
Relational Algebra: Mother Tongue—XQuery: Fluent

Torsten Grust Jens Teubner
University of Konstanz

Department of Computer & Information Science
Box D 188, 78457 Konstanz, Germany

˘̆̆

grust,teubner
¯̄̄

@inf.uni-konstanz.de

ABSTRACT
This work may be seen as a further proof of the versatility
of the relational database model. Here, we add XQuery to
the catalog of languages which RDBMSs are able to “speak”
fluently.

Given suitable relational encodings of sequences and or-
dered, unranked trees—the two data structures that form
the backbone of the XML and XQuery data models—we de-
scribe a compiler that translates XQuery expressions into a
simple and quite standard relational algebra which we ex-
pect to be efficiently implementable on top of any relational
query engine. The compilation procedure is fully composi-
tional and emits algebraic code that strictly adheres to the
XQuery language semantics: document and sequence order
as well as node identity are obeyed. We exercise special
care in translating arbitrarily nested XQuery FLWOR iteration
constructs into equi-joins, an operation which RDBMSs can
perform particularly fast. The resulting purely relational
XQuery processor shows promising performance figures in
experiments.

Keywords
XQuery, XML Query Processing, Relational Algebra

1. INTRODUCTION
Relational database back-ends have had a tremendous

success over the past years. Their underlying data model,
tables of tuples, is simple and thus efficient to implement.
Typical operations, such as sequential scans, receive excel-
lent support through read-ahead on disk-based secondary
storage, or memory prefetching on modern computing hard-
ware. If linear access is not viable, systems can rely on ac-
cess structures, such as B+-trees or hash tables. The bulk-
oriented fashion, in which queries are described and pro-
cessed, allows for effective query rewriting or parallel pro-
cessing.

At the same time, the table proves to be a rather generic
data structure: it is often straightforward to map other data

TDM’04, the first Twente Data Management Workshop on XML Databases
and Information Retrieval, Enschede, The Netherlands
c© 2004 the author/owner

types onto tables. Such encodings have also been proposed
for ordered, unranked trees, the data type that forms the
backbone of the XML data model. These mappings turn
RDBMSs into relational XML processors. Furthermore, if
the tree encoding is designed such that core operations on
trees—XPath axis traversals—lead to efficient table opera-
tions, this can result in high-performance relational XPath
implementations [8, 10].

In this work we extend the relational XML processing
stack and propose the fully relational evaluation of XQuery
[1] expressions. We give a compositional set of translation
rules that compile XQuery expressions into a standard, quite
primitive relational algebra. We expect any relational query
engine to be able to efficiently implement the operators of
this algebra. The operators were, in fact, designed to match
the capabilities of modern SQL-based relational database
systems (e.g., the row numbering operator % exactly mirrors
SQL:1999 OLAP ranking functionality) [9].

By design, we only have minimalistic assumptions on the
underlying tree encoding, met by several XML encoding
schemes [4,13]. Our algebra can be easily modified to oper-
ate with any such scheme.

We exercise special care in translating the XQuery FLWOR

construct (for $v in e1 return e2). This concept of iter-
ating the evaluation of an expression e2 for successive bind-
ings of a variable $v appears contrary to the set-oriented
evaluation model of relational systems. In a nutshell, we
thus map for-bound variables like $v into tables containing
all bindings and translate expressions in dependence of the
variable scope in which they appear. Iteration is turned into
equi-joins, a table operation which RDBMS engine know
how to execute most efficiently.

2. ENCODING TREES AND SEQUENCES
The dynamic evaluation phase of XQuery operates with

data of two principal types: nodes and atomic values (col-
lectively referred to as item-typed data). Nodes may be as-
sembled into ordered, unranked trees, i.e., instances of XML
documents or fragments thereof. Nodes and atomic values
may form ordered, finite sequences. We will now briefly re-
view minimalistic relational encodings of trees as well as se-
quences. Both encodings exhibit just those properties neces-
sary to support a semantically correct and efficient relational
evaluation.

2.1 Trees and XPath Support
Our compilation system is designed to be adaptable to any

relational tree encoding with minimalistic requirements: the

Axis α Predicate axis(c, v, α): v
?
∈ c/α

descendant v.pre > c.pre ∧ v.pre 6 c.pre + c.size
child axis(c, v, descendant) ∧ v.level =c.level+1
following v.pre > c.pre + c.size
preceding v.pre + v.size < c.pre

Table 1: Predicate axis represents XPath axes se-
mantics (selected axes).

encoding must support XPath step evaluation from any con-
text node and provide a means to test for node identity and
document order. These requirements are met by a number of
relational XML encodings, including the numbering schemes
developed in [4, 13]. We briefly sketch a suitable encoding
in the sequel.

To represent node identity and document order, we assign
to each node v its unique preorder traversal rank, v.pre [8].
Extending this information by (1) v.size, the number of
nodes in the subtree below v, and (2) v.level , the length
of the path from the tree root to v, we can express the se-
mantics of all 13 XPath axes—and thus support XQuery’s
full axis feature—via simple conjunctive predicates. To il-
lustrate, for the ancestor axis and two nodes v and c, we
have that

v ∈ c/ancestor ⇔
v.pre < c.pre ∧ c.pre 6 v.pre + v.size .

More axes are listed in Table 1. Note that we do not require
v.size to be exact: as long as the XPath axis semantics are
obeyed, v.size may overestimate the actual number of nodes
below v. Via the pre property we are able to ensure that
the node sequence resulting from an axis step is free of du-
plicates and sorted in document order as required by the
XPath semantics.

Support for kind and name tests is added by means of two
further properties, v.kind ∈ {"elem", "text"}1 and v.prop.
For an element node v with tag name t, we have v.prop =
"t", for a text node v′ with content c, v′.prop = "c".

XQuery is not limited to query single XML documents.
In general, query evaluation involves nodes from multiple
documents or fragments thereof, possibly created at runtime
via XQuery’s element constructors. The query

(element a { element b { () }}, element c { () })

creates three element nodes in two independent fragments,
for example. We thus record a fragment identifier for node
v in its v.frag property.

The database system keeps a table doc of persistently
stored XML documents. Transient nodes constructed at
runtime, on the other hand, are represented by means of a
term ∆ of the relational algebra—this term is derived dur-
ing query compilation. The disjoint union of both relations,
doc

.
∪∆, comprises the set of live nodes at any point of query

evaluation. The relational encoding of two XML fragments
is depicted in Figure 1.

2.2 Sequences
XQuery expressions evaluate to ordered, finite sequences

of items. Since sequences are flat and cannot be nested, a

1We omit the discussion of further XML node kinds for space
reasons.

sequence may be represented by a single relation in which
each tuple encodes a sequence item i. We preserve sequence
order by means of a property i.pos > 1. The actual value

pos item
1 "a"
2 "b"
3 "c"

Fig. 2: Rela-
tional sequen-
ce encoding.

of a sequence item is recorded in
i.item, which is one of (1) a node’s pre
value if this item is a node, or (2) the
actual value if the item is an atomic
value. The relational representation
of the sequence ("a", "b", "c") is
shown in Figure 2. In the course of
this work, we assume the item column
to be of polymorphic type: such a col-
umn may carry node identifiers, char-

acter strings, numeric values, as well as any other atomic
XQuery item. The empty relation encodes the empty se-
quence (). A single item i and the singleton sequence (i)
are represented identically, which coincides with the XQuery
semantics. Note that XQuery’s positional predicates e[p],
p > 1, are easily evaluated if the pos column is populated
densely starting at 1 as is the case in Figure 2.

3. TURNING ITERATION INTO JOINS
The core of the XQuery language, with syntactic sugar

like path expressions, quantifiers, or sequence comparison
operators removed, has been designed around an iteration
primitive, the for-return construct. A for-loop iterates the
evaluation of loop body e for successive bindings of the loop
variable $v:

for $v in (x1,x2, . . . ,xn) return e ≡
(e[x1/$v],e[x2/$v], . . . ,e[xn/$v])

where e[x/$v] denotes the consistent replacement of all free
occurrences of $v in e by x. XQuery provides a functional
style of iteration: it is semantically sound to evaluate e for
all n bindings of $v in parallel.

3.1 Loop Lifting for Constant Subexpressions
This property of XQuery inspires our loop compilation

strategy:
(1) A loop of n iterations is represented by a relation loop

with a single column iter of n values 1, 2, . . . , n.
(2) If a constant subexpression c occurs inside a loop body

e, the relational representation of c is lifted (intuitively,
this accounts for the n independent evaluations of e).

For a constant atomic value c, lifting with respect to a given
loop relation is computed by means of the Cartesian product

loop × pos item
1 c .

Figure 3(a) exemplifies how the constant subexpression 10

is lifted with respect to the loop

for $v0 in (1,2,3) return 10 .

If, for example, 10 is replaced by the sequence (10,20) in
this loop, we require the lifting result to be the relation of
Figure 3(b) instead.

Generally, a tuple (i, p, v) in a loop-lifted relation for subex-
pression e may be read as the assertion that, during the ith
iteration, the item at position p in e has value v. With this
in mind, suppose we rewrite the for-loop as

for $v0 in (1,2,3) return (10,$v0) . (Q1)

<a>
<c/>
<d/>
<e/>

<f>
s<g/>t

</f>

(a) Two XML fragments.

0a4

1b1

2c0

3d0 4e0

5f3

6"s"0 7g0 8"t"0

(b) Fragment trees.

pre size level kind prop frag
0 4 0 "elem" "a" 0
1 1 1 "elem" "b" 0
2 0 2 "elem" "c" 0
3 0 1 "elem" "d" 0
4 0 1 "elem" "e" 0
5 3 0 "elem" "f" 1
6 0 1 "text" "s" 1
7 0 1 "elem" "g" 1
8 0 1 "text" "t" 1

(c) Tree encoding (table doc).

Figure 1: Relational encoding of two XML fragments. Nodes in the fragment trees (b) have been annotated
with their pre and size properties. Both trees are encoded as independent fragments 0 and 1 in (c).

e ::= c atomic constants
| $v variables
| (e,e) sequence construction
| e/α::n loc. step (axis α, node test n)
| element t { e } element constructor (tag t)
| for $v in e return e iteration
| let $v := e return e let binding
| e+e addition

Figure 4: Syntax of XQuery Core subset.

Consistent with the loop lifting scheme, the database sys-
tem will represent variable $v0 as the relation shown in Fig-
ure 3(c), e.g., in the second iteration (iter = 2), $v0 is bound
to the item 2. We will shortly see how we can derive this
representation of a variable from the representation of its
domain (in this case the sequence (1,2,3)).

Finally, to evaluate the query Q1, the system solely op-
erates with the loop-lifted relations to compute the result
shown in Figure 3(d).

3.2 An Algebra for XQuery
As a language with variables, XQuery demands a third

piece of information (despite the relations ∆ and loop) for
compilation: the environment Γ maps all free variables in
XQuery expression e to their relational representation (again,
an algebraic expression).

We thus define the XQuery compiler in terms of a set of
inference rules, in which a judgment of the form

Γ; loop; ∆ ` e Z⇒ (q, ∆′)

indicates that, given Γ, loop, and ∆, the XQuery expression
e compiles into the algebraic expression q with a new table
of transient nodes ∆′. New nodes are created by XQuery’s
element constructors only, otherwise ∆′ = ∆.

Compilation starts with the top-level expression, an empty

environment Γ = ∅, a singleton loop relation (loop = iter
1)

indicating that the top-level expression is not embedded into
a loop, and an empty relation ∆. All inference rules pass Γ,
loop, and ∆ top-down, while the resulting algebra expres-
sion is synthesized bottom-up. The compiler produces a
single algebra query that operates on the tree and sequence
encodings sketched in Section 2.

This paper contains inference rules to compile a subset
of XQuery Core defined by the grammar in Figure 4. This
subset, plus a few extensions, suffices to express the XMark
benchmark query set [16], for example.2

2In fact, the subset may be extended to embrace the
complete XQuery Core language. The implementation of

πa1:b1,...,an:bn
projection (and renaming)

σa selection
.
∪ disjoint union
× cartesian product
1a=b equi-join
%b:〈a1,...,an〉/p row numbering

α,n XPath axis join (axis α, node test n)
ε element construction
~b:〈a1,...,an〉 n-ary arithmetic/comparison operator ∗
a b literal table

Figure 5: Operators of the relational algebra (a, b
column names).

The compiler’s target language is a relational algebra with
operators lined up in Figure 5. Most of the operators are
rather standard, or even restricted, variants of the opera-
tors found in a classical relational algebra. It is sufficient
for 1, e.g., to evaluate equality join predicates. The se-
lection σa selects those tuples with column a 6= 0. Oper-
ator ~b:〈a1,...,an〉 applies the n-ary operator ∗ to columns
a1, . . . , an and extends the input tuples with the result col-
umn b.

We write sch(q) to denote the column schema of alge-
braic expression q; ++ concatenates column schemas. Thus,
sch(πa1:b1,...,an:bn

(q)) = a1 . . . an, sch(~b:〈a1,...,an〉(q)) =
sch(q)++ b and sch(q1 × q2) = sch(q1 1a=b q2) = sch(q1)++
sch(q2), for example.

To encapsulate the underlying tree encoding, we extend
the algebra by the operators α,n to evaluate XPath steps,
and ε to construct new transient nodes.

q α,ndoc returns the result of the evaluation of the XPath
step α::n originating in the context nodes returned by q.

does so for each iteration encoded in q, thus sch(q1 α,n

q2) = iter item. A highly efficient implementation of α,n,
the staircase join, has been presented in [10].

Given the existing set of live nodes, doc
.
∪ ∆, a set of tag

names qt and a sequence of nodes qe, ε(doc
.
∪∆, qt, qe) returns

the new transient nodes resulting from the XQuery expres-
sion element t { e }, along with their originating iteration
iter ; sch(ε(q1, q2, q3)) = sch(doc) ++ iter . An implementa-
tion for the sample document encoding scheme introduced
in Section 2.1 is sketched in Section 5.3.

With order being an inherent concept of the XQuery data
model as well as our compilation scheme, we make frequent
use of the numbering operator %. Given a sort order defined

XQuery’s dynamic typing and validation features, however,
requires further support from the underlying tree and se-
quence encoding.

iter
1
2
3

|{z}

loop

pos item
1 10

| {z }

encoding of 10

iter pos item
1 1 10
2 1 10
3 1 10

| {z }

lifted encoding of 10

with respect to loop

(a) Lifting the constant 10.

iter pos item
1 1 10
1 2 20
2 1 10
2 2 20
3 1 10
3 2 20

(b) Loop-lifted
sequence.

iter pos item
1 1 1
2 1 2
3 1 3

(c) Encoding of
variable $v0.

iter pos item
1 1 10
1 2 1
1 3 10
1 4 2
1 5 10
1 6 3

(d) Result of
query Q1.

Figure 3: Loop lifting.

by columns a1, . . . , an, %b:〈a1,...,an〉/p(q) numbers consecutive
tuples in q, recording the row number in the new column b.
Row numbers start from 1 in each partition defined by the
optional grouping column p. Many RDBMSs readily pro-
vide a % operator, for example by means of the DENSE_RANK

operator defined by SQL:1999 [15]. A database host operat-
ing on ordered relations may even provide such numbering
for free (cf. the void columns in the MonetDB RDBMS [2]).

4. RELATIONAL FLWORS
We will now generalize our loop-lifting idea and give a

translation for arbitrarily nested for-loops.
Assume an expression with three nested for-loops as shown

here:

s

8

>

>

>

>

>

<

>

>

>

>

>

:

(for $v0 in e0 return

s0 { e′0 ,

for $v1 in e1 return

s1



for $v10 in e10 return

s10 { e′10
)

The curly braces visualize the variable scopes in this query:
variable $v0 is visible in scope s0, variable $v1 is visible
in scopes s1 and s10, while variable $v10 is accessible in
scope s10 only. No variables are bound in top-level scope
s. (In the context of this section, only for expressions are
considered to open a new scope; let expressions are treated
in Section 5.2.)

Note that the compositionality and scoping rules of XQuery,
in general, lead to a tree-shaped hierarchy of scopes. For the
above query, we obtain

s

s0 s1

s10

.

In the following, we write sx·y, x ∈ {0, 1, . . . }∗, y ∈ {0, 1, . . . }
to identify the yth child scope of scope sx. Furthermore, let
qx(e) denote the representation of expression e in scope sx.

Bound variables. Consider a for-loop in its directly en-
closing scope sx:

sx

8

>

>

>

>

<

>

>

>

>

:

...
for $vx·y in ex·y return

sx·y

˘

e′x·y
...

According to the XQuery semantics, ex·y is evaluated in
scope sx. Variable $vx·y is then successively bound to each
single item in the resulting sequence; these bindings are used

in the evaluation of e′x·y in scope sx·y. A suitable represen-
tation for $vx·y in scope sx·y may thus be computed if we
retain the values of qx(ex·y) (to which $vx·y will be bound
consecutively) , but assign a new iter property with consec-
utive numbers and a constant pos value of 1:

qx·y($vx·y) =
pos
1 × πiter :inner,item

`

%inner :〈iter,pos〉(qx(ex·y))
´

This is exactly how we obtained the representation of vari-
able $v0 in query Q1 (see Figure 3(c)):

q0($v0) =
pos
1 × πiter :inner,item

`

%inner :〈iter,pos〉q((1,2,3))
´

where q((1,2,3)) simply is the relational encoding of the
sequence (1,2,3) as introduced in Section 2.2.

Maintaining loop. The concept of loop-lifting requires the
maintenance of a loop relation of independent iterations.
The body of a for-loop in scope sx·y needs to be evaluated
once for each binding of the for-bound variable $vx·y. To
compile the subexpressions comprising this body, we thus
define a new loop relation based on qx·y($vx·y):

loopx·y = πiter (qx·y($vx·y)) .

Constants. The compilation of an atomic constant c is now
achieved through loop lifting as motivated in Section 3.1.
The associated inference (or compilation) rule Const reads

Γ; loop; ∆ ` c Z⇒
“

loop × pos item
1 c , ∆

” . (Const)

Note how atomic constants do not affect the set of tran-
sient nodes ∆.

Free variables. In XQuery, an expression e may refer to
variables which have been bound in an enclosing scope: a
variable bound in scope sx is also visible in any scope sx·x′ ,
x′ ∈ {0, 1, . . . }+. If scope sx·x′ is viewed in isolation, such
variables appear to be free.

The compiled representation qx·y($vx) of a free variable
vx in scope sx·y depends on the value of the loop relation in
sx·y, and we will now derive qx·y($vx) from the representa-
tion in the directly enclosing scope sx. To understand the
derivation, consider the evaluation of two nested for-loops
(note the reference to $v0 in the inner scope s0·0):

s

8

>

>

>

>

<

>

>

>

>

:

for $v0 in (1,2) return

s0

8

>

>

<

>

>

:

($v0,

for $v0·0 in (10,20) return

s0·0 { ($v0,$v0·0)

)

(Q2)

iter pos item
1 1 "1"
2 1 "2"

(a) q0($v0)

iter pos item
1 1 "1"
2 1 "1"
3 1 "2"
4 1 "2"

(b) q0·0($v0)

iter pos item
1 1 "10"
2 1 "20"
3 1 "10"
4 1 "20"

(c) q0·0($v0·0)

Figure 6: Q2: Scope-dependent representation of
variables.

In the first outer iteration, $v0 is bound to 1. With this
binding, two evaluations of the innermost loop body occur,
each with a new binding for $v0·0. Then, during the next
outer iteration, two further evaluations of the innermost loop
body occur with $v0 bound to 2 (Figure 6).

outer inner
1 1
1 2
2 3
2 4

Fig. 7:
map(0,0·0).

The semantics of this nested iteration may
be captured by a relation map(0,0·0) shown
in Figure 7 (map(x,x·y) will be used to map
representations between scopes sx and sx·y).
A tuple (o, i) in this relation indicates that,
during the ith iteration of the inner loop
body in scope s0·0, the outer loop body in
scope s0 is in its oth iteration. This is the
connection we need to derive the represen-

tation of a free variable $vx in scope sx·y via the following
equi-join:

qx·y($vx) = πiter :inner,pos,item

“

qx($vx) 1iter=outer map(x,x·y)

”

If we insert the binding $v 7→ qx·y($v) into the variable
environment Γ, a reference to variable $v simply compiles
to a lookup in Γ:

{. . . , $v 7→ qv, . . . } ; loop; ∆ ` $v Z⇒ (qv, ∆)
. (Var)

Note that relation map(x,x·y) is easily derived from the
representation of the domain ex·y of variable $vx·y (much
like the representation of $vx·y itself):

map(x,x·y) = πouter :iter,inner

`

%inner:〈iter,pos〉(qx(ex·y))
´

.

Figure 6 contains a line-up of the relational variable rep-
resentations involved in evaluating query Q2. Note how the
relations in Figures 6(b) and 6(c) represent the fact that,
for example, in iteration 3 of the inner loop body variable
$v0 is bound to 2 while $v0·0 is bound to 10, as desired.

Mapping back. The intermediate result computed by the
inner loop of Q2 is shown in Figure 9(a). To use this result
in scope s0 (as is required due to the sequence construction
in line 2 of Q2), we need to map its representation back
into s0. This back-mapping from scope sx·y into the par-
ent scope sx may, again, be achieved via an equi-join with
map(x,x·y). The required join forms the compilation result
of compilation rule For (Figure 8). The rule also ensures
that the correct loop relation and variable expressions are
available when an expression is compiled.

Figure 9(b) depicts the inner loop body result after it
has been mapped back into scope s0. Sequence construc-
tion (Rule Seq, Section 5.1) and a second back-mapping
step (from scope s0 into the top-level scope s via map(,0))
produces the final result of Q2 (Figure 9(c)).

5. OTHER EXPRESSION TYPES

iter pos item
1 1 "1"
1 2 "10"
2 1 "1"
2 2 "20"
3 1 "2"
3 2 "10"
4 1 "2"
4 2 "20"

(a) Intermediate
result in s0·0.

iter pos item
1 1 "1"
1 2 "10"
1 3 "1"
1 4 "20"
2 1 "2"
2 2 "10"
2 3 "2"
2 4 "20"

(b) Intermediate
result in s0.

iter pos item
1 1 "1"
1 2 "1"
1 3 "10"
1 4 "1"
1 5 "20"
1 6 "2"
1 7 "2"
1 8 "10"
1 9 "2"
1 10 "20"

(c) Final result in
top-level scope.

Figure 9: Q2: Intermediate and final results.

iter pos item
1 1 "1"

2 1 "10"
2 2 "20"

(a) Encoding
q1 of e1.

iter pos item
1 1 "2"

2 1 "30"

(b) Encoding
q2 of e2.

iter pos item
1 1 "1"
1 2 "2"

2 1 "10"
2 2 "20"
2 3 "30"

(c) Encoded result
of (e1,e2).

Figure 10: Sequence construction. The dashed lines
separate the represented iterations (iter partitions).

5.1 Sequence Construction
Essentially, Rule Seq (Figure 8) compiles the sequence

construction (e1,e2) into a disjoint union of the relational
encodings q1 and q2 of e1 and e2. Correct ordering is en-
sured by temporarily adding a column ord to q1 and q2 and
a subsequent renumbering of the result via %. Note that
this evaluates the sequence construction for all iterations en-
coded in q1, q2 at once. Figure 10 exemplifies the operation
of the compiled algebraic expression. Relation q1 encodes
two sequences: (1) in iteration 1 and (10,20) in iteration
2, while q2 encodes (2) in iteration 1 and (30) in iteration 2.
The algebraic expression generated by Rule Seq computes
the result in Figure 10(c): the sequence construction evalu-
ates to (1,2) in iteration 1 and (10,20,30) in iteration 2,
as expected.

5.2 Variable Binding/Usage
Variables are handled in a standard fashion: to compile

let $v := e1 return e2, translate e1 in environment Γ to
yield the expression q1, then compile e2 in the enriched en-
vironment Γ + {$v 7→ q1}:

Γ; loop; ∆ ` e1 Z⇒ (q1, ∆1)
Γ + {$v 7→ q1} ; loop; ∆1 ` e2 Z⇒ (q2, ∆2)

Γ; loop; ∆ ` let $v := e1 return e2 Z⇒ (q2, ∆2)
. (Let)

A reference to $v in e2 then yields q1 via Rule Var.

5.3 Element Construction
The relation ∆ of transient nodes is populated by the

XQuery element construction operator element t { e }, in
which subexpression e is required to evaluate to a sequence
of nodes (v1,v2,. . . ,vk). To comply with XQuery seman-
tics, the k subtrees rooted at the nodes vi are copied to
the relation ∆ of transient nodes. A new node r with tag
name t is then added to ∆ and made the common root of
the subtree copies; r is then returned as the overall query
result.

{. . . , $vi 7→ qvi
, . . . }; loop; ∆ ` e1 Z⇒ (q1, ∆1) qv ≡

pos
1 × πiter :inner,item

`

%inner:〈iter,pos〉q1

´

loopv ≡ πiterqv map ≡ πouter :iter,inner

`

%inner :〈iter,pos〉q1

´

{. . . , $vi 7→ πiter :inner,pos,item (qvi
1iter=outer map) , . . . } + {$v 7→ qv} ; loopv; ∆1 ` e2 Z⇒ (q2, ∆2)

{. . . , $vi 7→ qvi
, . . . }; loop; ∆ ` for $v in e1 return e2 Z⇒

`

πiter :outer,pos:pos1 ,item

`

%pos1 :〈iter,pos〉/outer (q2 1iter=inner map)
´

, ∆2

´

(For)

Γ; loop; ∆ ` e1 Z⇒ (q1, ∆1) Γ; loop; ∆1 ` e2 Z⇒ (q2, ∆2)

Γ; loop; ∆ ` (e1,e2) Z⇒
“

πiter,pos:pos1 ,item

“

%pos1 :〈ord,pos〉/iter

““

ord
1 × q1

”

.
∪
“

ord
2 × q2

”””

, ∆2

” (Seq)

Γ; loop; ∆ ` e Z⇒ (qe, ∆1)

Γ; loop; ∆ ` e/α::n Z⇒
“

%pos:〈item〉/iter

“

(πiter,itemqe) α,n (doc
.
∪ ∆1)

”

, ∆1

” (Step)

Γ; loop; ∆ ` e1 Z⇒ (q1, ∆1) Γ; loop; ∆1 ` e2 Z⇒ (q2, ∆2) n ≡ ε(doc
.
∪ ∆2, q1, q2)

Γ; loop; ∆ ` element e1 { e2 } Z⇒
“

πiter,item:pre (roots(n)) × pos
1 , ∆2

.
∪ πsch(doc)n

” (Elem)

Γ; loop; ∆ ` e1 Z⇒ (q1, ∆1) Γ; loop; ∆1 ` e2 Z⇒ (q2, ∆2)

Γ; loop; ∆ ` e1 + e2 Z⇒
`

πiter,pos,item:res

`

⊕res:〈item,item′〉(q1 1iter=iter ′ (πiter′:iter,item′:itemq2)
´

), ∆2

´ (Plus)

Figure 8: Compilation rules For, Seq, Step, Elem, and Plus.

Element construction naturally depends on the XML doc-
ument representation. These specifics are encapsulated in
the operator ε. Given the three arguments doc

.
∪∆ (the set

of live nodes), qt (the set of tag names), and qe (the content
of the new element), ε returns a relation with newly con-
structed nodes, along with their originating iteration iter .
Note how Rule Elem (Figure 8) adds the resulting nodes to
∆ to reflect the construction of the new transient nodes.

Figure 11 exemplifies the usage of the ε operator if the
XML encoding scheme of Section 2.1 is used to evaluate the
XQuery expression

let $v := e//b return element r { $v }

in which we assume that e evaluates to the singleton se-
quence containing the root element node a of the tree de-
picted in Figure 11(a). After XPath step evaluation, $v will
be bound to the sequence containing the two element nodes
with tag b (preorder ranks 1, 4). Figure 11(b) shows the
newly constructed tree fragment: the copies of the subtrees
rooted at the two b nodes now share the newly constructed
root node r.

Figure 11(c) illustrates how ε constructs the new tree frag-
ment:
(1) the new root node r is assigned the next available pre-

order rank (6 in our case),
(2) the nodes in the affected subtrees are appended with

their size, kind , and prop properties unchanged, and
their level property updated.

(3) Each entry in the resulting relation n is labeled with the
originating iteration iter from qt.

The result n of ε contains two pieces of information: The
projection on the schema of the document representation
sch(doc) represents the set of new transient nodes to be
appended to ∆, while the root nodes in n constitute the
result of the overall expression. Rule Elem determines the
latter via the auxiliary function roots(n) which may be im-

plemented as

roots(n) = πsch(doc)++iter

“

σres(=©res:〈level,zero〉(n × zero
0))

”

for a pre/size/level encoding scheme.

5.4 XPath Evaluation
Our work is complementary to techniques for efficient

XPath evaluation. We encapsulate document encoding and
the access to XML tree nodes in the algebra operator .
Given an unordered set of context nodes c (represented as

as a relation iter item) and the live nodes , c α,n (doc
.
∪∆)

returns all nodes reachable from c via XPath step α::n,
where duplicate elimination is performed for each iter value
in separation. The compiled algebraic expression obeys the
XPath semantics: the resulting nodes are assembled into a
sequence whose order is given by the nodes’ preorder ranks
(which reflect document order) using the % operator.

Disjointness of fragments. To evaluate α,n, the full set
of live nodes has to be queried, a disjoint union of persis-
tently stored nodes (doc), and transient nodes constructed
at runtime (∆). Our compilation rules take care to keep
these two parts separate during compilation which opens
the door for interesting optimizations.

Since the evaluation of an XPath step never escapes the
fragment of its context node, the step may safely be evalu-
ated on doc and ∆ in separation:

c α,n

“

doc
.
∪ ∆

”

= (c α,n doc)
.
∪ (c α,n ∆)

Although more complex at first sight, the latter variant
performs the bulk of the work3 on the persistent doc table
and thus can fully benefit from the presence of indexes. The
former variant, on the other hand, has to evaluate the axis
step on the derived table doc

.
∪∆ which lacks index support.

3Typically, |∆| ¿ |doc|.

0a5

1b1

2c0

3d1

4b0

5e0

iter pos item
1 1 1
1 2 4

(a) Content
expression.

6r3

7b1

8c0

9b0

(b) New tree
fragment.

pre size level kind prop frag
0 5 0 "elem" "a" 0
1 1 1 "elem" "b" 0
2 0 2 "elem" "c" 0
3 1 1 "elem" "d" 0
4 0 2 "elem" "b" 0
5 0 1 "elem" "e" 0

pre size level kind prop frag
0 5 0 "elem" "a" 0
1 1 1 "elem" "b" 0
2 0 2 "elem" "c" 0
3 1 1 "elem" "d" 0
4 0 2 "elem" "b" 0
5 0 1 "elem" "e" 0

pre size level kind prop frag iter
6 3 0 "elem" "r" 1 1
7 1 1 "elem" "b" 1 1
8 0 2 "elem" "c" 1 1
9 0 1 "elem" "b" 1 1

9
>>>>>>>>>>>>>>>>;

old
live

nodes

9
>>>>>>>>>>>;

result
of ε

(new live
nodes)

(c) Live nodes before (left) and after element construction. The ε operator
returns the relation n containing new life nodes, labeled with their originating
iter value.

Figure 11: Element construction and the resulting extension for table doc.

Bundling XPath steps. Even if a query addresses nodes
in only moderately complex XML documents, XPath path
expressions are usually comprised of multiple, say k > 1,
location steps (let c denote a sequence of context nodes):

c/α1::n1/α2::n2/ · · · /αk::nk . (Q3)

Operator / associates to the left such that the above is seen
by the compiler as

`

· · · ((c/α1::n1)/α2::n2)/ · · ·
´

/αk::nk

which also suggests the evaluation mode of such a multi-step
path. Proceeding from left to right, the ith location step
computes the context node sequence (in document order and
with duplicates removed) for step i + 1. For each of the k
steps, the system
(1) joins the current context node sequence with doc to re-

trieve the necessary context node properties (only the
preorder rank property pre is available in the sequence
encoding),

(2) performs the doc self-join to evaluate the XPath axis
and node test, and finally

(3) removes duplicate nodes generated in step (2).
Especially the latter proves to be quite expensive [11].

With the definition of operator —the output of may
serve as the input to a subsequent step—we can do better:
if we extend Rule Step to translate multi-step paths as a
whole, queries of the general form Q3 can be compiled into
a k-way self-join on doc

.
∪ ∆ (let qc denote the compilation

result for expression c):
““

(πiter,item(qc)) α1,n1
(doc

.
∪ ∆)

”

α2,n2
(doc

.
∪ ∆)

”

· · ·

This, in turn, enables the RDBMS to choose and optimize
join order, or—if suitable support is available (e.g., [3])—
compute the entire XPath step as a whole. If the XML
encoding supports the efficient exploitation of fragment dis-
jointness, whole XPath expressions may be evaluated on doc

and ∆ in separation, before merging the overall result. Fur-
thermore, sorting and duplicate removal is now required only
once. If the RDBMS kernel includes a tree-aware join op-
erator, e.g., staircase join [10], duplicate removal may even
become obsolete.

5.5 Arithmetic Expressions
Our set-oriented execution model requires a means to eval-

uate operations on atomic values, such as arithmetics, in a
bulk fashion. Given the relational representations q1 and q2

execution time [s]
XMark Query 1.1 MB 110 MB 1.1 GB

XMark 1 0.003 0.003 0.002
XMark 2 0.036 3.277 136.286
XMark 6 0.007 0.175 1.794
XMark 7 0.009 0.523 5.261

Table 2: Execution times for the XMark benchmark
set run on documents of various sizes.

of two XQuery values e1 and e2 in multiple iterations, the
expression e1 + e2 can be compiled as follows (Rule Plus):
(1) join q1 and q2 over their iterations iter ,
(2) for each tuple, compute the sum of both item values,

and
(3) project to form the final result:

πiter,pos,item:res

`

⊕res:〈item,item′〉(q1 1iter=iter ′ (πiter ′:iter,item′:item(q2)))
´

This evaluation strategy is in line with XQuery semantics
which demands the result of an arithmetic expression to be
the empty sequence if either operand is the empty sequence
(i.e., one or more iter values are completely missing in q1 or
q2).

6. EXPERIMENTS: DB2 RUNS XQUERY
An RDBMS can be an efficient host to XQuery. In [9],

we implemented the set of algebraic operators of Figure 5 in
SQL. This resulted in a purely relational SQL-based XQuery
processor. We then compiled and ran a number of queries
from the XMark benchmark set [16] to support our claim.
We recorded timings on a dual 2.2 GHz Pentium 4 Xeon
host, running the IBM DB2 UDB V8.1 database system.
Execution times for XML document sizes from 1.1 MB to
1.1 GB are listed in Table 2, for detailed experiments we
refer to [9].

The results confirm that our approach can indeed turn re-
lational databases into efficient XQuery processors, scaling
well up to and probably beyond document sizes of 1 GB. The
database takes advantage of efficient indexing techniques,
best visible in the millisecond range timings for XMark 1
that essentially measures XPath performance. We have ob-
served similar figures in earlier work [8, 10].

7. RELATED RESEARCH AND SYSTEMS

As of today, we are not aware of any other published work
which succeeded in hosting XQuery efficiently on a relational
DBMS. A recent survey paper suggests the same [12]. The
compilation procedure described here (1) is compositional,
(2) does not depend on the presence of XML Schema or DTD
knowledge (the compiler is schema-oblivious unlike [14,17]),
and, (3) is purely relational. There is no need to invade or
extend the database kernel to make the approach perform
well (although we may benefit from such extensions [10]).

The work described in [5] comes closest to what we have
developed here. Based on a dynamic interval encoding for
XML instances, the authors present a compositional trans-
lation from a subset of XQuery Core into a set of SQL view
definitions. The translation scheme falls short, however, of
preserving fundamental semantic properties of XQuery: the
omission of a back-mapping step in the translation of for-
expressions prevents arbitrary expression nesting and, lack-
ing an explicit encoding of sequence positions, the encoding
cannot distinguish between sequence and document order.

We feel that the most important drawback, however, is the
complexity and execution cost of the SQL view definitions
generated in [5]. The compilation of path expressions, for
example, leads to nested correlated queries—the RDBMS
falls back to nested-loops plans, which renders the relational
backend a poor XQuery runtime environment.

8. CONCLUSIONS AND CURRENT WORK
The XQuery compiler described in this paper targets re-

lational database backends and thus extends the relational
XML processing stack, which was already known to be capa-
ble of providing XML mass storage as well as efficient XPath
support. The compilation procedure is largely based on a
specific encoding of sequences (the principal data structure
in the XQuery data model apart from trees) which allows for
the set-oriented evaluation of nested for-loops (the princi-
pal query building block in XQuery). The compiler relies
on the presence of the numbering operator %, which can be
efficiently implemented using widely available OLAP func-
tionality in the SQL:1999 standard.

Our XQuery compiler offers a variety of interesting hooks
for extension and optimization, many of which we were not
able to present here. Current work in flux is related to a
considerable generalization of the disjoint fragments obser-
vation of Section 5.4. Since the early days of the devel-
opment of XQuery Core, it has been observed that certain
language constructs, in particular FLWOR expressions, enjoy
homomorphic properties—in [6] this was shown by reduc-
ing FLWOR expressions to list (or sequence) comprehensions.
This may open the door for compiler optimizations [7] that
minimize those parts of a query which need to operate on
transient live nodes.

9. REFERENCES
[1] S. Boag, D. Chamberlin, M. Fernández, D. Florescu,

J. Robie, and J. Simeon. XQuery 1.0: An XML Query
Language. World Wide Web Consortium, Nov. 2003.

[2] P. A. Boncz and M. L. Kersten. MIL Primitives for
Querying a Fragmented World. The VLDB Journal,
8(2), 1999.

[3] N. Bruno, N. Koudas, and D. Srivastava. Holistic
Twig Joins: Optimal XML Pattern Matching.
Madison, Wisconsin, USA, June 2002.

[4] S. Chien, Z. Vagena, D. Zhang, V. Tsotras, and
C. Zaniolo. Efficient Structural Joins on Indexed XML
Documents. In Proc. of the 28th Int’l Conference on
Very Large Databases (VLDB), Hong Kong, China,
Aug. 2002.

[5] D. DeHaan, D. Toman, M. Consens, and M. Öszu. A
Comprehensive XQuery to SQL Translation using
Dynamic Interval Encoding. In Proc. of the 22nd Int’l
ACM SIGMOD Conference on Management of Data,
San Diego, California, USA, June 2003.

[6] M. Fernández, J. Simeon, and P. Wadler. A
Semi-monad for Semi-structured Data. In Proc. of the
8th Int’l Conference on Database Theory (ICDT),
London, UK, Jan. 2001.

[7] D. Gluche, T. Grust, C. Mainberger, and M. Scholl.
Incremental Updates for Materialized OQL Views. In
Proc. of the 5th Int’l Conference on Deductive and
Object-Oriented Databases (DOOD), Montreux,
Switzerland, Dec. 1997.

[8] T. Grust. Accelerating XPath Location Steps. In Proc.
of the 21st Int’l ACM SIGMOD Conference on
Management of Data, Madison, Wisconsin, USA, June
2002.

[9] T. Grust, S. Sakr, and J. Teubner. XQuery on SQL
Hosts. In Proc. of the 30th Int’l Conference on Very
Large Data Bases (VLDB), Toronto, Canada, Aug.
2004.

[10] T. Grust, M. van Keulen, and J. Teubner. Staircase
Join: Teach a Relational DBMS to Watch its Axis
Steps. In Proc. of the 29th Int’l Conference on Very
Large Databases (VLDB), Berlin, Germany, Sept.
2003.

[11] J. Hidders and P. Michiels. Avoiding Unnecessary
Ordering Operations in XPath. In Proc. of the 9th
Int’l Workshop on Database Programming Languages
(DBPL), Potsdam, Germany, Sept. 2003.

[12] R. Krishnamurthy, R. Kaushik, and J. Naughton.
XML-to-SQL Query Translation Literature: The State
of the Art and Open Problems. In Proc. of the 1st
Int’l XML Database Symposium (XSym), Berlin,
Germany, Sept. 2003.

[13] Q. Li and B. Moon. Indexing and Querying XML
Data for Regular Path Expressions. In Proc. of the
27th Int’l Conference on Very Large Databases
(VLDB), Rome, Italy, Sept. 2001.

[14] I. Manolescu, D. Florescu, and D. Kossmann.
Answering XML Queries over Heterogeneous Data
Sources. In Proc. of the 27th Int’l Conference on Very
Large Databases (VLDB), Rome, Italy, Sept. 2001.

[15] J. Melton. Advanced SQL:1999: Understanding
Object-Relational and Other Advanced Features.
Morgan Kaufmann Publishers, Amsterdam, 2003.

[16] A. Schmidt, F. Waas, M. Kersten, M. Carey,
I. Manolescu, and R. Busse. XMark: A Benchmark for
XML Data Management. In Proc. of the 28th Int’l
Conference on Very Large Databases (VLDB), Hong
Kong, China, Aug. 2002.

[17] J. Shanmugasundaram, J. Kiernan, E. Shekita,
C. Fan, and J. Funderburk. Querying XML Views of
Relational Data. In Proc. of the 27th Int’l Conference
on Very Large Databases (VLDB), Rome, Italy, Sept.
2001.

