
Tree Awareness for Relational DBMS Kernels:

Staircase Join

Torsten Grust1 and Maurice van Keulen2

1 Department of Computer and Information Science, University of Konstanz,
P.O. Box D188, 78457 Konstanz, Germany, Torsten.Grust@uni-konstanz.de

2 Faculty of EEMCS, University of Twente,
P.O. Box 217, 7500 AE Enschede, The Netherlands, m.vankeulen@utwente.nl

1 Introduction

Relational database management systems (RDBMSs) derive much of their
efficiency from the versatility of their core data structure: tables of tuples.
Such tables are simple enough to allow for an efficient representation on all
levels of the memory hierarchy, yet sufficiently generic to host a wide range
of data types. If one can devise mappings from a data type τ to tables and
from operations on τ to relational queries, an RDBMS may be a premier
implementation alternative. Temporal intervals, complex nested objects, and
spatial data are sample instances for such types τ .

The key to efficiency of the relational approach is that the RDBMS is
made aware of the specific properties of τ . Typically, such awareness can
be implemented in the form of index structures (e.g., R-trees [7] efficiently
encode the inclusion and overlap of spatial objects) or query operators (e.g.,
the multi-predicate merge join [11] exploits knowledge about containment of
nested intervals).

This chapter applies this principle to the tree data type with the goal
to turn RDBMSs into efficient XML and XPath processors [1]. The database
system is supplied with a relational [8] XML document encoding, the XPath
accelerator [5]. Encoded documents (1) are represented in relational tables,
(2) can be efficiently indexed using index structures native to the RDBMS,
namely B-trees, and (3) XPath queries may be mapped to SQL queries over
these tables. The resulting purely relational XPath processor is efficient [5]
and complete (supports all 13 XPath axes).

We will show that an enhanced level of tree awareness, however, can lead
to a query speed-up by an order of magnitude. Tree awareness is injected into
the database kernel in terms of the staircase join operator, which is tuned to
exploit the knowledge that the RDBMS operates over tables encoding tree-
shaped data. This is a local change to the database kernel: standard B-trees

2 Torsten Grust and Maurice van Keulen

suffice to support the evaluation of staircase join and the query optimizer may
treat staircase join much like other native join operators.

2 Purely Relational XPath Processing

We will work with a relational XML encoding that is not inspired by the
document tree structure per se – like, e.g., the edge mapping [4] – but by our
primary goal to support XPath efficiently. The encoding of document trees is
faithful nevertheless: properties like document order, tag names, node types,
text contents, etc., are fully preserved such that the original XML document
may be serialized from the relational tables alone.

Observe that for any element node of a given XML instance, the four
XPath axes preceding, descendant, ancestor, and following partition the
document into four regions. In Fig. 1, these regions are depicted for context
node f : the XPath expression f/following::node()3 evaluates to the node
sequence (i, j), for example. Note that all 10 document nodes are covered by
the four disjoint axis regions (plus the context node):

{a . . . j} = {f} ∪
⋃

α∈{preceding,descendant,
ancestor,following}

f/α . (1)

The XPath accelerator document encoding [5] preserves this region notion.
The key idea is to design the encoding such that the nodes contained in an
axis region can be retrieved by a relational query simple enough to be effi-
ciently supported by relational index technology (in our case B-trees). Equa-
tion (1) guarantees that all document nodes are indeed represented in such
an encoding.

a
•

b
•mmmm

c
•

d•
e
•

QQQQ

f ◦{{

g
•{{

h
•

CC i
•

CC

j
•

•
b
•mmmm

c
•

d•

(a)

a
•

b
•mmmm

c
•

d•
e
•

QQQQ

f ◦{{

g
•{{

h
•

CC i
•

CC

j
•

•
•

QQQQ

◦{{

g
•{{

h
•

CC

(b)

a
•

b
•mmmm

c
•

d•
e
•

QQQQ

f ◦{{

g
•{{

h
•

CC i
•

CC

j
•

a
•

e
•

QQQQ

(c)

a
•

b
•mmmm

c
•

d•
e
•

QQQQ

f ◦{{

g
•{{

h
•

CC i
•

CC

j
•

•
•

QQQQ

•
CC

•

(d)

Fig. 1. XPath axes induce document regions: shaded nodes are reachable from
context node f via a step along the (a) preceding, (b) descendant, (c) ancestor,
(d) following axes. Leaf nodes denote either empty XML elements, attributes, text,
comment, or processing instruction nodes; inner nodes represent non-empty elements

The actual encoding maps each node v to its preorder and postorder traver-
sal ranks in the document tree: v 7→ 〈pre(v), post(v)〉. In a preorder traversal,
a node v is visited and assigned its preorder rank pre(v) before its children are

3 In the sequel, we will abbreviate such XPath step expressions as f/following.

Tree Awareness for Relational DBMS Kernels 3

recursively traversed from left to right. Postorder traversal is defined dually:
node v is assigned its postorder rank post(v) after all its children have been
traversed. For the XML document tree of Fig. 1, a preorder traversal enu-
merates the nodes in document order (a, . . . , j) while a postorder traversal
enumerates (c, b, d, g, h, f, j, i, e, a), so that we get 〈pre(e), post(e)〉 = 〈4, 8〉,
for instance.

• document node
◦ context node

〈0,0〉

−1

−
−
−
−5

−
−
−
−

+
1

++++
5

++++

•a

•b
•
c

•d

•e

◦

f
◦g

•h

• i
•j

�
�
�
�
�
�
�
�
�

post
OO

pre//

Fig. 2. Pre/post plane for the XML
document of Fig. 1. Dashed and dotted
lines indicate the document regions as
seen from context nodes f (__) and
g (), respectively

Figure 2 depicts the two-dimensional
pre/post plane that results from encod-
ing the XML instance of Fig. 1. Context
node f , encoded as 〈pre(f), post(f)〉 =
〈5, 5〉, induces four rectangular regions
in the pre/post plane, e.g., in the
lower-left partition we find the nodes
f/preceding = (b, c, d). This charac-
terization of the XPath axes is much
more accessible for an RDBMS: an axis
step can be evaluated in terms of a rect-
angular region query on the pre/post
plane. Such queries are efficiently sup-
ported by concatenated (pre , post) B-
trees (or R-trees [5]).

The further XPath axes, like, e.g.,
following-sibling or ancestor-or-

self, determine specific supersets or subsets of the node sets computed
by the four partitioning axes. These are easily characterized if we addi-
tionally maintain parent node information for each node, i.e., use v 7→
〈pre(v), post(v), pre(parent(v))〉 as the encoding for node v. We will focus
on the four partitioning axes in the following.

Note that all nodes are alike in the XPath accelerator encoding: given
an arbitrary context node v, e.g., computed by a prior XPath axis step or
XQuery expression, we retrieve 〈pre(v), post(v)〉 and then access the nodes
in the corresponding axis region. Unlike related approaches [2], the XPath
accelerator has no bias towards the document root element. Please refer to
[5, 6] for an in-depth explanation of the XPath accelerator.

2.1 SQL-based XPath Evaluation

Inside the relational database system, the encoded XML document tree, i.e.,
the pre/post plane, is represented as a table doc with schema pre post type .
Each tuple encodes a single node (with field type discriminating element, at-
tribute, text, comment, processing instruction node types). Since pre is unique
– and thus may serve as node identity as required by the W3C XQuery and
XPath data model [3] – additional node information is assumed to be hosted in

4 Torsten Grust and Maurice van Keulen

separate tables using pre as a foreign key.4 A SAX-based document loader [9]
can populate the doc table using a single sequential scan over the XML in-
put [5].

The evaluation of an XPath path expression p = s1/s2/ · · ·/sn leads to
a series of n region queries where the node sequence output by step si is
the context node sequence for the subsequent step si+1. The context node
sequence for step s1 is held in table context (if p is an absolute path, i.e.,
p = /s1/ · · · , context holds a single tuple: the encoding of the document root
node). XPath requires the resulting node sequence to be duplicate free as well
as being sorted in document order [1]. These inherently set-oriented, or rather
sequence-oriented, XPath semantics are implementable in plain SQL (Fig. 3).

1 SELECT DISTINCT vn.*
2 FROM context c,doc v1, . . . ,doc vn

3 WHERE axis(s1, c, v1) AND axis(s2, v1, v2) AND · · · AND axis(sn, vn−1, vn)
4 ORDER BY vn.pre ASC

axis(preceding, v, v′) ≡ v′.pre < v.pre AND v′.post < v.post
axis(descendant, v, v′) ≡ v′.pre > v.pre AND v′.post < v.post
axis(ancestor, v, v′) ≡ v′.pre < v.pre AND v′.post > v.post
axis(following, v, v′) ≡ v′.pre > v.pre AND v′.post > v.post

Fig. 3. Translating the XPath path expression s1/s2/ · · · /sn (with context context)
into an SQL query over the document encoding table doc

Note that we focus on the XPath core, namely location steps, here. Func-
tion axis(·), however, is easily adapted to implement further XPath con-
cepts, like node tests, e.g., with XPath axis α and node kind κ ∈ {text(),
comment(), . . . }:

axis(α::κ, v, v′) ≡ axis(α, v, v′) AND v′.type = κ .

Finally, the existential semantics of XPath predicates are naturally expressed
by a simple exchange of correlation variables in the translation scheme of
Fig. 3. The XPath expression s1[s2]/s3 is evaluated by the RDBMS via the
SQL query shown in Fig. 4.

1 SELECT DISTINCT v3.*
2 FROM context c,doc v1,doc v2,doc v3

3 WHERE axis(s1, c, v1) AND axis(s2, v1, v2) AND axis(s3, v1, v3)
4 ORDER BY v3.pre ASC .

Fig. 4. SQL equivalent for the XPath expression s1[s2]/s3 (note the exchange of
v1 for v2 in axis(s3, v1, v3), line 3).

4 In this chapter, we will not discuss the many possible table layout variations
(in-line tag names or CDATA contents, partition by tag name, etc.) for doc.

Tree Awareness for Relational DBMS Kernels 5

2.2 Lack of Tree Awareness in Relational DBMS

The structure of the generated SQL queries – a flat self-join of the doc table
using a conjunctive join predicate – is simple. An analysis of the actual query
plans chosen by the optimizer of IBM DB2 V7.1 shows that the system can
cope quite well with this type of query. Figure 5 depicts the situation for a
two-step query s1/s2 originating in context sequence context.

unique
pre

BC

BC
rrr

sort
pre

��

context c

ixscan
pre/post

::

doc v1

ixscan
pre/post

LL

doc v2

Fig. 5. Query plan

The RDBMS maintains a B-tree over con-
catenated (pre , post) keys. The index is used to
scan the inner (right) doc table join inputs in
pre-sorted order. The context is, if necessary,
sorted by the preorder rank pre as well. Both
joins may thus be implemented by merge joins.
The actual region query evaluation happens in
the two inner join inputs: the predicates on pre
act as index range scan delimiters while the con-
ditions on post are fully sargable [10] and thus evaluated during the B-tree
index scan as well. The joins are actually right semijoins, producing their
output in pre-sorted order (which matches the request for a result sequence
sorted in document order in line 4 of the SQL query).

As reasonable as this query plan might appear, the RDBMS treats table
doc (and context) like any other relational table and remains ignorant of tree-
specific relationships between pre(v) and post(v) other than that both ranks
are paired in a tuple in table doc. The system thus gives away significant
optimization opportunities.

• t

4
4

4

◦ v

•v′′ • v′

Fig. 6. Nodes with
minimum post (v′′) and
maximum pre (v′) ranks
in the subtree below v

To some extent, however, we are able to make up
for this lack of tree awareness at the SQL level. As an
example, assume that we are to take a descendant

step from context node v (Fig. 6). It is sufficient to
scan the (pre , post) B-tree in the range from pre(v)
to pre(v′) since v′ is the rightmost leaf in the sub-
tree below v and thus has maximum preorder rank.
Since the pre-range pre(v)–pre(v′) contains exactly
the nodes in the descendant axis of v, we have5

pre(v′) = pre(v) + |v/descendant| . (2)

Additionally, for any node v in a tree t we have that

|v/descendant| = post(v) − pre(v) + level (v)
︸ ︷︷ ︸

6h

(3)

where level (v) denotes the length of the path from t’s root to v which is
obviously bound by h, the overall height of t.6 Equations (2) and (3) provide

5 We use |s| to denote the cardinality of set s.
6 The system can compute h at document loading time. For typical real-world XML

instances, we have h 6 10.

6 Torsten Grust and Maurice van Keulen

us with a characterization of pre(v′) expressed exclusively in terms of the
current context node v:

pre(v′) 6 post(v) + h . (4)

A dual argument applies to leaf v′′, the node with minimum postorder rank
below context node v (Fig. 6). Taken together, we can use these observations
to further delimit the B-tree index range scans to evaluate descendant axis
steps:

axis(descendant, v, v′) ≡ v′.pre > v.pre AND v′.pre ≤ v.post + h AND

v′.post ≥ v.pre + h AND v′.post < v.post .

〈0,0〉

post
OO

pre//

pre = post+h

�
�

�
�

�
�

�
�

�
�

�
�

�

__@@@

post(v)+h

pre(v)+h

•

•

•

•

•

•

•
•

•

•

◦
v

•

•
•

•

•

•
•

•

•
•

•

Fig. 7. Original (dark) and shrunk
(light) pre and post scan ranges for
a descendant step to be taken from
v

Note that the index range scan is now de-
limited by the actual size of the context
nodes’ subtrees – modulo a small misesti-
mation of maximally h which is insignif-
icant in multi-million node documents –
and independent of the document size. The
benefit of using these shrunk descendant

axis regions is substantial, as Fig. 7 illus-
trates for a small XML instance. In [5], a
speed-up of up to three orders of magni-
tude has been observed for 100 MB XML
document trees.

Nevertheless, as we will see in the upcom-
ing section, the index scans and joins in the
query plan of Fig. 5 still perform a signif-

icant amount of wasted work, especially for large context sequences. Being
uninformed about the fact that the doc tables encodes tree-shaped data, the
index scans repeatedly re-read regions of the pre/post plane only to generate
duplicate nodes. This, in turn, violates XPath semantics such that a rather
costly duplicate elimination phase (the unique operator in Fig. 5) at the top
of the plan is required.

Real tree awareness, however, would enable the RDBMS to improve XPath
processing in important ways: (1) since the node distribution in the pre/post
plane is not arbitrary, the ixscans could actually skip large portions of the
B-tree scans, and (2) the context sequence induces a partitioning of the plane
that the system can use to fully avoid duplicates.

The necessary tree knowledge is present in the pre/post plane – and actu-
ally available at the cost of simple integer operations like +, < as we will now
see – but remains inaccessible for the RDBMS unless it can be made explicit
at the SQL level (like the descendant window optimization above).

Tree Awareness for Relational DBMS Kernels 7

3 Encapsulating Tree Awareness in the Staircase Join

To make the notion of tree awareness more explicit, we first analyze some
properties of trees and how these are reflected in the pre/post-plane encod-
ing. We introduce three techniques, pruning, partitioning, and skipping, that
exploit these properties. The section concludes with the algorithm for the
staircase join, a new join operator that incorporates the three techniques.

3.1 Pruning

In XPath, an axis step is generally evaluated on an entire sequence of context
nodes [1]. This leads to duplication of work if the pre/post plane regions
associated with the step are independently evaluated for each context node.

a
•

b
•oooooo

c
•

d◦
e
◦

OOOOOO

f
◦���

g
•���

h
◦

???
i
◦

???

j
◦

a
•

d◦
e
◦

OOOOOO

f
◦���

g
•���

h
◦

???
i
◦

???

j
◦

(a)

a
•

b
•oooooo

c
•

d◦
e
•

OOOOOO

f
•���

g
•���

h
◦

???
i
•

???

j
◦

a
•

d◦
e
•

OOOOOO

f
•���

g
•���

h
◦

???
i
•

???

j
◦

(b)

Fig. 8. (a) Intersection and inclusion of the ancestor-or-self paths of a con-
text node sequence. (b) The pruned context node sequence covers the same
ancestor-or-self region and produces less duplicates (3 rather than 11)

Figure 8 (a) depicts the situation if we are about to evaluate an ancestor-

or-self step for context sequence (d, e, f, h, i, j). The darker the path’s shade,
the more often are its nodes produced in the resulting node sequence – which
ultimately leads to the need for a costly duplicate elimination phase. Obvi-
ously, we could remove nodes e, f, i – which are located along a path from some
other context node up to the root – from the context node sequence without
any effect on the final result (a, d, e, f, h, i, j) (Fig. 8 (b)). Such opportunities
for the simplification of the context node sequence arise for all axes.

Figure 9 depicts the scenario in the pre/post plane as this is the RDBMS’s
view of the problem (these planes show the encoding of a slightly larger XML
document instance). For each axis, the context nodes establish a different
boundary enclosing a different area. Result nodes can be found in the shaded
areas. In general, regions determined by context nodes can include one another
or partially overlap (dark areas). Nodes in these areas generate duplicates.

The removal of nodes e, f, i earlier is a case of inclusion. Inclusion can be
dealt with by removing the covered nodes from the context: for example, c2, c4

for (a) descendant and c3, c4 for (c) following axis. The process of identify-
ing the context nodes at the cover’s boundary is referred to as pruning and is
easily implemented involving a simple postorder rank comparison (Fig. 14).

8 Torsten Grust and Maurice van Keulen

post
OO

pre//

• document node
◦ context node

�
�
�
�
�
�

�
�
�
�

�
�
�
�
�
�
�
�

___ �
�
�
�
�
�
�
�

__
•

•

◦
c1

•

•

•

•
•

•

•

•
◦

c2 •
•

•

◦
c3

•
•

◦
c4 •

•

•

(a) descendant axis

post
OO

pre//

�
�
�
�

�
�
�
�
�
�

�
�

�

�
•

•

◦
c1

•

•

•

•
•

•

•

•
◦

c2 •
•

•

◦
c3

•
•

◦
c4 •

•

•

(b) ancestor axis

post
OO

pre//

�
�
�
�

�
�
�
�
�
�

�
�

___ �

�

__
•

•

◦
c1

•

•

•

•
•

•

•

•
◦

c2 •
•

•

◦
c3

•
•

◦
c4 •

•

•

(c) following axis

Fig. 9. Overlapping regions (context nodes ci)

After pruning for the descendant or ancestor axis, all remaining context
nodes relate to each other on the preceding/following axis as illustrated for
descendant in Fig. 10. The context establishes a boundary in the pre/post
plane that resembles a staircase.

〈0,0〉

post
OO

pre//

• document node
◦ context node

�

�

�
�
�
�
�

�
�
�
�
�
�
�
�

•

•

•

•

•

◦
c1 •

•

•

•

◦
c2 •

•
•

•

◦
c3

•
•

•

•
•

•

Fig. 10. Context pruning
produces proper staircases

Observe in Fig. 10 that the three darker sub-
regions do not contain any nodes. This is no
coincidence. Any two nodes a, b partition the
pre/post plane into nine regions R through Z
(see Fig. 11). There are two cases to be distin-
guished regarding how both nodes relate to each
other: (a) on ancestor/descendant axis or (b)
on preceding/following axis. In (a), regions
S, U are necessarily empty because an ancestor
of b cannot precede (region U) or follow a (region
S) if b is a descendant of a. Similarly, region Z in
(b) is empty, because a, b cannot have common
descendants if b follows a. The empty regions in
Fig. 10 correspond to such Z regions.

A similar empty region analysis can be done for all XPath axes. The con-
sequences for the preceding and following axes are more profound. After
pruning for, e.g., the following axis, the remaining context nodes relate to
each other on the ancestor/descendant axis. In Fig. 11 (a), we see that for
any two remaining context nodes a and b, (a, b)/following = S ∪ T ∪ W .
Since region S is empty, (a, b)/following = T ∪W = (b)/following. Conse-
quently, we can prune a from the context (a, b) without affecting the result.
If this reasoning is followed through, it turns out that all context nodes can
be pruned except the one with the maximum preorder rank in case of pre-

ceding and the minimum postorder rank in case of following. For these two
axes, the context is reduced to a singleton sequence such that the axis step

Tree Awareness for Relational DBMS Kernels 9

•
a

•

b

∅

∅

R

U

X

S

V

Y

T

W

Z

post
OO

pre//

(a) Nodes a and b relate to
each other on the ancestor/
descendant axis

•
a

•

b

∅

R

U

X

S

V

Y

T

W

Z

post
OO

pre//

(b) Nodes a and b relate to
each other on the preceding/
following axis

Fig. 11. Empty regions in the pre/post plane

a
•

b
•oooooo

c
•

d◦
e
•

OOOOOO

f
•���

g
•���

h
◦

???
i
•

???

j
◦

p1 p2 p3p0

a
•

d◦
e
•

OOOOOO

f
•���

g
•���

h
◦

???
i
•

???

j
◦

(a)

•a

•b
•
c

◦d

•e

•

f
•g

◦h

• i
◦j

p0 p1 p2 p3

�
�

�
�

__

�
�
�
�

post
OO

pre//

(b)

Fig. 12. The partitions p0–p1, p1–p2, p2–p3 of the ancestor staircase separate the
ancestor-or-self paths in the document tree

evaluation degenerates to a single region query. We will therefore focus on the
ancestor and descendant axes in the following.

3.2 Partitioning

While pruning leads to a significant reduction of duplicate work, Fig. 8 (b)
exemplifies that duplicates still remain due to intersecting ancestor-or-self

paths originating in different context nodes. A much better approach results
if we separate the paths in the document tree and evaluate the axis step for
each context node in its own partition (Fig. 12 (a)).

Such a separation of the document tree is easily derived from the staircase
induced by the context node sequence in the pre/post plane (Fig. 12 (b)): each
of the partitions p0–p1, p1–p2, and p2–p3 define a region of the plane containing
all nodes needed to compute the axis step result for context nodes d, h, and

10 Torsten Grust and Maurice van Keulen

j, respectively. Note that pruning reduces the number of these partitions.
(Although a review of the details is outside the scope of this text, it should
be obvious that the partitioned pre/post plane naturally leads to a parallel
XPath execution strategy.)

3.3 Skipping

∅

〈0,0〉

post
OO

pre//

• document node
◦ context node

�
�
�

�
�
�
�
�

__

�

scan
// �

scan
//

skip

::

•

•

•

◦c1

•

•

•
•

•

•

•v
•

•
•

•

•

•
•

◦c2
•
•

•

Fig. 13. Skipping technique
for descendant axis

The empty region analysis explained in Sect. 3.1
offers another kind of optimization, which we
refer to as skipping. Figure 13 illustrates this
for the XPath axis step (c1, c2)/descendant.
An axis step can be evaluated by scanning the
pre/post plane from left to right and partition
by partition starting from context node c1. Dur-
ing the scan of c1’s partition, v is the first node
encountered outside the descendant boundary
and thus not part of the result.

Note that no node beyond v in the current
partition contributes to the result (the light grey
area is empty). This is, again, a consequence of
the fact that we scan the encoding of a tree data

structure: node v is following c1 in document order so that both cannot have
common descendants, i.e., the empty region in Fig. 13 is a region of type Z
in Fig. 11 (b).

This observation can be used to terminate the scan early which effectively
means that the portion of the scan between pre(v) and the successive context
node pre(c2) is skipped.

The effectiveness of skipping is high. For each node in the context, we
either (1) hit a node to be copied into the result, or (2) encounter a node of
type v which leads to a skip. To produce the result, we thus never touch more
than |result|+ |context| nodes in the pre/post plane, a number independent of
the document size.

A similar, although slightly less effective skipping technique can be applied
to the ancestor axis: if, inside the partition of context node c, we encounter
a node v outside the ancestor boundary, we know that v as well as all de-
scendants of v are in the preceding axis of c and thus can be skipped. In such
a case, Equation (3) provides us with a good estimate – which is maximally
off by the document height h – of how many nodes we may skip during the
sequential scan, namely post(v) − pre(v).

3.4 Staircase Join Algorithm

The techniques of pruning, partitioning, and skipping are unavailable to an
RDBMS that is not “tree aware”. Making the query optimizer of an RDBMS
more tree aware would allow it to improve its query plans concerning XPath

Tree Awareness for Relational DBMS Kernels 11

evaluation. However, incorporating knowledge of the pre/post plane should,
ideally, not clutter the entire query optimizer with XML-specific adaptations.
As explained in the introduction, we propose a special join operator, the
staircase join, that exploits and encapsulates all “tree knowledge” of pruning,
partitioning, and skipping present in the pre/post plane. On the outside, it
behaves to the query optimizer in many ways as an ordinary join, for example,
by admitting selection pushdown.

The approach to evaluating a staircase join between a document and a
context node sequence is to sequentially scan the pre/post plane once from
left to right selecting those nodes in the current partition that lie within
the boundary established by the context node sequence (see Fig. 14). Along
the way, encountered context nodes are pruned when possible. Furthermore,
portions of a partition that are guaranteed not to contain any result nodes
are skipped. Since the XPath accelerator maintains the nodes of the pre/post
plane in the pre-sorted table doc, staircase join effectively visits the tree in
document order. The nodes of the final result are, consequently, encountered
and written in document order, too.

staircasejoin desc (doc : table (pre ,post), context : table (pre,post)) ≡
result � newtable (pre , post);
/* partition cfrom . . . cto */
cfrom � first node in context;
while (cto � next node in context) do

if cto.post < cfrom.post then

/* prune */

else

scanpartition desc (cfrom.pre + 1, cto.pre − 1, cfrom.post);
cfrom � cto;

n � last node in doc;
scanpartition desc (cfrom.pre + 1, n.pre, cfrom.post);
return result;

scanpartition desc (prefrom, preto, post) ≡
for i from prefrom to preto do

if doc[i].post < post then

append doc[i] to result;

else

break; /* skip */

Fig. 14. Staircase join algorithm (descendant axis, ancestor analogous)

This algorithm has several important characteristics:
(1) it scans the doc and context tables sequentially,
(2) it scans both tables only once for an entire context sequence,
(3) it scans a fraction of table doc with a size smaller than |result|+ |context|,
(4) it never delivers duplicate nodes, and

12 Torsten Grust and Maurice van Keulen

(5) result nodes are produced in document order, so no post-processing is
needed to comply with the XPath semantics.

4 Query Planning with Staircase Join

σ
::n

anc

doc

???
σ

::text()

��

desc

doc

???

context
���

Fig. 15. Plan for two-
step path query

The evaluation of an XPath path expression p =
s1/s2/ · · ·/sn leads to a series of n region queries where
the node sequence output by step si is the context node
sequence for the subsequent step si+1 (see Sect. 2.1).
One axis step si encompasses a location step and possi-
bly a node test. The corresponding query plan, hence,
consists of a staircase join for the location step and
a subsequent selection for the node test. Figure 15
shows a possible query plan for the example query
context/descendant::text()/ancestor::n (

desc
and

anc
depict the descendant and ancestor variants of

the staircase join, respectively).

anc

σ
::n

CCC

doc

desc

{{

σ
::text()

CC

doc

context
{{{

Fig. 16. Query plan
with node test pushed
down

There are, however, alternative query plans. Stair-
case join, like ordinary joins, allows for selection push-
down, or rather node test pushdown: for any location
step α and node test κ

σ::κ(context
α

doc) = context
α

(σ::κ(doc)) .

Figure 16 shows a query plan for the example query
where both node tests have been pushed down.

Observe that in the second query plan, the node
test is performed on the entire document instead of

just the result of the location step. An RDBMS already keeps statistics about
table sizes, selectivity, and so on. These can be used by the query optimizer
in the ordinary way to decide whether or not the node test pushdown makes
sense. Physical database design does not require exceptional treatment either.
For example, in a setting where applications mainly perform qualified name
tests (i.e., few ‘::*’ name tests), it is beneficial to fragment table doc by tag
name. A pushed down name test σ::n(doc) can then be evaluated by taking
the appropriate fragment without the need for any data processing.

The addition of staircase join to an existing RDBMS kernel and its query
optimizer is, by design, a local change to the database system. A standard
B-tree index suffices to realize the “tree knowledge” encapsulated in stair-
case join. Skipping, as introduced in Sect. 3.3, is efficiently implemented by
following the pre-ordered chain of linked B-tree leaves, for example.

We have found staircase join to also operate efficiently on higher levels of
the memory hierarchy, i.e., in a main-memory database system. For queries
like the above example, the staircase join enhanced system processed 1 GB

Tree Awareness for Relational DBMS Kernels 13

XML documents in less than 1/2 second on a standard single processor host [6].

5 Conclusions

The approach toward efficient XPath evaluation described in this paper is
based on a relational document encoding, the XPath accelerator. A preorder
plus postorder node ranking scheme is used to encode the tree structure of an
XML document. In this scheme, XPath axis steps are evaluated via joins over
simple integer range predicates expressible in SQL. In this way, the XPath ac-
celerator naturally exploits standard RDBMS query processing and indexing
technology.

We have shown that an enhanced level of tree awareness can lead to a
significant speed-up. This can be obtained with only a local change to the
RDBMS kernel: the addition of the staircase join operator. This operator
encapsulates XML document tree knowledge by means of incorporating the
described techniques of pruning, partitioning, and skipping in its underlying
algorithm. The new join operator requires no exceptional treatment: stair-
case join affects physical database design and query optimization much like
traditional relational join operators.

References

1. Anders Berglund, Scott Boag, Don Chamberlin, Mary F. Fernandez, Michael
Kay, Jonathan Robie, and Jérôme Siméon. XML Path Language (XPath) 2.0.
Technical Report W3C Working Draft, Version 2.0, World Wide Web Consor-
tium, November 2002. http://www.w3.org/TR/xpath20/.

2. Brain F. Cooper, Neal Sample, Michael J. Franklin, Gisli R. Hjaltason, and
Moshe Shadmon. A Fast Index for Semistructured Data. In Proc. of the 27th
Int’l Conference on Very Large Data Bases (VLDB), pages 341–360, Rome,
Italy, September 2001.

3. Mary Fernandez, Ashok Malhotra, Jonathan Marsh, Marton Nagy, and Nor-
man Walsh. XML Query Data Model. Technical Report W3C Working
Draft, World Wide Web Consortium, November 2002. http://www.w3.org/

TR/query-datamodel.
4. Daniela Florescu and Donald Kossmann. A Performance Evaluation of Al-

ternative Mapping Schemes for Storing XML Data in a Relational Database.
Technical Report 3680, INRIA, Rocquencourt, France, May 1999.

5. Torsten Grust. Accelerating XPath Location Steps. In Proc. of the 21st Int’l
ACM SIGMOD Conference on Management of Data, pages 109–120, Madison,
Wisconsin, USA, June 2002.

6. Torsten Grust, Maurice van Keulen, and Jens Teubner. Staircase Join: Teach a
Relational DBMS to Watch its (Axis) Steps. In Proc. of the 29th Int’l Conference
on Very Large Data Bases (VLDB), Berlin, Germany, September 2003.

7. Antonin Guttman. R-Trees: A Dynamic Index Structure for Spatial Search-
ing. In SIGMOD 1984, Proc. of Annual Meeting, pages 47–57, Boston, Mas-
sachusetts, June 1984. ACM Press.

8. Hans-Peter Kriegel, Marco Pötke, and Thomas Seidl. Managing Intervals Effi-
ciently in Object-Relational Databases. In Proc. of the 26th Int’l Conference on
Very Large Databases (VLDB), pages 407–418, Cairo, Egypt, September 2000.

9. SAX (Simple API for XML). http://sax.sourceforge.net/.
10. Patricia G. Selinger, Morton M. Astrahan, Donald M. Chamberlin, Raymond A.

Lorie, and Thomas G. Price. Access Path Selection in a Relational Database
Management System. In Proc. of the ACM SIGMOD Int’l Conference on Man-
agement of Data, pages 23–34, Boston, Massachusetts, USA, 1979.

11. Chun Zhang, Jeffrey Naughton, David DeWitt, Qiong Luo, and Guy Lohman.
On Supporting Containment Queries in Relational Database Management Sys-

16 Torsten Grust and Maurice van Keulen

tems. In Proc. of the ACM SIGMOD Int’l Conference on Management of Data,
pages 425–436, Santa Barbara, California, May 2001. ACM Press.

