty(Lin) do7

// fetch first input node

n := delFirst(Lin);8

// if child node present

if fc(n) 6= null then9

// ... add node as context

addBefore(Lst , [cn := n, fc := fc(n), pl := createPosList(LP )]);10

// get first child

n := fc(n);11

while ¬ empty(Lst) do12

// use only top of stack

if evaluatePredicates(Lst , I, n, LP ) then13

addAfter(Lout , n);14

// register next child as current node

first(Lst).fc := ns(first(Lst).fc);15

// delete processed contexts

if first(Lst).fc = null then16

delFirst(Lst);17

if ¬ empty(Lst) ∧ pre(first(Lst).fc) > pre(first(Lin)) then18

// handle desc’s of current node first

n := delFirst(Lin);19

if (fc(n) 6= null) then20

addBefore(Lst , [cn := n, fc = fc(n), pl := createPosList(LP )]);21

// get next sibling to be processed

n := first(Lst).fc;22

toFirst(I);23

toNext(I);24

return Lout ;25

end26
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that we meet when we follow the contour of the tree. For example, if we follow the contour of the
nodes in the tree for the fragment in Figure 4.3 then we obtain the list [1, 2, 1, 3, 4, 3, 1, 5, 1]. If we
start with the list [2, 3, 4, 5] and we retrieve the list of parents, then we obtain [1, 1, 3, 1] which is
indeed a sublist of the first list.

This information can be used by the algorithm because when it iterates over the list of parents
and encounters a parent n that precedes the last parent in the output list then it is walking up the
tree in the contour walk. As a consequence it knows that after it inserts n in the output list the
tail of the output list that starts with n will not change anymore because all the following nodes
in the input list will either be after or before this tail in document order. Therefore the algorithm
can simply summarize this tail and pretend it corresponds to the node n. It does this by replacing
it with a nested list that contains this tail.

As an illustration consider the following possible list of parents: [1, 2, 5, 4, 9, 8, 2]. For reasons
of homogeneity we represent the output list as a list of lists and if we add a single node it is
represented as a singleton list. Therefore after processing the nodes 1, 2 and 5 we obtain the list
[[1], [2], [5]]. Since the next node 4 precedes 5 the algorithm represents the tail as a nested list that
starts with 4 and obtains [[1], [2], [4, [5]]]. From this point on the nested list [4, [5]] will be considered
as if equal to [4], i.e., the algorithm considers only the first node of the nested lists. Since the next
node 9 follows 4 it is simply added, giving [[1], [2], [4, [5]], [9]]. The next node is 8 which precedes
9 but follows 4, so we obtain [[1], [2], [4, [5]], [8, [9]]]. Also here the nested list [8, [9] is considered
as equivalent to [8]. Finally the node 2 is added and since it precedes node 4 the two lists starting
with 4 and 8 are nested in a list starting with 2 and we obtain [[1], [2], [2, [4, [5]], [8, [9]]]].

The example demonstates that the result is a nested list that when flattened gives the sorted
list of parents but may still contain duplicates. Since the list is sorted these can be eliminated
easily.

4.6.2 The Algorithm

We first present a helper function and a helper procedure. The following function will, given a
sorted list L, return a sorted list that contains all the elements in L but no duplicates.

Function dupElimSort(L)

begin
Lout := newList();
if ¬empty(L) then

n := delFirst(L);
while ¬empty(L) do

n′ := delFirst(L);
if n′ 6= n then

addAfter(Lout , n′);
n := n′;

return Lout ;
end

The time complexity of this function is clearly O(l) if l is the size of L. Te following procedure
will, given a list L and a nested list Ltr of document nodes, flatten the list Ltr and append it to
L.
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Function addFlatList(L, Ltr)

begin
while ¬empty(Ltr) do

n := delFirst(Ltr);
if isList(n) then

addFlatList(L,Ltr);
else

addAfter(L,n);

end

If at each level every nested list in Ltr contains at least one document node then the time
complexity if this procedure is O(m) if m is the number of document nodes in the result.

Finally, we present the actual algorithm that given a duplicate-free sorted list of document
nodes will return a duplicate-free sorted list of their parents.

Algorithm 15: allParOrd
Input: Lin : the list of input nodes
Output: Lout : the list of output nodes
begin1

Ltr := newList();2

while ¬empty(Lin) do3

n := pa(delFirst(Lin)); L := newList(); while ¬empty(Ltr) ∧ pre(first(last(Ltr)))4

¿ pre(n) do
n′ := delLast(Ltr);5

addBefore(L, n′);6

addBefore(L, n); addAfter(Ltr, L)7

Ldup := newList();8

addFlatList(Ldup, Ltr);9

Lout := dupElimSort(Ldup);10

return Lout ;11

end12

The list Ltr is used to represent the list of nested lists. Note that in Ltr every nested list will
always start with a document node. The crucial part is the while loop on lines 4-6 that determines
the tail L of Ltr where the first nodes of the lists in this tail follow n in document order and
removes this tail from Ltr. On line 7 this tail is extended with n and finally on line 7 the tail is
put back as a nested list at the end of Ltr. At the end of the algorithm, when all the nodes of Lin

have been processed, the resulting nested list Ltr is flattened and duplicates are removed from it.
The time complexity if this algorithm is O(l) where l is the size of Lin. To understand this

consider the number of times the pre-numbers of two nodes are compared in the while condition
starting on line 4. The number of equations that were false are at most l, one for each parent that
is considered. The number of successful equations is also at most l because a successful comparison
means that the node is from then on nested and will no longer be considered, so in the final Ltr

every document node has been successfully compared at most once.

4.6.3 Supporting Positional Predicates

This is the only axis for which we do not need to construct an alternative algorithm in order to
support the correct evaluation of positional predicates. Note that every node has at most one
parent. This implies that it is sufficient in the prvious algorithm to check whether the positional
predicates are equal to one. Any other position is impossible and results in no output at all.
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4.7 Following Axis

4.7.1 Informal Description

To find all the followers of the nodes in a duplicate-free sorted list of document nodes it is sufficient
to retrieve the followers of the first node in the list that is not an ancestor of the next node in the
list. To understand this consider the following. Let n be this node and n′ a node that is in the list
after n. Since the node in the list immediately after n is not its descendant n′ and its followers are
also not descendants of n. Therefore it follows that (1) n′ is a follower of n and (2) all followers
of n′ are also followers of n. Since n′ is not a follower of itself, it holds that the set of followers of
n′ is a proper subset of those of n. On the other hand it can be shown that if n′ is an ancestor of
n then the set of followers of n′ is a subset of those of n.

4.7.2 The Algorithm

We first present a helper procedure that, given a list L and a document node n, appends to L all
followers of n.

Function addFoll(L, n)

begin
if ff(n) 6= null then

addAfter(L, ff(n));
addDesc(L, ff(n));
addFoll(L, ff(n));

end

The correctness of this procedure follows from the fact that ff(n) returns the smallest node (in
document order) that is a follower of n, and that the followers of a node n are defined as those
nodes that are larger in document order but not a descendant of n. Its time complexity is O(m)
where m is the number of followers added to L.

Next we present the actual algorithm that given a duplicate-free sorted list Lin of document
nodes returns a duplicate-free sorted list of all the followers of these nodes.

Algorithm 17: allFollOrd
Input: Lin : the list of input nodes
Output: Lout : the list of output nodes
begin

Lout := newList(); if ¬empty(Lin) then
n := delFirst(Lin);
while ¬empty(Lin) ∧ pre(first(Lin)) > pre(n) ∧ post(first(Lin)) < post(n) do

n := delFirst(Lin);
addFoll(Lout , n);

return Lout ;
end

The correctness of this function follows from what was said before and the fact that the while
condition indeed tests that the first node in Lin is a descendant of n. Because the algorithm
iterates over all the nodes in Lin , determines a single node n and then applies addFoll, it follows
that the time complexity is O(l + m) if l is the size of Lin and m the size of Lout .

4.7.3 Supporting Positional Predicates

Another complication arises when we want to efficiently support positional predicates for the fol-
lowing axis. Looking back to our small example in Figure 3.1, we can observe that if we process
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our list of input nodes in document order, we encounter node n2 before node n3. Also, the set of
following nodes of n2 will always be a proper subset of the set of following nodes of n3. Apparently,
n2 will become active as a context node after n3 has been processed. This is why the so called
inactive context nodes are buffered on a secondary stack until they become active.

Algorithm 18: followingPredicates
Input:

• Lin : the list of input nodes

• LP : predicate list

Output: Lout : the list of output nodes
begin

Lout := newList(); // context nodes for which we are handling descendants

Lst1 := newList();
// active context nodes

Lst2 := newList();
n := null;

while (nextNode(n) 6= null) ∨ ¬empty(Lin) do
if n = null then

// initialize n with node from input Lin

n := first(Lin);

// current node = input node

if ¬empty(Lin) ∧ (n = first(Lin)) then
// add inactive context to Lst1

addBefore(Lst1 , [cn := delFirst(Lin)]);
while ¬empty(Lin) ∧ (post(first(Lin)) < post(first(Lst1).cn)) do

// buffer descendants in Lst1

addBefore(Lst1 , delFirst(Lin));

if empty(Lst2) then
n := ff(first(Lst1).cn);

else
n := nextNode(n);

// if n follows an inactive context

while ff(first(Lst1).cn) = n do
// ... activate the context

addBefore(Lst2 , [cn := delFirst(Lst1), pl := createPosList(LP )]);

if evaluatePredicates(Lst , null, n, LP ) then
addAfter(Lout , n);

return Lout ;
end

As stated before, we will need both a buffer Lst1 (Line 18) and a context stack Lst2 (Line 18).
The while-loop on Line 18 runs until the input list Lin runs empty and the last following node of
the last input node has been processed. On Line 18 n is initialized with the first input node if it is
found to be null. This can be because the algorithm is just starting or if n is assinged a following
node of itself, while no such node exists (this can happen on Lines 18 and 18). On Line 18, if the
current node is the same as the first node on the input, this node is taken from the input list and
registered as an inactive context node. Additionally, in the while-loop on Line 18, all descendants
of this input node are also buffered (since we know they will only become active as a context after
the last descendant input node).
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On Line 18, if the context stack is empty (i.e., when the algorithm bootstraps), n is assigned
the first following node of the last (deepest descendant) of the input nodes that were buffered.
This will be the first candidate output node. In case there are one or more active contexts in Lst2 ,
all following nodes are candidate input nodes, and thus n is assigned the next node in document
order (Line 18).

In the while-loop of Line 18, before evaluation of the predicates, all inactive contexts for which
n is a follower node, are activated by moving them onto the context stack Lst2 . Since n can only
be their first follower, their associated positions are set to 1. Next, on Line 18 the predicates are
evaluated.

Correctness n is a follower node of the nodes on the context stack Lst2 . This property is
enforced by copying context nodes from the buffer to context stack only if n indeed is a follower
of these contexts (Line 18). The only exception occurs in the first iteration, where Lst1 is empty.
In this case, n gets initialized properly on Line 18.

All contexts that are before n in document order, are either to Lst1 or Lst2 . Upon predicate
evaluation, n is a descendant of all buffered contexts in Lst1 ; i.e., there are no inactive contexts
for which n is a follower. This is guaranteed by the fact that all inactive contexts on Lst1 are
activated if n is a follower node. So, all valid contexts of n are on Lst2 , which is used for evaluating
the predicates. Because every candidate output node is visited, Loutcontains valid output nodes.

The variable n is used to scan the document in document order by using the nextNode function.
After the first iteration, n is bound to the first candidate output node on Line 18. Afterwards,
subsequent iterations move n to the next node in document order on Line 18. Since each iteration,
n is considered only once as a candidate output node, the result is without duplicates and in
document order.

Data Access Complexity The outer while loop visits both the input nodes in Lst and the
candidate output nodes exactly once. For each of the condidate output nodes the predicates are
evaluated. In the worst case, the context stack contains all of the input nodes (size l) and thus the
evaluation requires m× LP time for each node. Thus, the resulting complexity is O(m× l× LP ).
The copying of the contexts between the two stacks only add a constant factor, i.e. O(m× (2l +
l × LP )), since the size of the copied stack in both while loops can be at most l.

4.8 Preceding Axis

4.8.1 Informal Description

To find the preceding nodes of a sorted list of document nodes we only have to retrieve the
preceding nodes of the last node in the list. If this is node n we can retrieve its preceding nodes
in document order as follows. We first apply to n the function lp repeatedly until there is no more
immediate predecessor. Let the nodes we encounter be n0 = n, n1, . . . , nk. Then nk is the first
predecessor of n in document order. For this node we first retrieve all its ancestors in document
order that are not ancestors of n and nk itself. After this we return to nk−1 and retrieve all its
ancestors in document order that are not ancestors of nk and also not ancestors of n, and we
retrieve nk−1 itself. We repeat this for each ni with 0 < i < k by retrieving all ancestors of ni in
document order that are not ancestors of ni+1 or n, and ni itself. It is easy to see that for each ni

the retrieved nodes follow in document order those of ni+1 and that those nodes are predecessors
of n. Conversely all predecessors of n are either in n1, . . . , nk or one of their ancestors.

4.8.2 The Algorithm

Before we present the actual algorithm we present three helper algorithms. The first algorithm
will, given a list L and three document nodes n, n′ and n′′ such that n′ is a predecessor of n and
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n is a predecessor of n′′, adds after L in document order the ancestors of n that are not ancestors
of n′ or n′′.

Function addAncBetween(L, n, n′,n′′)

begin
n′′′ := pa(n);
if n′′′ 6= null ∧ (pre(n′′′) ≥ pre(n′)) ∧ (post(n′′′) ≤ post(n′′)) then

addAncUntil(L, n′′′, n′);
addAfter(L, n′′′);

end

Note that to test if n′′′ is not an ancestor of n′ it must be tested whether ¬(pre(n′′′) < pre(n′) ∧
post(n′′′) > post(n′)) or equivalently pre(n′′′) ≥ pre(n′) ∨ post(n′′′) ≤ post(n′). However, since n
is a follower of n′ it holds that post(n) > post(n′) and since n′′′ is the parent of n it holds that
post(n′′′) > post(n), from which it follows that post(n′′′) > post(n′). A similar argument shows
that the test for n′′′ and n′′ in the if-expression is also sufficient to test whether n′′′ is not an
ancestor of n′′. The time complexity of this procedure is O(m) if m is the number of nodes added
to L.

The second helper function is similar and will, given a list L and document nodes n and n′

such that n is a predecessor of n′, add all the ancestors of n that are not ancestors of n′ to L in
document order.

Function addAncUntilRight(L,n,n′)

begin
n′′ := pa(n);
if n′′ 6= null ∧ post(n′′) ≤ post(n′) then

addAncUntilRight(L, n′′, n′);
addAfter(L, n′′);

end

The correctness of this procedure can be shown in a way similar to that of the previous one.
Also here the time complexity is O(m) if m is the number of added document nodes.

The third helper procedure will, given a list L and two document nodes n and n′ such that n
is a predecessor of n′, adds all those nodes to L in document order which are (1) predecessors of
n but not ancestors of n′, (2) ancestors of n but not ancestors of n′ or (3) n itself.

Function addLeftUntil(L, n, n′)

begin
if lp(n) 6= null then

n′′ := lp(n);
addLeftUntil(L,n′′,n′);
addAncBetween(L, n, n′′, n′);

else
addAncUntilRight(L, n, n′);

addAfter(L,n);
end

The correctness of this procedure follows from the correctness of the previous procedures. The
time complexity is O(m) if m is the number of added document nodes.

Finally, we present the algorithm itself which, given a list Lin of document nodes returns a
duplicate-free sorted list of all their predecessors. The correctness follows from the correctness of
the helper procedures. The time complexity is O(m) if m is the size of Lout .
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Algorithm 22: allPrecOrd
Input: Lin : the list of input nodes
Output: Lout : the list of output nodes
begin

Lout := newList();
if ¬empty(Lin) then

n := last(Lin);
if lp(n) 6= null then

addLeftUntil(Lout , lp(n), n);

return Lout ;
end

4.8.3 Supporting Positional Predicates

This algorithm is basically a copy of the one for the following axis where the input list and
candidate output nodes are processed backwards. This approach results in an output list that
contains nodes in reversed document order, so as a final step we need to reverse this list.

4.9 Following-Sibling Axis

4.9.1 Informal Description

The problems for this axis are very similar to those of the child axis and can be solved in the
same way, i.e., by introducing a stack of lists of nodes that contains the nodes that still need to be
moved to the output list. An extra complication is here that the following siblings of two different
nodes may have nodes in common. The solution for this is simple: if we encounter simultaneously
the same node in the input list and at the beginning of the list on top of the stack the we ignore
the node in the input list.

4.9.2 The Algorithm

We first present a helper function that given a document node n returns a duplicate-free sorted
list of all the following siblings of n.

Function allFollSibl(n)

begin
L := newList();
n′:= ns(n);
while n′ 6= null do

addAfter(L, n′);
n′ := ns(n′);

return L;
end

Correctness of this function follows from the fact that the function ns returns the first sibling
of n that follows n in document order. The time complexity is O(m) where m is the size of the
result.

Next we present the actual algorithm which given a list Lin of document nodes returns a
duplicate-free sorted list of all following siblings of the nodes in this list.

The correctness of this function is similar to that of the corresponding function for the child
axis. The main difference is in line 25 where the case is considered that the current node in the
input list, n, is equal to the first node of the list on top of the stack Lst . In this case the node
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Algorithm 23: precedingPredicates
Input:

• Lin : the list of input nodes

• LP : predicate list

Output: Lout : the list of output nodes
begin

Lout := newList();
// context nodes for which we are handling descendants

Lst1 := newList();
// context stack

Lst2 := newList();
n := null;

while (prevNode(n) 6= null) ∨ ¬empty(Lin) do
if n = null then

// initialize n with last input node (reverse axis)

n := last(Lin);

if ¬empty(Lin) ∧ (n = last(Lin)) then
// buffer as inactive context

addBefore(Lst1 , [cn := delLast(Lin)]);

while ¬empty(Lin) ∧ (post(last(Lin)) > post(first(Lst1).cn)) do
// buffer ancestor input nodes

addBefore(Lst1 , delLast(Lin));

// if this is the first iteration

if empty(Lst2) then
// jump to the last preceding node

n := lp(first(Lst1).cn);
else

// jump to previous node in doc-order

n := prevNode(n);
while lp(first(Lst1).cn) = n do

// activate contexts

addBefore(Lst2 , [cn := delFirst(Lst1), pl := createPosList(LP )]);

if evaluatePredicates(Lst , null, n, LP ) then
addAfter(Lout , n);

return reverse(Lout);
end
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Algorithm 25: allFollSiblOrd
Input: Lin : the list of input nodes
Output: Lout : the list of output nodes
begin

Lout := newList();
Lst := newList();
while ¬empty(Lin) do

n := first(Lin);
if empty(Lst) then

L′ := allFollSibl(n);
addBefore(Lst , L′);
delFirst(Lin);

else if empty(first(Lst)) then
delFirst(Lst);

else if pre(first(first(Lst))) > pre(n) then
L′ := allFollSibl(n);
addBefore(Lst , L′);
delFirst(Lin);

else if pre(first(first(Lst))) < pre(n) then
n′ := delFirst(first(Lst));
addAfter(Lout , n′ );

else
delFirst(Lin);

while ¬empty(Lst) do
if empty(first(Lst)) then

delFirst(Lst);
else

n′ := delFirst(first(Lst)); addAfter(Lout , n′);

return Lout ;
end
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Figure 4.4: Document scan by followingSibling algorithm.

Algorithm 26: insertNextEntries
Input:

• Lin : the list of input nodes,

• Lst : the context stack

// adds contexts that are desc. of current node

begin
while ¬ empty(Lin) ∧ pre(first(Lin)) < pre(first(Lst).ns) do

n := delFirst(Lin);
if ns(n) 6= null then

addBefore(Lst , [cn:=n,ns:=ns(n),
pl:=createPosList(LP )]);

end

n is removed from the input list without copying its siblings to the stack or the output list. The
time complexity is also similar, i.e., O(l + m) where l is the size of Lin and m is the size of Lout .

The following-sibling algorithm navigates through the document starting from a context node
and iteratively following the ns-pointer to the next sibling. To ensure that nodes are produced in
document order, this navigation is interrupted if a context node on the input list happens to be a
descendant of a previously processed sibling. In that case, the descendant’s siblings are processed
first as illustrated in Figure 4.4. Let us call a context node whose processing has been interrupted,
an inactive context node. All active and inactive context nodes are kept on the stack together
with the sibling node that is next in line. All predicates are evaluated for all active nodes on the
stack. There are two cases when a new node is put on the stack:

1. If a descendant node is found in the input list, all nodes on the stack become inactive and
the node from the input list is put on the stack (it becomes active).

2. If, while processing a sibling node, we also find it on the input list, the new context node is
also put on the stack. Since both are active, a subsequent predicate evaluation will consider
both.

The algorithm for following-sibling uses a helper function insertNextEntries (see Algorithm 26)
that moves those context nodes from Lin onto the stack Lst that are descendants or preceding
nodes of the topmost node on the stack. This condition can simply be checked by looking at the
pre-order ranks.

The algorithm for following-sibling is presented in Algorithm 27. The outer while loop (line 27)
puts a node from the input list on the stack whenever the stack becomes empty. The main loop
is the while loop of line 27. Each iteration corresponds to navigating to the next following sibling
(line 27) and processing it.

Lines 27 through 27 determine the active context nodes on the stack by moving iterator I to
the first inactive context node. Only those context nodes are active that have a sibling currently in
line that is equal to n. The subsequent predicate evaluation of line 27 will evaluate all predicates
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Algorithm 27: followingSiblingPredicates
Input:

• Lin : the list of input nodes,

• LP : the list of predicates

Output: Lout : the list of output nodes
begin

Lout := newList();
Lst := newList();
// pointers into the stack

I := newIterator(Lst);
I ′ := newIterator(Lst);

while ¬ empty(Lin) do
// fetch first input node

n := delFirst(Lin);
// activation as context only if necessary

if ns(n) 6= null then
addBefore(Lst , [cn:=n, ns:=ns(n),
pl:=createPosList(LP )]);
// process any desc’s before foll. sib’s

insertNextEntries(Lin , Lst);

while ¬ empty(Lst) do
// get next sibling of current context

n := first(Lst).ns;
toFirst(I);
// move to last active context

while current(I) 6= null ∧ current(I).ns=n do
toNext(I);

// use contexts in active part

if evaluatePredicates(Lst , I, n, LP ) then
addAfter(Lout , n);

toFirst(I ′);
while I 6= I ′ do

if ns(n) = null then
// remove obsolete contexts

delFirst(Lst);
else

// get next sibling for current context

current(I ′).ns = ns(n);
toNext(I ′);

// process any desc’s before foll. sib’s

insertNextEntries(Lin , Lst);

return Lout ;
end
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for the active context nodes. If some predicate evaluates to true, the current node n is put on the
output list.

Lines 27 through 27 update the stack by moving the sibling currently in line (the ns column
on the stack) to the next one. Context nodes for which there is no next sibling are removed from
the stack. The call to insertNextEntries in line 27 makes sure that context nodes of the input
list are moved to stack when they need to become active (i.e., they are a descendant of preceding
node of the next node to be processed).

Concerning data access complexity, let l be the length of Lin , m the number of following
siblings of Lin , s the maximum number of children a node can have, and h the height of the
tree. Note that the stack will contain active and inactive context nodes. All active context nodes
are in sibling relation to each other, so a maximum of s active context nodes. Inactive context
nodes were those that were interrupted. For each level of the tree, we have again a maximum of
s inactive context nodes. Hence, the stack contains a maximum of h× s nodes.

The two main while loops (lines 27 and 27) interleave each other and correspond to navigating
through the document. Therefore, there are m iterations. Determining the active nodes on
the stack (lines 27 through 27) touches maximally s nodes on the stack. Updating the stack in
lines 27 through 27 also touches only active context nodes on the stack. Consequently, stack access
complexity of O(2m× s).

Finally, all context nodes are again moved once from Lin to the stack and all nodes are also
removed from the stack. Therefore, data access complexity is O(2m × s + 2l + m). Predicate
evaluation complexity is dependent on the maximum number of active context nodes: O(s×m×
| LP |)

4.10 Preceding-Sibling Axis

4.10.1 Informal Description

This axis is symmetric to the following-sibling axis in the sense that we can use the same algorithm
except that we have to do everything in reverse, i.e., we iterate over the input list in reverse
document order and we move nodes from the back of the lists on the stack to the front of the
output list.

4.10.2 The Algorithm

We first present a helper function that given a document node n returns a duplicate-free sorted
list of all preceding siblings of n.

Function allPrecSibl(n)

begin
L := newList();
n′:= ps(n);
while n′ 6= null do

addBefore(L, n′);
n′ := ps(n′);

return L;
end

Similar to the previous axis correctness of this function follows from the fact that the function
ps returns the last sibling of n that precedes n in document order. Also here the time complexity
is O(m) where m is the size of the result.

Finally we present the algorithm that given a duplicate-free and sorted list of document nodes
Lin returns a duplicate-free and sorted list of all the preceding siblings of these document nodes.

The correctness follows from the symmetry with the previous axis, and for the same reason
the time complexity is also O(l + m) with l the size of Lin and m the size of Lout .
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Algorithm 29: allPrecSiblOrd(Lin)
Input: Lin : the list of input nodes
Output: Lout : the list of output nodes
begin

Lout := newList();
Lst := newList();
while ¬empty(Lin) do

n := last(Lin);
if empty(Lst) then

L′ := allPrecSibl(n);
addBefore(Lst , L′);
delLast(Lin);

else if empty(first(Lst)) then
delFirst(Lst);

else if pre(last(first(Lst))) > pre(n) then
L′ := allFollSibl(n);
addBefore(Lst , L′);
delLast(Lin);

else if pre(last(first(Lst))) < pre(n) then
n′ := delLast(first(Lst));
addBefore(Lout , n′ );

else
delFirst(Lin);

while ¬empty(Lst) do
if empty(first(Lst)) then

delFirst(Lst);
else

n′ := delLast(first(Lst));
addBefore(Lout , n′);

return Lout ;
end
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4.10.3 Supporting Positional Predicates

Function insertPrevEntries(Lin , Lst)

begin
while ¬empty(Lin) ∧ (pre(last(Lin)) > pre(first(Lst).ps) do

n := delLast(Lin);
if ps(n) 6= null then

addBefore(Lst , [cn := n, ps := ps(n), pl := createPosList(LP )]);

end

Algorithm 31: PrcedingSiblingPredicates
Input: Lin : the list of input nodes
Output: Lout : the list of output nodes
begin

Lout := newList();
Lst := newList();
I := newIterator(Lst);
I ′ := newIterator(Lst);

while ¬empty(Lin) do
// reverse axis, start at the end

n := delLast(Lin);
// if prec. sibling of n exists

if ps(n) 6= null then
// ... register n as context

addBefore(Lst , [cn := n, ps := ps(n), pl := createPosList(LP )]);
// handle desc’s before prec. sib’s

insertPrevEntries(Lin , Lst);

while ¬empty(Lst) do
// get the prec. sib. of current context

n := first(Lst).ns;
toFirst(I);
while (current(I) 6= null) ∧ (current(I).ps = n) do

// locate active contexts

toNext(I);

// use only active contexts

if evaluatePredicates(Lst , I, n, LP ) then
addAfter(Lout , n);

toFirst(I ′);
while I 6= I ′ do

if ps(n) = null then
// remove processed contexts

delFirst(Lst);
else

// get prec. sib. of active contexts

current(I ′).ps = ps(n);
toNext(I ′);

// process desc’s before sib’s

insertPrevEntries(Lin , Lst);

return reverse(Lout);
end
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Chapter 5

Conclusion

5.1 Complexity Bounds

The previous chapter contained complexity results for the specific axis algorithms. We will now
discuss more generally the complexity bounds of our XPath evaluation strategy. In what follows,
we express the size of the document as |D|, and the size of the query as |Q|. Furthermore, we
assume that predicates can be evaluated in constant time.

Memory Complexity For the axes child, parent, descendant, ancestor, desc-or-self
and anc-or-self, the algorithm’s memory requirements are bound by the height of the document
tree, which is known to be fairly small in many cases. In general, the memory requirements for all
algorithms are bound by the size of the intermediate result produced by the previous step, because
the amount of context nodes of the context stack is limited by the result of the previous step.
Note that intermediate results of path expressions are usually small compared to the document.
However, in the worst case, all nodes of the document are context nodes. Hence the size of the
context stack is O(p× |D|), where p is the number of predicates for this step. Since the separate
step expressions can be evaluated sequentially, this is also the space complexity for evaluating an
entire path expression.

Time Complexity Let us first look at the time complexity for a single step. For each candidate
output node, the algorithms evaluate each predicate only once for every context on the context
stack. Therefore, the total time required for the evaluation of a step is O(p × |D2|), using the
assumption that the evaluation of a predicate can be done in constant time.

Suppose now that we have n steps in a path expression. Then the total time complexity
is O(Σn

i=1pi × |D2|), where pi is the number of predicates of the ith step. Since we know that
(p1+. . .+pn) is bounded by |Q|, we obtain that the time complexity of evaluating a path expression
is O(|Q| × |D2|).

In the previous paragraphs we made the assumption of constant evaluation time for predicates.
If we drop this assumption, time complexity becomes exponential in the maximum nesting depth
of the predicates in the path expression. This nesting depth, however, is in most real life queries
rather small, and many problems with nested predicates can be solved by applying rewriting
techniques presented in [13] and [10].

5.2 Conclusion

After presenting very efficient algorithms, i.e., linear in the size of the intermediate results, we have
extendedthis approach with support for evaluating positional predicates. The algorithms mostly
operate well within the bounds described by Gottlob et al. [7, 6]. Only when applied to path
expressions that contain an arbitrarily deep nesting of predicates, evaluation becomes inefficient.
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The research presented in this paper is complementary to the work described in [11]. There,
the focus lies on removing the pipeline blocking distinct-doc-order operations from XPath eval-
uation plans. However, for most path expressions it is impossible to remove all of these operations.
Steps for which these sorting operations cannot be removed, can be efficiently evaluated with the
algorithms presented in this work and in [12], depending on whether positional predicates occur
in the step.

Future work will concentrate on two issues:

(1) Path expressions containing nested predicates cause the algorithms to behave exponentially in
the predicate nesting depth. This is because we do not handle predicates in bulk, like normal
steps and have to evaluate each predicate once for every node and for each context. In our
future research we will attempt to eliminate this source of inefficiency.

(2) Another problem left to be solved is the lack of support for aggregate functions inside predi-
cates. In our current approach we apply all predicates to every node separately. However, if
an aggregate function is called, it is impossible to evaluate before all nodes are processed. We
need to device an elegant way to solve this issue.
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