
Schema Validation and Type Annotation for Encoded Trees

Torsten Grust Stefan Klinger
University of Konstanz

Department of Computer and Information Science
P.O. Box D 188, D-78457 Konstanz, Germany

˘̆̆

grust,klinger
¯̄̄

@inf.uni-konstanz.de

ABSTRACT
We argue that efficient support for schema validation and
type annotation in XQuery processors deserves as much at-
tention as efficient evaluation techniques for XPath queries
have received in the past. To this end, we describe a valida-
tion procedure that operates on an encoding of trees that has
already been succesfully used for XPath location step eval-
uation. The validation algorithm works without the con-
struction of finite state automata and can exploit proper-
ties of the encoding to speed up the validation of already
partially type-annotated trees. First experiments—carried
out using the database back-end of the authors’ XQuery
compiler—indicate that this approach can indeed lead to
high-troughput validation support.

1. INTRODUCTION
Although the focus of recent research might suggest so, it

is not immediately clear that the evaluation of the XPath
(sub)expressions in a given query dominates the dynamic
evaluation phase of XQuery. Depending on the query kind,
an XQuery runtime system may devote a significant share of
query evaluation time to schema validation and type anno-
tation, resulting either from the use of element constructors
or explicit validate expressions.

The evaluation of the expression validate e, in which
subexpression e yields an element node1 v with tag name
t, involves
(1) the creation of a copy of v and all its descendants (i.e.,

the computation of v/descendant-or-self::node()),
(2) a check that the structure of the subtree rooted at v

matches the in-scope XML Schema definition for t, and,
given that this succeeds,

(3) for all attribute and element nodes in the subtree copy,
the annotation with the corresponding XML Schema
type (name) found during the previous step.

The almost exact effort is required to evaluate the element
constructor element t { e1, . . . ,en } (in the above, v is the

1For brevity, we omit the treatment of document nodes in
this article.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted provided that copies are not made or
distributed for profit or commercial advantage and that copies bear this no-
tice and the full citation on the first page. To copy otherwise, to republish, to
post on servers or to redistribute to lists, requires prior specific permission
of the authors.
Informal Proceedings of the First International Workshop on
XQuery Implementation, Experience, and Perspectives
(XIME-P), June 17-18, 2004, Paris, France.

newly constructed node).
The annotations produced in step (3) are then subject to

inspection by the query, e.g., via typeswitch or instance

of expressions or, put more generally, through sequence type
matching.

In principle and as remarked in the W3C XQuery spec-
ification [3], an implementation of XQuery could perform
the computation described in (1)–(3) as follows: serialize
node v, parse the serialization result to produce the corre-
sponding XML information set, validate the latter as defined
by the XML Schema validation rules [2], and finally map the
validated information set back into the implementation’s in-
ternal tree representation. Performance-wise, this is clearly
infeasible.

Here, we propose to perform validation and type anno-
tation using an encoding of XML documents (or fragments
thereof) that has been designed to efficiently support the
evaluation of XPath location steps, the pre/post plane [11,
12]. Internally, the XQuery runtime may thus operate on
a single representation of trees without the need for map-
pings of any kind. Being XPath-aware, the encoding nat-
urally supports step (1) above. Furthermore, it turns out
that we can adapt the concept of derivatives of a regular
expression [8] to implement validation and type annotation,
i.e., steps (2) and (3), for pre/post encoded trees. We will
see that we can use properties of the encoding to speed up
the validation of already partially annotated trees as well as
to support XQuery’s validation modes (strict, skip). Ex-
periments show that this approach can indeed lead to high
throughput validation and annotation support for XQuery.

2. ENCODING TREES

<a>
c
d
<e>
<f><g/><h/></f>
<i>j</i>

</e>

Figure 1:
XML sample.

We are using an encoding of
XML documents that (a) has been
developed with a close eye on
the XPath semantics, and (b) is
suited to efficiently represent and
query trees on all levels of the
memory hierarchy, i.e., in main
memory as well as on secondary
storage.

The encoding process reduces
the XML document to its skeleton tree (the skeleton ab-
stracts from node kinds, for example). Each node v in
the skeleton is assigned its unique preorder and postorder
traversal ranks, pre(v) and post(v), respectively. Figure 2(a)
depicts the decorated skeleton tree of the XML document
depicted in Figure 1.

According to the XPath semantics, given any context node
c, the XPath axes ancestor, preceding, following, and
descendant partition the document containing c. This prop-
erty is preserved by the pre/post encoding. If we map the
encoded nodes into a two-dimensional pre/post plane, the
four axes coincide with disjoint rectangular regions parti-
tioning the plane (Figure 2(b)). In the plane, a location
step along these axes may be evaluated by means of a sim-
ple conjunctve range predicate, e.g.,

v ∈ c/following ⇔ pre(v) > pre(c) ∧ post(v) > post(c)
v ∈ c/descendant ⇔ pre(v) > pre(c) ∧ post(v) < post(c) .

0a9
•

1b 1
•

2c 0
•

3d2
•

4e8

•

5f5◦

6g3
•

7h4
•

8i7
•

9j6
•

(a) XML skeleton tree and
pre/postorder ranks.

• a

•
b

•
c

•
d

•
e

◦
f

• g
• h

• i
• j

post

pre

preceding

ancestor

descendant

following

〈0,0〉
+++++

5
+ +++

+
+
+
+
+5

+
+
+
+

(b) Resulting pre/post plane.

Figure 2: Encoding trees in the pre/post plane (con-
text node f).

The pre/post encoding naturally leads to a tabular rep-
resentation of XML documents as shown in Figure 3(a). In
addition to the pre post table, more two-column tables (Fig-
ure 3(a)) may be maintained to hold further node properties
as defined by the XQuery data model [10]. Note that, in all
tables, the nth row has a pre value of n. An implemen-
tation may thus omit the pre columns altogether, provided
that the tables are maintained in an ordered data structure
(e.g., an in-memory array). An RDBMS-based implemen-
tation may choose to fuse the tables into a single table to
avoid the need for joins and to maintain the pre property
as a virtual column by means of a ROW_NUMBER function or
similar. In [11–13] we have shown how XPath axis traver-
sals lead to efficient sequential scans in this tabular XML
encoding.

2.1 Validation and Type Annotation
In view of Figure 3, validating an encoded document leads

to the population of an additional table pre type in which the

pre post
0 9
1 1
2 0
3 2
4 8
5 5
6 3
7 4
8 7
9 6

pre kind
0 elem
1 elem
2 text
3 text
4 elem
5 elem
6 elem
7 elem
8 elem
9 text

pre name
0 a
1 b
2 ·
3 ·
4 e
5 f
6 g
7 h
8 i
9 ·

pre value
0 ·
1 ·
2 c
3 d
4 ·
5 ·
6 ·
7 ·
8 ·
9 j

(a)

pre type
0 t1
1 xs:string
2 xdt:untypedAtomic
3 xdt:untypedAtomic
4 t2
5 t3
6 xs:string
7 xs:string
8 xs:string
9 xdt:untypedAtomic

(b)

Figure 3: Tabular representation of pre/post encod-
ing of the XML document in Figure 1. Table (b) is
populated by the validation/annotation process.

1 <xs:element name="a" type="t1"/>
2 <xs:complexType name="t1" mixed="true">
3 <xs:sequence>
4 <xs:element name="b" type="xs:string"/>
5 <xs:element name="e" type="t2"/>
6 </xs:sequence>
7 </xs:complexType>
8 <xs:complexType name="t2">
9 <xs:sequence>
10 <xs:element name="f" type="t3" maxOccurs="unbounded"/>
11 <xs:element name="i" type="xs:string"/>
12 </xs:sequence>
13 </xs:complexType>
14 <xs:complexType name="t3">
15 <xs:all>
16 <xs:element name="g" type="xs:string" minOccurs="0"/>
17 <xs:element name="h" type="xs:string"/>
18 </xs:all>
19 </xs:complexType>

Figure 4: XML Schema description (namespace pre-
fix xs bound to http://www.w3.org/2001/XMLSchema).

type column holds the name of the (user-defined or built-
in) XML Schema [2] type assigned to each node. Initially,
text nodes are annotated with the type xdt:untypedAtomic

while not yet validated element nodes carry an xdt:untyped

annotation. Validating the sample document of Figure 1
against the schema description of Figure 4 results in the
type annotations shown in Figure 3(b). At query runtime,
the type of a validated node v is thus available via a lookup
in the pre type table in row pre(v).

In what follows, our aim is to develop an efficient vali-
dation and annotation procedure that is able—given only
the pre/post encoding and the associated node property
tables—to correctly populate the pre type table.

3. DERIVING VALIDITY
Clearly, the most efficient way to access the tabular rep-

resentation of a pre/post encoded tree is to forward scan
the tables of Figure 3(a) sequentially, simulating a preorder
traversal of the tree. Since, consequently, the validation
process operates on a sequence of encoded nodes, we capture
the gist of the type definitions contained in an XML Schema
description by regular expressions over node sequences. In
our context, regular expressions (1) provide a more tractable
representation of types than the XML Schema syntax itself
and (2) are also sufficiently general to express other schema
languages, e.g., DTDs or RelaxNG [9].

In Figure 5(a), ε matches the empty tree (i.e., the empty
sequence of encoded nodes) while ∅ matches no tree at all.
The binary, associative operators · and | (sequence
and choice, respectively) are defined as usual. em,n with
n > m > 0, n > 1 matches m-to-n-fold repetitions of e
(n = ∗ allows for infinitely many repetitions). Note that
interleave (&) is a non-associative n-ary operator which is
why we define its application to n > 2 arguments (such all
groups are discussed in more detail in Section 3.3). elem t,
attr t, and text match single nodes of the indicated kind (and
name, in case of element and attribute nodes). Regular ex-
pression elem t {e} matches an element node (with tag t)
whose content subtree matches e.

After schema import and translation into regular expres-
sions, the XML Schema description of Figure 4 takes the
form of Figure 5(b). Local element declarations are regis-
tered with the context in which they may be validated (the

e ::= ε empty
| ∅ none
| elem t element node
| attr t attribute node
| text text node
| e · e sequence
| e | e choice
| em,n repetition
| e & · · · & e interleave
| elem t {e} element + content
| attr t {e} attribute + content
|

q
pJeK

s
r pre/post guard

| id type name

(a) Regular expression syntax.

val. context schema declaration

elem a {t1}
a elem b {xs:string}
a elem e {t2}
a/e elem f {t3}
a/e elem i {xs:string}
a/e/f elem g {xs:string}
a/e/f elem h {xs:string}

type type definition

xs:string→ ε | text
t1→ xs:string · elem b {xs:string} · xs:string ·

elem e {t2} · xs:string
t2→ (elem f {t3})1,∗ · elem i {xs:string}
t3→ (elem g {xs:string})0,1

& elem h {xs:string}

(b) Schema declarations and type definitions after schema import.

Figure 5: Representing XML Schema descriptions by regular expressions.

context is empty for the globally declared element a). Type
definitions occur for user-defined types as well as those built
into XML Schema (here: xs:string).

3.1 Pre/Post Guards
In a preorder traversal, the descendants of a node v are

enumerated immediately after v. This suggests the corre-
spondence elem t {e} ≡ elem t · e.

0a2
•

1b1•

2c0
•

(a)

0a2
•

1b0
•

2c1
•

(b)

Figure 6:
Tree Fragments.

To see that this is not yet correct,
consider the regular expression

elem b {elem c} ≡ elem b · elem c

which matches element node b in both
tree fragments in Figure 6 (a scan of
both tree encodings yields the element
node sequence a · b · c) while only the
match in tree (a) would be valid. In-
stead, the validation procedure uses
the equivalence

elem b {elem c} ≡ elem b · ∞
pre(b)Jelem cKpost(b)−∞

in which Jelem cK denotes a pre/post guarded regular expres-
sion. An encoded tree t matches against the guarded regular
expression q

p
JeKs

r
if (1) t matches against e recursively, and,

(2) for all nodes v in t,
p < pre(v) < q ∧ r < post(v) < s

(we will shortly see that the validation process solely relies
on guards for which either the root of t already violates
condition (2) or all nodes in t satisfy (2)—a test of all nodes
is not required). In a sense, pre/post guards re-emboss the
tree structure on the flat node sequence generated by the
scan of the encoding.

3.2 Derivatives
The core of the validation procedure is based on comput-

ing derivatives ∂ of regular expressions [8]. The derivatives
are regular expressions again—the procedure does not con-
struct state automatons of any kind. Let v1 ·v2 · · · vn denote
a node sequence, v0 a single node, and e a regular expression,
then

e matches v0 · v1 · v2 · · · vn ⇔ ∂v0
(e) matches v1 · v2 · · · vn .

Repeated derivation leads to the following validation proce-
dure for a tree t encoded by the node sequence v0 · v1 · · · vn:

t validates against e ⇔ ν(∂vn(· · · ∂v1
(∂v0

(e)) · · ·)) ,

where predicate ν(e) (Figure 7(b)) indicates whether e mat-
ches the empty node sequence. Given a current node v,

Figure 7(a) defines the derivation for the various regular ex-
pression kinds with respect to v. Note, how cases (5) and
(8) use pre/post guards2 to enforce that a regular expres-
sion is to be matched against the nodes in the following

and descendant axes of v, respectively (cf. Figure 2(b)).
Case (9) enforces the pre/post guard semantics.

Type annotation is carried out as a side-effect of valida-
tion. In case (8), the current element node v is annotated
with the named type id [type(v) := id] before the actual
derivation result is returned. Here we assume that all el-
ement content types have been assigned some name id as
in Figure 5(b)—anonymous XML Schema type definitions
are associated with a system-generated type name during
schema import.

Note how ∂v(e) yields ∅ in those cases where v cannot
possibly lead to successful validation against e. Since ∅ is a
fixpoint of ∂ (case (2)), validation may be aborted as soon
as ∅ has been derived. In this case, the current derivative
e can be used to generate an error message indicating what
would have been acceptable content in place of v.

3.3 Attributes and xs:all Groups
Both, XML Schema attribute (xs:attribute, xs:attri-

buteGroup) and xs:all declarations, yield &-groups (all
groups) during translation into regular expression types. The
permutation semantics of such groups can introduce signif-
icant complexity: naive expansion of an &-group of size n
leads to (1) an |-group of size O(n!), and (2) considerable
non-determinism: for each ei in the &-group, the expansion
has (n − 1)! branches starting with ei:

e1 & e2 & e3 ≡ e1e2e3 | e1e3e2 | e2e1e3 | e2e3e1 | e3e1e2 | e3e2e1.

The impact of non-determinism on the derivation is dis-
cussed in Section 5.

If we expand &-groups with more care and follow the
scheme below we can get around the complexity (mi ∈ {0, 1}
as required by XML Schema):

e1
m1,1

& · · · & en
mn,1 ≡

n̨

˛

i=1

ei ·

„

n

&
j=1
j 6=i

ej
mj ,1

«

(
n

max
j=1
j 6=i

mj),1

.

Figure 7(c) exemplifies the expansion for n = 3. In this
scheme, all |-branches start with distinct symbols which is
guaranteed by the XML Schema requirement that the ei

are of the form elem ti with distinct ti (a consequence of

2Here, and in the sequel, we omit ∞ and −∞ guard limits.

(1) ∂v(ε) = ∅

(2) ∂v(∅) = ∅

(3) ∂v(elem t) =

ε if kind(v) = elem ∧ name(v) = t
∅ otherwise

(4) ∂v(text) =

ε if kind(v) = text
∅ otherwise

(5) ∂v(e1 · e2) =

(∂v(e1) · pre(v)Je2Kpost(v)) | ∂v(e2) if ν(e)
∂v(e1) · pre(v)Je2Kpost(v) otherwise

(6) ∂v(e1 | e2) = ∂v(e1) | ∂v(e2)

(7) ∂v(em,n) =

∂v(e) if n = 1
∂v(e) · pre(v)Je

max(0,m−1),n−1Kpost(v) if n > 1

(8) ∂v(elem t {id}) =

[type(v) := id] pre(v)JeK
post(v) if name(v) = t ∧ id → e

∅ otherwise

(9) ∂v(q
pJeK

s
r) =

q
pJ∂v(e)Ksr if p < pre(v) < q ∧ r < post(v) < s
∅ otherwise

(10) ∂v(id) =

∂v(e) if id → e
∅ otherwise

(a) Derivative of a regular expression over encoded trees, cases for
attr t analogous to elem t (in case (7): ∗ − 1 = ∗).

ν(ε) = true
ν(∅) = false
ν(elem t) = false
ν(text) = false
ν(e1 · e2) = ν(e1) ∧ ν(e2)
ν(e1 | e2) = ν(e1) ∨ ν(e2)
ν(em,n) = m = 0 ∨ ν(e)
ν(elem t {e}) = false
ν(q

pJeK
s
r) = ν(e)

ν(id) = ν(e) with id → e

(b) Predicate ν(e).

e1 & e2
0,1 & e3

0,1 = e1 · (e2
0,1 & e3

0,1)
0,1

| e2 · (e1 & e3
0,1)

| e3 · (e1 & e2
0,1)

= e1 · (e2 · e3
0,1 | e3 · e2

0,1)
0,1

| e2 · (e1 · e3
0,1 | e3 · e1)

| e3 · (e1 · e2
0,1 | e2 · e1)

(c) Modified &-group expansion.

Figure 7: Computing derivatives, predicate ν, and all group expansion.

the unique particle attribution constraint [2]). During vali-
dation, at most one branch does not yield ∅ when the ex-
panded &-group is derived by the next encoded node (case (3),
Figure 7(a)). Since ∅ | e = e | ∅ = e, the ∅ branches may
be pruned. If the above scheme is implemented lazily, i.e.,
in each derivation expansion is applied to the outermost &-
group only, this enables validation against all groups in O(n)
steps with a regular expression of size O(n2). Note that a
minimal deterministic automaton for the same &-group has
O(2n) states and transitions [14].

4. SUPPORTING THE XQUERY
SEMANTICS

As described here, the validation procedure is subject to
simplifications due to its strict ‘forward table scan’ disci-
pline. First, note that all pre/post guards introduced by
∂v either identify the nodes in the descendant or follwing

axis of the current node v and thus are of one of two forms,
namely

pre(v)JeK
post(v) or

pre(v)JeKpost(v) .

Only nodes v′ with pre(v) < pre(v′) will be encountered
during the derviation of e. This renders the guard condition
pre(v) < pre(v′) < ∞ trivially fulfilled and thus the pre
guards obsolete: post guards of the form JeKs

r
suffice in our

context.

4.1 Copy Semantics
Further, recall that an XQuery element t { e1, . . . ,en }

constructor—in addition to the validation of the newly con-
structed tree—generates fresh copies of the subtrees ei, i =
1 . . . n. To create the new tree

t

e1 e2 · · · en

,

an XQuery runtime based on pre/post encoded trees
(1) adds the representation of the new element node t to

the encoding tables, appends copies of those rows rep-
resenting the ei to the individual tables, and then

e1:
0b1•

1c0•

e2: • 2d0

e3:

3e5
•

4f2 •

5g0
•

6h0
•

7i1
•

8j0
•

pre size pre size
0 9 a

0 1 1 1
o

e11 0 2 0
2 0 3 0 } e2

3 5 4 5
9

>

>

>

=

>

>

>

;

e3

4 2 5 2
5 0 6 0
6 0 7 0
7 1 8 1
8 0 9 0

0a9
•

1b 1
•

2c 0
•

3d0
•

4e5

•
5f2•

6g0
•

7h0
•

8i1
•

9j0
•

Figure 8: Constructing a new tree (right) from three
fragments e1, e2, e3 (left) in the pre/size encoding.

(2) updates the postorder ranks in the extended pre post

table to ensure the consistency of the encoding.
While (1) seems unavoidable due to the inherent XQuery
copy semantics, (2) has been a frequent point of critique:
the update cost of the pre/post encoding appear to be sig-
nificant.

A change of encoding is one possible remedy. We trade
the pre post table for a pre size table which, for each node
v, maintains the number size(v) of nodes in the subtree be-
low v [15]. Support for XPath location step evaluation is
preserved. We have

v ∈ c/following ⇔ pre(v) > pre(c) + size(c)
v ∈ c/descendant ⇔ pre(c) < pre(v) 6 pre(c) + size(c) ,

i.e., document nodes are effectively placed in a pre/pre+size
plane. Validation now operates with pre/size guards JeKs

r
: a

node v passes the guard if
r < pre(v) 6 r + s .

To complete the shift to the pre/size encoding, cases (5) and
(8) in the definition of ∂ are modified to use guards of the
form

Je2K
∞
pre(v)+size(v) and JeKpre(v)+size(v)

pre(v) ,

respectively (the former identifies the following, the latter
the descendant nodes of the current node v).

Since the property size(v) is invariant to the actual place-
ment of v and its descendants in the containing tree, element
construction in the pre/size encoding is merely a matter of

pasting fragment encodings (remember that the pre column
is virtual). Figure 8 visualizes the evaluation of the XQuery
element constructor element a {e1, e2, e3}.

4.2 XQuery Validation Modes and
Partially Validated Trees

It is typical for an XQuery expression to apply multiple
element constructors in succession to build complex trees
from simpler fragments. With the XML Schema description
of Figure 4, suppose the XML document of Figure 1 is the
result of the following query:

1 let $fs := for $f in fn:doc("f.xml")//f
2 return
3 validate context a/e { $f } ,
4 return
5 element a {
6 element b {text {"c"}} ,
7 text {"d"} ,
8 element e {
9 $fs ,
10 element i {text {"j"}}
11 }
12 }

Expression evaluation proceeds bottom-up. When the con-
structor element e is evaluated, the runtime system has al-
ready validated the f element nodes and their subtrees as
requested in line 3. Depending on the number of f element
nodes in the input document "f.xml", this validation effort
might already be substantial. Re-validating these tree frag-
ments when the containing constructor element e is evalu-
ated (and, again, when the outer constructor element a is
applied) surely seems wasteful.

As an alternative to re-validation, the system could also
copy the relevant rows in the pre type table when the sub-
tree copies are pasted during element construction (Sec-
tion 4.1). This strategy coincides with a recent proposal
for a new XQuery skip preserve validation mode made by
Don Chamberlin on the public-qt-comments@w3.org mail-
ing list3 as well as the XSLT preserve validation mode se-
mantics. When the system finally initiates the validation of
the newly created tree, the validation procedure will poten-
tially encounter nodes v for which type(v) 6= xdt:untyped.
This implies that the nodes in the subtree below v have al-
ready received type annotations, too. Validation might as
well skip v and its descendants.

In a runtime system based on the pre/size encoding, skip-
ping is particularly easy to integrate into ∂. We redefine ∂
to return the derivative e′ as well as s ∈ {0, 1, . . . }:

∂v(e) =
˙

s, e′
¸

,

where s indicates how far the encoding table scan may skip
ahead. The next derivative computed is ∂v′(e′) with pre(v′) =
pre(v) + 1 + s.

Normally, s = 0, i.e., no node is skipped. If the evaluation
encounters an annotated element node v whose annotation
type(v) equals the expected type id, ∂ returns s = size(v)
and validation for the subtree below v is skipped:

∂v(elem t {id}) =
8

<

:

〈size(v), ε〉 if type(v) = id
[type(v) := id]

˙

0, ∂v(elem t · JeKpre(v)+size(v)
pre(v))

¸

if id → e
〈0, ∅〉 otherwise

3http://lists.w3.org/Archives/Public/public-qt-
comments/2004Feb/0222.html.

∅ | e = e
e | ∅ = e
e · ∅ = ∅

∅ · e = ∅

∅
m,n = ∅

J∅Ksr = ∅

e · ε = e
ε · e = e
εm,n = ε
JεKsr = ε
JJeKqpKsr = JeKmin(q,s)

max(p,r)

Figure 9: Equivalent regular expression types (JeK
denotes a pre/size guarded expression).

Note that we return the derivative ε in this case which ef-
fectively simulates the successful derivation of the skipped
subtree. It is not immediately clear to us how such “short-
cutting” could be smoothly integrated into the operation of
a state automaton.

5. HIGH THROUGHPUT VALIDATION
Any XML Schema description is subject to the unique par-

ticle attribution constraint. The constraint guarantees that
an XQuery implementation can form 1-unambiguous regu-
lar expressions [7] from the description when the schema is
imported. Additionally, if the regular expression types are
brought into star normal form after schema import, appli-
cations of ∂ preserve the 1-unambiguity property [6]. To
exemplify, the star normal form for

`

e1
0,∗ · e2

0,∗´0,∗
is (e1 | e2)

0,∗ .

In [6], Brüggemann-Klein and Wood describe an algorithm
to compute the star normal form of a regular expression in
linear time.

For such unambiguous types, it is sensible to attach se-
mantic actions—the type annotation side effects built into
∂, see Figure 7(a)—to its constituents: during the scan of
the encoding, each element node is either unambiguously
matched by a specific elem t subexpression of the current
derivative or the node does not match at all.

Furthermore, 1 -unambiguity implies immediate determin-
istic choice: availability of the current node v suffices to
see that at least one branch in the derivation ∂v(e1 | e2) =
∂v(e1)|∂v(e2) will yield ∅ and may thus be pruned. Together
with the simple equivalences of Figure 9, 1-unambiguity ef-
fectively ensures that the size of the intermediate derivative
types remains unaffected by the size of the document being
validated.

5.1 Validation Experiments
A primary goal of this work was to design the valida-

tion procedure such that the infrastructure of an XQuery
runtime system based on a tree encoding similar to that of
Section 2 could be reused without change. We were indeed
able to hook the validation and type annotation algorithm
into our MonetDB-based XQuery back-end with minimal ef-
fort. MonetDB [4] is an extensible relational database kernel
whose internals have been optimized for in-memory opera-
tion. The principal storage structure provided by MonetDB
are two-column relational tables which fit nicely with the
tree encoding scheme of Section 2.

We implemented the regular expression derivation (Fig-
ure 7(a)) straightforwardly and with no particular twists.
The above observation about the limited size of derivatives
in star normal form enabled us to maintain the types in an
array of static size whose contents were garbage collected on
demand.

 0.001

 0.01

 0.1

 1

 10

11055111.10.550.11

ti
m

e
[s

]

document size [MB]

0.
00

2

0.
00

9

0.
04

6

0.
45

5

2.
29

0 4.
58

7

0.
00

1

0.
00

6

0.
03

0

0.
29

7

1.
50

2 3.
01

0

no skipping
skipping

Figure 10: Validation throughput for XMark XML
instances of varying size.

To assess the throughput achievable with this approach,
the back-end was loaded with XMark XML instances of vary-
ing size. We imported the XMark DTD to yield 74 regular
expression type definitions. The database was hosted on a
2.2 GHz Intel Pentium 4 based computer with 2 GB RAM
running a version 2.4 Linux kernel. Figure 10 reports on the
execution times. As expected, validation time grows lin-
early with the number of nodes (ranging from approx. 3,000
to 3,000,000) in the validated instance. We then ran the
validation experiments a second time with selected nodes4

marked to be skipped during validation. Execution times
drop since a significant amount of derivation effort is saved
(∂ simply returns ε) and, for each skipped subtree, the se-
quential encoding scan is immediately guided to the first
node following the subtree (via the size property of the sub-
tree’s root node, see Section 4.2).

6. RELATED TECHNIQUES
AND CONCLUSIONS

In [5] and [1], the authors develop validation algorithms
based on a stack of Glushkov automata and extended non-
deterministic tree automata, respectively. The algorithms
exhibit remarkable complexity, introduced mainly to sup-
port incremental validation of documents after updates have
occurred. Update operations are defined following the XML
DOM paradigm (e.g., a node is inserted before/after a given
reference node, a node is replaced). For each node, both
algorithms maintain the current state of the automaton in
an auxiliary data structure to enable incremental valida-
tion. We believe such updates and the corresponding incre-
mental validation algorithms to be of limited usefulness in
the context of an XQuery runtime system where trees are
constructed from existing fragments. The notion of skip-
ing partially validated trees (Section 4.2), which also coin-
cides with the XQuery skip and XSLT preserve validation
modes, seems to be a more simple yet more pratical fit for
the XQuery semantics.

In [9], James Clark describes the Haskell implementation

4Element nodes with tag open_auction were marked which
effectively made the derivation skip approx. 400 nodes in
the smallest and up to 1,000,000 nodes in the largest XMark
instance.

of a validation algorithm for RelaxNG which is also based
on Brzozowski derivatives.

Since validation and type annotation is an integral concept
of XQuery, we believe it is compelling to design validation
algorithms with a close eye on the tree encodings which are
in use in XQuery runtime systems. This work seems to be
among the first to view the validation problem from this an-
gle. It is unrealistic to assume that an XQuery implementa-
tion can afford the cost to perform validation and type anno-
tation on an internal representation of XML fragments other
than the one used during the dynamic evaluation phase. To
this end, this work brought an efficient XPath-aware tree en-
coding and simple regular expression derivation techniques
together.

7. REFERENCES
[1] D. Barbosa, A.O. Mendelzon, L. Libkin, L. Mignet, and

M. Arenas. Efficient Incremental Validation of XML
Documents. In Proc. of the 20th Int’l ICDE Conference,
Boston, Massachusetts, USA, March 2004. IEEE.

[2] P.V. Biron and A. Malhotra. XML Schema Part 2:
Datatypes. World Wide Web Consortium, May 2001. W3C
Recommendation http://www.w3.org/TR/xmlschema-2/.

[3] S. Boag, D. Chamberlin, M.F. Fernández, D. Florescu,
J. Robie, and J. Simeon. XQuery 1.0: An XML Query
Language. World Wide Web Consortium, November 2003.
W3C Last Call Working Draft
http://www.w3.org/TR/xquery/.

[4] Peter A. Boncz and Martin L. Kersten. MIL Primitives for
Querying a Fragmented World. The VLDB Journal,
8(2):101–119, 1999.

[5] B. Bouchou and M. Halfeld Ferrari Alves. Updates and
Incremental Validation of XML Documents. In Proc. of the
9th Int’l DBLP Conference, pages 216–232, Potsdam,
Germany, September 2003. Springer Verlag.

[6] A. Brüggemann-Klein. Regular Expressions into Finite
Automata. Theoretical Computer Science, 120(2):197–213,
November 1993.

[7] A. Brüggemann-Klein and D. Wood. One-unambiguous
Regular Languages. Information and Computation,
142(2):182–206, May 1998.

[8] J.A. Brzozowski. Derivatives of Regular Expressions.
Journal of the ACM, 11(4):481–494, October 1964.

[9] J. Clark. An Algorithm for RelaxNG Validation. http:
//www.thaiopensource.com/relaxng/derivative.html,
February 2002.

[10] M.F. Fernández, A. Malhotra, J. Marsh, M. Nagy, and
N. Walsh. XQuery 1.0 and XPath 2.0 Data Model. World
Wide Web Consortium, November 2003. W3C Last Call
Working Draft http://www.w3.org/TR/xpath-datamodel/.

[11] T. Grust. Accelerating XPath Location Steps. In Proc. of
the 21st Int’l SIGMOD Conference, pages 109–120,
Madison, Wisconsin, USA, June 2002. ACM.

[12] T. Grust, M. van Keulen, and J. Teubner. Staircase Join:
Teach a Relational DBMS to Watch its Axis Steps. In Proc.
of the 29th Int’l VLDB Conference, Berlin, Germany,
September 2003. Morgan Kaufmann Publishers.

[13] T. Grust, M. van Keulen, and J. Teubner. Accelerating
XPath Location Steps in Any RDBMS. ACM TODS,
29(1), March 2004.

[14] P. Kilpeläinen. SGML & XML Content Models. Markup
Languages: Theory & Practise, 1(2):53–76, 1999.

[15] Q. Li and B. Moon. Indexing and Querying XML Data for
Regular Path Expressions. In Proc. of the 27th Int’l VLDB
Conference, pages 361–370, Rome, Italy, September 2001.

